The Annals of Probability
1990, Vol. 18, No. 3, 931-958

RANDOM WALKS AND PERCOLATION ON TREES!

By RuUsseLL Lyons

Stanford University

There is a way to define an average number of branches per vertex for
an arbitrary infinite locally finite tree. It equals the exponential of the
Hausdorff dimension of the boundary in an appropriate metric. Its impor-
tance for probabilistic processes on a tree is shown in several ways,
including random walk and percolation, where it provides points of phase
transition.

1. Introduction. Consider a countable tree with a distinguished vertex
called the root (Figure 1a). We may imagine the tree as growing away from the
root, each vertex sending forth several branches (Figure 1b). There is a way to
define the “average” number of branches per vertex, which we call the
“branching number” of the tree. The definition is motivated by Hausdorff
dimension; indeed, the logarithm of the branching number was first defined by
Furstenberg [12], who called it the “dimension” of the tree. Furstenberg used
this notion in a stunning manner to prove a result about the Hausdorff
dimension of the intersection of certain Cantor sets. Essentially the same
notion was considered independently by Holmes [15], whose work was flawed
and was corrected by Hawkes [14]. Our aim is to show how fundamental the
branching number is for probabilistic processes associated to a tree. In return,
these processes give a precise and intuitive meaning to the sense in which the
branching number is an average. Our results can also be used to calculate the
Hausdorff dimension of random sets and to establish random covering theo-
rems. Several known theorems that we need to use will be given proofs simpler
than the original.

To explain our first result, suppose that we do a simple random walk on a
given tree: start, say, at the root, and at each vertex, choose any of the edges
coming out with equal probability (including the edge towards the root) and
move to the other end. There are two possibilities: Either the walk is transient
(i.e., the walk returns to the root only a finite number of times almost surely)
or recurrent (i.e., it returns to the root infinitely often a.s.). If there is
“usually” more than one branch heading away from the root, then we expect
to increase our distance from the root most of the time, hence that the walk
will be transient. To balance this, suppose, instead of the simple random walk,
that we choose the edges going towards the root with greater probability than

the branches heading away. Namely, fix A > 1; if we are at a vertex with n.

branches out and one edge back, choose the edge back with probability
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A/(A + n) and choose each branch out with probability 1/(A + n). At the root,
we choose each branch with equal probability. Note that if A = n, there is
equal probability of moving forward or back; however, A is a constant indepen-
dent of which vertex we are at. Our result, then, is this: If A is less than the
branching number, the walk is transient, while if A is greater than the
branching number, the walk is recurrent. Coincidentally, this type of random
walk has been used in studying random aggregation [18] and has proved useful
in Monte Carlo simulations of self-avoiding walks [3]. More detailed informa-
tion on this walk in special cases can be found in [19].

Our second result is somewhat less intuitive. Begin with a tree and fix
p € [0, 1]. Remove each edge with probability 1 — p, independently of the other
edges. Thus, if a given vertex originally has n branches heading away from the
root, the expected number of branches remaining will be pn. We shall show
that if p times the branching number is less than one, then the root will be
connected to only finitely many vertices a.s., while if p times the branching
number is greater than one, there is a positive probability that the root is
connected to infinitely many vertices. In the language of percolation theory
(see [17] for a review), we have found that the critical probability is the
reciprocal of the branching number.

This percolation result should be compared with a basic result from the
theory of branching processes. In such a process, any particle gives birth to %
children (0 < k < ) with probability p, (X p, = 1). We begin with a single
particle; it gives birth; then its children give birth independently, each accord-
ing to the same distribution {p,}, and so on. The expected number of progeny
per particle is m = ¥ kp,. A basic result [2, Theorem 1.5.1] is that the process
eventually becomes extinct a.s. iff m < 1 (except when p; = 1). In conjunction
with our percolation result, this strengthens the sense in which the branching
number is an average, as does the following. We shall prove that for a
branching process with m > 1, given the event that the process does not
become extinct, the associated genealogical tree has branching number m a.s.
This theorem, in different language, was established under the assumption
that ¥ k(log k)?p, < © by Hawkes [14]. Our methods extend easily to the
situation of a multitype branching process.

We arrive at our result on random walks through examination of a phase
transition of electrical networks on trees: As a certain parameter is varied, the
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network passes from finite resistance to infinite resistance. This result in turn
depends upon considerations of the energy of flows. The latter can be trans-
lated into one of the shortest descriptions of the branching number: Let € be
the directed adjacency matrix of a tree, where the edges are oriented so as to
point away from the root. Then the supremum of the absolute value of the
eigenvalues of @ acting on [2 is equal to the square root of the branching
number. These energy results are also crucial to the percolation calculation,
providing a somewhat mysterious link between random walks and percolation.

Our study of percolation, including random resistive or capacitative net-
works, can be used to calculate the Hausdorff dimension of many random sets.
We shall merely refer to [8] to show how this is done. We shall, however, give
an interpretation of Hausdorff dimension via a random covering theorem and
via a random interval walk. For simplicity, consider a closed subset E of [0, 1];
euclidean space of any dimension would work as well. Choose an integer r > 2
and p €[0,1]. Let {I,} be a list of all the r-adic intervals in [0, 1]:
{0, 11, [0, 7=, [r~%, 2r 1, ..., [(r — Dr-4,10,[0, 772, [r"%,2r 2],...}. We
“put down” each I, with probablllty 1 — p and ask whether we have covered
E. More precisely, let I,(w,) be I, with probability 1 — p and the empty set
with probability p, these belng mutually independent events in k. Let F(w,) =
U 1 I(w,). Then Theorem 6.2 enables us to state that, for any r,

dim E = inf{-log p/logr: 0 <p <1, E C F(w,) as.}.

In fact, we would get the same result if F(w,) were replaced by Glw,) =
lim sup,, I;(w,). In addition, when —log p/log r < dim E, Corollary 6.3 leads
to the relation

dim[ E\ G(0,)| =dim E + log p/logr a.s.

Most parts of these covering theorems were established in [14] by somewhat
different methods. We shall see that dim G(w,)* = (log p/log r + 1) VO as,

whence
.

dim E N G(w,)* = (dim E + dim G(w,)" — 1) V 0 as.

To use Furstenberg’s language [12], G(w,)° is a random set which is almost
surely transverse to any given closed set E. In fact, we will extend this to
Borel, even analytic, sets E and place it in a more general setting in Section 7.

Now, if I, has the form [ar~,(a + 1)r~'], we say that [ is the order of I,.
Given A > 0, let us do a random walk on the r-adic intervals which intersect £
(in at least one point). We start at [0, 1] and choose one of the r-adic intervals
of order 1 which intersect E with equal probabilities. When we are at an
r-adic interval I of order [ > 0, we choose either the r-adic superinterval of
order ! — 1 containing I with probability A/(A + n) or one of the r-adic
subintervals of order [ + 1 contained in I intersecting E, each with probabil-
ity 1/(A + n), where n is the number of such sublntervals of I. Then
Theorem 4.3 tells us that the walk converges (to a point of E) a.s. if A < rdm?
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but diverges a.s. if A > r%™ £ More precisely, if we are at the interval J, (w,)
at time n, then liminf J,(w,) = limsup J,(»,) is a point a.s. if A < pdmZ
while liminf J, (w,) = @ and limsup J,(»,) = [0,1] a.s. if A > rd™E There-
fore,

dim E = sup{log A /log r: J,,(w,) converges a.s.}.

We can think of r%™ % a5 an average number of subintervals of order [ + 1
intersecting E of a given interval of order ! which intersects E.

2. Elementary results on the branching number. We shall use the
term free to mean a countable connected graph with a distinguished vertex
called the root which has no loops or cycles and which is locally finite (i.e.,
each vertex belongs only to a finite number of edges). We denote the root by 0
and shall generally consider the tree as a directed graph, where edges go in the
direction away from 0. If o is a vertex, we write |o| for the number of edges on
the shortest path from 0 to o. Consistent with the orientation, we write the
following: o < 7 if o is on the shortest (hence every) path from 0 to 7; o < 7 if
o<rtando#r,0—->7ifo<rand|r|=|o| + 1. If ¢ - 7, 7 is said to be a
successor of o. If o # 0, then & denotes the (unique) vertex such that & — o.
There is a (unique) one-to-one correspondence between vertices other than the
root and edges such that a vertex belongs to its corresponding edge; an edge is
said to precede its corresponding vertex. Because of this correspondence, we
shall use the label of a vertex to denote its preceding edge as well. A cutset I1
of a tree T' is a finite set of vertices not including 0 such that for every vertex
o €T, eitheroc <7 forsomerell,7 <o forsomere,or{rel: o <r7}is
finite, and such that there is no pair o, 7 € II with o < 7. It will be handy later
to denote the set {r € I': o < 7} by T'?. A special cutset is the sphere of radius
n, S, ={o €T |o| = n}. We write |II| = min{|o|: o € II} and M, = card S,,.
We will say that I, — o when |II | — .

The simplest examples of trees are the n-trees, where I' is said to be an
n-tree if each vertex has exactly n successors. Figure 2 shows a 2-tree. Our
definition of branching number will be such that the branching number of an
n-tree is n. It will also be easily seen that in case the number of successors of
every vertex lies in a fixed interval [n,,n,], then so does the branching
number. ,

Fi1c. 2.
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DErFINITION. The branching number of a tree I', denoted br T, is defined by

brT = inf{A > 0: liminf ¥ A7l = 0}

M- oell

= sup{A > 0: liminf Y AWl = oo}

M-ow seqn

- inf{/\ > 0:inf ¥ A~ = o}.
I oell

The growth of T, denoted gr I, is defined by
grT = inf{A > 0: liminf ¥ A~Wl = 0} = liminfM" .

n—o n—>o
cesS,

Note that neither of these numbers depends on the choice of root and that
br I' < gr I'. In the case where all the vertices of I" have degree at least 2 and
V,, denotes the number of vertices of I' within distance n of the root, we also
have gr I' = liminf, _,,, V,}/" since M, <V, <nM, + 1. It is not hard to see
that if T is spherically symmetric (i.e., the degree of a vertex depends only on
its distance from the root), then br I' = gr I".

In case the vertices of " have uniformly bounded degree, it is easy to give
the following interpretation of br I' (see [12]). Let the number of successors of
any vertex be at most r and label them arbitrarily with distinct numbers
drawn from {0,1,...,r — 1}. Every infinite directed path from 0 then gives a
string of integers in [0, » — 1], which we interpret as the base r expansion of a
real number in [0,1]. Let E be the set of all such real numbers. Then
br I = rdimE,

ExampLE. Let I be a tree such that if |o| is even, then o has 2 successors,
while if |o| is odd, then o has 3 successors (Figure 3). Then br T' = V6.

ExampLE. If T, and T, are trees, let I'; v I, denote a tree formed from
disjoint copies of I'; and I', whose roots are identified and taken as the root of
I'; vV T, (see Figure 4). Then

(2.1) br(T, V T,) = br T, V br T, .

Fic. 3.



936 R. LYONS

F1a. 5.

DEFINITION. A tree is called quasispherical if its branching number equals
its growth.

ExampLE. Let n, 1o Let T (resp., I';) be a tree such that ny, < |o| <
Ng,41 = o has one successor (resp., two successors), while n,, ; < |o| <
ng, = o has two successors (resp., one successor). Then if 7, increases
sufficiently rapidly, br I'; = br T, = 1, whence br(T; V T},) = 1, while gr(T'; Vv
T,) = 2 (see Figure 5 for a schematic representation). Thus, I'; V I, is not
quasispherical.

ExampLE. Let I be a tree such that 0 has two successors; for every o # 0,
o has either one or three successors; if o has one successor and o < 7, then 7
has only one successor; and M, = 2" (see Figure 6). Then grI' = 2 and
br T’ = 1. Let I be the subtree consisting of those o € I" such that & has more
than one successor. Then also gr I'" = 2 and br I = 1.

T/

Fi1G. 6.
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As Furstenberg showed [12], classical theorems on the relationship between
Hausdorff dimension and measures have important analogues for trees.

DEFINITION. A flow on a tree T is a nonnegative function 6 on the vertices
of T such that for all ¢ €T, ‘

(o) = X 6(r).

A flow 6 such that 6(0) = 1 is called a unit flow. The set of unit flows on T is
denoted U(I'). For a flow 8 with 8(0) # 0, we define its Lipschitz constant to
be

lip 6 = liminf(co) "/

|lo| =
and its branching number as

— X 6(0)log6(o)

br 6 = exp lim inf —Z=1 ,
- Y 6(o)lo]
gell

where 0log 0 is interpreted as 0.

Note that lip 6 < br §. We shall repeatedly use the fact that for any flow 6
and any cutset II,

Y 6(o) = 6(0).

oell

ProposiTiON 2.1 ((12]). For any tree T,

brI'= sup lip6 = sup bré.
90U 0 U((I)

Proor. It suffices to show that V6 € U(T'), brd <brT, and VA <brT
360 € U(T) lip 6 > A. Suppose first that § € U(I") and br @ > A. Then for all
large II,

(2.2) — Y 0(a)logb(o) =logr Y. 6(c)o].

cell cell

From Jensen’s inequality, we have

Y All="Y g(o)exp[—logb(c) — |o|log A]

cell ocell

>exp ), 0(a)[—logb(o) — |ojlogA] =e®=1
& oell ’
by (2.2). Therefore br ' > A, whereupon br I' > br 6.
Secondly, let 0 <A < brI'. Then infy; ¥ oA 7! > 0. If we regard A /! as
the capacity of the edge preceding o, then it follows from the max-flow min-cut
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theorem (see, e.g., [10]) that there is a nonzero flow 6 such that for all o,
6(c) < A7l Hence lipf > A. O

In Section 4, we shall develop analogues of Frostman’s classical theorem
which relates capacity to dimension; see Theorem 4.3, the discussion preceding
Proposition 4.5 and Proposition 4.5 itself.

3. Quasispherical and subperiodic trees. The calculation of branch-
ing numbers is considerably easier for quasispherical trees than for general
trees. In this section, we shall give two conditions sufficient for quasispheric-
ity. For o €T, let M7 = card{r €T: 0 < 7 and |7| = |o| + n}.

DEFINITION. A tree T is called subperiodic if, for all o # 0, there is an
adjacency-preserving injection T: T'” - I'T® with T'(¢0) € S,.

ProposiTION 3.1. Let T' be a subperiodic tree. Then T is quasispherical
and there is a unit flow 0 on T such that lip§ = br 6 = brT.

Proor. In fact, we will show that A = lim M!/" exists and
inf; £, cyA~! = 1. This immediately shows that T' is quasispherical and, by
the max-flow min-cut theorem, that there is a unit flow 0 satisfying 6(o) <
ATl

Let B, = max,,_; M;. The subperiodicity hypothesis entails that B,, ,, <
B, B, for m,n > 0, whence A = lim B,/" exists. It follows that A = lim M}/"
as well. Also, B,,, < B}, whence B, > B./” —» A" and so M, > A"~ 1. Now if,
contrary to our claim above, ¥ .27 <1 for some cutset II, then let
G={cel:@rell,c<t)or(Vrell, o« and 7 £ o)} and observe that

EIB (B

oceG n>0 ‘oell

Let F be the set of sequences ¢ = (04, 0y,...,0,,0,) with n > 0, o, €11 if
k >1, and o, € G; write |t| = |oy| + -+ +]0,| + |0,]. The above inequality
can be written as ¥, pA 7 < . However, because I is subperiodic, there is
an injection S: I' — F such that |S(c)| = |o]| (cf. the proof of Proposition III.1
in [11]), whence

YAl Y all= Y A"M, > Y A7l =,

teF cel n>0 n>=0

a contradiction. O

ExaMPLE. Let I be the tree whose vertices are the self-avoiding walks on
Z? from (0, 0), i.e., the finite paths starting at (0, 0), passing from (x, y) to any
one of (x + 1,y),(x,y + 1), and not passing through any vertex twice. I" forms
a subperiodic tree rooted at & when each path is followed by all its possible
extensions by one vertex. It is estimated that br I'(= gr ') = 2.64 [3].
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Our next proposition shows that trees whose growth is fairly ‘“regular’’ are
quasispherical. This depends on a lemma due to Falconer. If o,7 €T, we
denote by o A 7 the vertex farthest from 0 which is less than or equal to both
o and 7.

LemMA 3.2 ([9]). Let f and g be nonnegative functions on a tree T such that
g is strictly positive and decreasing in the sense that o < 7 = g(o) > g(7). Let

a,= L gloan) " f(o)f(r)

o, T€S,
and
b,= L f(o).
ocE€S,

If

(3.1) lin:ioloufanb;2 < o,
then

(3.2) inf )} g(o) > 0.

’ I sen

Proor. Let 0 <& < limsup, . a,'b2. We will show that L .;g(c) >

e/4 for all II.
Given II, choose n so that Vo € S,, 3 r€1Il, r <o and a}'b2 > ¢. Set

¢, =b,/(2a,) and
A={0’ESn23'TSO',Cn Y f(p)>g(7')}.

T<p€E€S,

. Ifr<o €8, then
Y glonp) M fp)z2 L glerp) ' f(p) = L &) ' f(p).
pES, T<p€ES, T<p€ES,
If o € A, we can choose 7 so that this latter sum is greater than ¢, ', whence
Y flo) <c, ¥ f(o)g(o Ap)  f(p) <a,c,.

cEA ceEA
PES,

Also, if |7| < n, then

¢n L flo) <g(7).

r<oceS,\A

Putting these last inequalities together, we obtain

Le(nze,X L fo)=c, T f(o)
N rell T€ll <o €S,\A oceSN\A
~e T f0) = X f(@)] > (b - ane) = g2 > 5. O

ocEeSs, ogEA n
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ProposiTiON 3.3. Let T be a tree such that for some A > 1,

(3.3) sup M;' Y (A7"M2)* < w
k,m=>=0 oceS,

and

(3.4) lim supA~"M,, > 0.

Then A =br T and T is quasispherical.

Proor. From (8.3) with £ = 0, we get that sup A "M, < o, whence gr I’
< A. It remains to show that br I' > A. To this end, we may as well assume
that A > 1. Choose A, €11, Al and set f(o) = A7I, g(a) = A[°. If we estab-
lish (3.1), then (3.2) will entail that br I' > A, which will complete the proof.
Now

a,= Y, gloAnT) 'flo)f(r)= Y Aortiyz—2n

o,TES, o, T€S,
= X A Y1
lpl<n o,T€S,
ONT=p
2 2
-z £ o)~ ( x )
lpl<n p<cES, poY \Y<o€ES,

X A'{"A‘2"{(Mﬁ—|m)2— by (Mr'f—lwl)z}

lpl<n Py
¥l<n

Y (AP - AP AE (M) + ATE(M,)?

0<|pl<n

n A\ ®

) E (3] £ o) o
k=1 A pES,

Thus, a, is uniformly bounded by (3.3). In conjunction with (3.4), this

establishes (3.1). O

4. Electrical networks and random walks. Denumerable Markov
chains correspond to random walks on directed graphs, where the edges are
labelled with the transition probabilities. Reversible Markov chains correspond
to random walks on undirected graphs, or electrical networks, where the edges
are labelled with resistances (or conductances): The transition probability from
o to r is the conductance from o to 7 divided by the sum of all conductances
emanating from o (see the superb [7] or [16, Chapter 9, Section 10]). We shall
require transience criteria for reversible chains which stem from this corre-
spondence.
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Let T be a finite undirected graph with vertex set V and edgeset E CV X V.
We shall regard E as a set of ordered pairs such that (o,7) € E = (1,0) € E.
Let %(V) be the usual complex Hilbert space on V and [%(E) be the space of
complex-valued functions 6 on E such that 8(o, 1) = —0(7, o), with the inner
product

(0,0) =3 L 0(o,7)0(o,7).
(o,7)EE
We define the coboundary operator d: (V) — I*(E) by
(dP)(o,7) = P(7) — P(0).
Its adjoint is the boundary operator,
(d*6)(o) = - L 6(0,7).
(o,7)€E

When T is infinite, we will continue to use the above symbols when they are

well defined.
Suppose now that I' is a countable connected graph with conductances

C(o, 7) > 0 assigned to edges satisfying

C(o,7) =C(7,0) and Vo Y, C(o,7) <.
(o,7)€E

Fix a vertex 0 € I'. Let

F(T) = {0: E-RC 2 lX(E),Yo ¥ |0(c,7)| <,
(o,7)EE

andV o # 0, (d*0)(c) = 0}

be the space of flows on T of finite energy, where the energy of a function 6 is
defined as

E(6) = [16C™ 2,
The random walk on (T, C) has transition probabilities
Py, =Clo,7)/2,,
where

a,= Y. C(o,1).

(o,7)€EE

TueoreM 4.1 ([20]). The random walk on (T, C) is transient iff (') # {0}.

ProoF. We may assume that I' has no loops (so that p, , = 0) without
affétting either condition. Let {I,} be a sequence of finite subgraphs of I’
containing 0 whose union is I'. Let P,(o) be the potential (the voltage) at o
when 0 is at unit potential and all = & I, are grounded. Let 6,(o, 7) be the
current flow, defined by Ohm’s law 6,(o,7) = —C(o, 1) - dP, (0, 7). By [16,
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Proposition 9-131], the random walk is recurrent iff the current at 0 [ —d*6,(0)]
tends to 0 as n — ». Now d*8, = 0 on T, \ {0} by Kirchhoff’s law, whence

E(On) = _(Bn’dPn) = —(d*@n,Pn)

—d*6,(0) - P,(0) - Z'.r d*6,(a) - P,(o)
gel,

= —d*0,(0).

That is, the energy equals the current at 0 when a unit potential is applied.

Now define 6, to be the current flow when I' \ I, is grounded and 0 is at a
potential so that —d*,(0) = 1. Then the walk is recurrent iff E(6,) — .
Furthermore, by Thompson’s principle [7, page 63], 6, is the unique function 6
of minimum energy satisfying —d*6(0) = 1 and d* = 0 on T, \ {0}. Thus, if
F(I") + {0}, there exists § € F(I') with finite energy and —d*6(0) = 1, which
implies that E(8,) < E(8) < » and the walk is transient. Conversely, if the
walk is transient, then E(6,) - « and, by taking a subsequence if necessary,
we have that 6, > 0 and E(6) < liminf E(6,) = lim E(8,) = M < ». Since
0< P,<M,|0,(c,7) <MC(o,7), whenceV o £, , cgl0(o,7) — 8,(c,7)| -
0. Consequently, 0 # § € (I'). O

This theorem is referred to [20] as ‘“Royden’s criterion.”’ Another criterion
given in [20] weakens the conditions on 8: Random walk on (T, C) is transient
iff 3 6: E—>R such that 6C V2 €l*(E), ¥V o L . cxlb(o,1)| <,
Y, evld*0(o)] < o, and L . d*0(c) # 0. A simpler proof than the original
may be given as follows. Given such a 6, add a vertex x to I' with edges
connecting x to every o € I' and with conductances C(x, o) = |d*0(c)|. By
Royden’s criterion and the hypothesis, this new walk is transient. That is, a
random walk beginning at 0 will visit 0 only a finite number of times a.s. and
will never visit x with positive probability. Therefore, the original walk is
transient.

When Z(I') # {0}, there is a unique 6 € F(I') of minimum energy such
that —d*6(0) = 1; we call this 6 the unit current flow. [That 6 exists and is
unique may be seen as follows: First, if 0, is a minimizing sequence, then 6,
has a limit point # with E(#) < liminf E(6,). Second, if 8 + 6', then it is
easily seen that E(3(8 + 6)) < 1(E(9) + E(#)).] The terminology is justified
by noting that if 0 € T, I', finite and increasing to I', 8, the unit current flow
when '\ T, is grounded and voltage is applied at 0, then 6, — 6. [Indeed,
E(6,) < E(6), whence every limit point of 6, has minimum energy, hence is 6.]
The corresponding limit, P = lim P,, is called the potential and satisfies
6 = —C - dP. Note that P(0) = E(6). Recall the interpretation of P(c)/P(0)
as the probability that the walk started at o will (ever) visit 0. Also, the unit
current flow 0(o, 7) is equal to the expected net number of crossings of the
edge (o, 7) when a random walk is started at 0 [a crossing of (o, 7) is counted
positively when the traversal is from o to 7 and negatively when from 7 to o]
—see [7, page 52].
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When I' is a tree with conductances C, we shall write ®(o) for the
resistance C(&, o)~ ! of the edge preceding o (o # 0). It will also be convenient
to write

E®(0) = Y 6(o)’®(0)

0+#cel’
for the energy of a flow 6 and
E®(T') = min E®(9)
0 U()

for the energy of unit current flow (or « if current does not flow). Thus,
Royden’s criterion is that (I, ®~1) is transient iff E®(I') < . In conjunction
with the max-flow min-cut theorem, this leads to the following relative of the
Nash-Williams criterion ([20], [22]).

COROLLARY 4.2. Let I be a tree with resistances ®. If (I', ®~ 1) is transient.
Then

(4.1) lim ¥ ®(o) ' = .
. H”“oen
Conversely, if there are positive numbers w,, such that ¥, . w, < © and
(4.2) liminf Y, w,®(c) ™" >0,
JIE=Y"Y) ocell

then (I', ®~1) is transient.

Proor. If (I, ® 1) is transient, then there is a unit flow ‘9 of finite energy.
The Cauchy-Schwarz inequality shows that

2

1- ( y 0(0’)) < ( y @(0)_1)( y e(a)%p(a)).
oell oell oell

Since ¥, cn8(0)?®(a) — 0, we arrive at (4.1). On the other hand, if (4.2) is

satisfied, then the max-flow min-cut theorem ensures the existence of a

nonzero flow 6 obeying 6(c) < w, (o)~ ". This flow has finite energy:

Y 6(a)®(oc) = L X 6(0)(0()P(0)) < ¥ w, X 6(c)

0#cel’ n>1o0€S, nx1 oc€ES,

=) w, <. D

nx>1

Our canonical choice of resistances on a tree is ®(g) = AI=1 swhere A > 0
is arbitrary. The significance of this choice arises from the next theorem,
whose intuitive basis was described in Section 1.

THEOREM 4.3. Let T be a tree. When A < br I', the walk associated to A is
transient and when A > br T, the walk is recurrent. Correspondingly, current
flows when A < br I' but not when A > brT.
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Proor. If the walk associated to A is transient, then (4.1) shows that
A < brT. On the other hand, if A < br I, choose A, €]A,br IT and set w, =
(AAgH™. Then (4.2) holds, whence the walk is transient. O

REMARK. At A = br I, the walk may be either recurrent or transient. For
example, when I is an n-tree, the walk is recurrent. On the other hand, if T is
a spherically symmetric tree such that M, = 3* for 2* < n < 2**1, then the
walk is transient.

From Theorem 4.3, we may deduce a formula for the branching number
similar to that for the growth. Let

M0 -( % 0(0)2)_1;

ceSs,

notice that if 6, is a unit flow which is constant on S,, then M, (6,) = M,,.

COROLLARY 4.4. For any tree T,

brI'= sup liminfM,(6)"".
eeur) "7®

Proor. This is an immediate consequence of the fact that lim inf M,(6)"/"
is the radius of convergence of the series

Y 6(a)Ael, O

0+co€el’

It is interesting to note that when A > brI', the walk may not be
ergodic. Indeed, [16, Proposition 9-131] states that (', ®~!) is ergodic iff
Y, er®(0)7! < . For the canonical ®, this amounts to the requirement that
Y M,\A™" < . Thus, if A > limsup M!/", the walk is ergodic, while if br I <
A < limsup M}/", the walk is null recurrent.

The above considerations of energy are illuminated further by an abstract
potential theory on the (Martin) boundary, dT', of T [4]: This is the space of
infinite directed paths beginning at 0. (The boundary bears a clear resem-
blance to the set E described in Section 2 following the definition of branching
number.) For distinct points s and ¢ of dT", we let s A ¢ denote the point of T’
farthest from 0 which is common to both s and ¢. Natural kernels K(s, #) on
oI’ X aT" are those of the form

V(s At) if s #¢,
(4.3) K(s,t) =< lim ¥(o) = V¥(s) ifs=t¢,
oo

where ¥ is any nondecreasing nonnegative function on I', for example,
Y(o) = A, A > 1. The potential of a finite positive Borel measure u on dI' is
defined to be the function [K(s,t)du(¢) and the energy is the number
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J/K(s,t)du(s) du(t). Finite Borel measures u on dI' are in 1-1 correspon-
dence with flows 6 on I' through the relation

(4.4) 0(c) = u({s:o€s}).

This correspondence permits the following expressions for the potential and
energy with respect to the kernel (4.3). Let

P(o) = V(o) — V(5), o#0,

and denote by ¢ the unique successor of o in s if o € s. We shall interpret
o -0 as 0. Then

Y[ w(o)du(t) + ¥(s)u({s))

ges SAt=0

Y ¥(o)[0(a) — 6(a)] + ¥(s)u({s})

TES

= X ©(0)6(a) + ¥(0)6(0)

0<oeEs

fa K(s,2) du(?)

[the last step requires some care when u({s}) = 0; in this case, if we write
s NS, ={o0,}, then we use the fact that ©,_,_, (o, X6(c},) — 0(0,, ) —
L o< e P(0)6(a) by the monotone convergence theorem] and so

[[E(s,ydu(s)du®) = L @(0)0(a) [ _ du(s) + ¥(0)8(0)u(3T)

0+0el
= E*(8) + ¥(0)6(0).
Note that given 6 and ®, we can define u by (4.4) and ¥ by
(4.5) V(o) = Y @(n), -

O0<r<o

whereupon the above calculations are again valid. Since ¥(0) = 0, the energy
of u is equal to the energy of 6.

When E®(T') < », we let 6, be the unit flow of minimum energy and u 4 the
boundary measure associated to it by (4.4). It is evident that u, is the
distribution of current outflow on 4I'. In probabilistic terms, w4 is harmonic
measure for the random walk on (I, ®~1), i.e., the “hitting” distribution on
oI'. This is because 64(c) is the expected number of net crossings of the edge
preceding o. Since I' is a tree, each path to « crosses this edge either zero or
one times net, whence 6,(0) is simply the probability of hitting {s: o € s}.
Because of these facts, it is reasonable to regard the electrical network on I' as
being ‘‘grounded at infinity.” Further justification stems from the following
observation.

PropoSITION 4.5. Let I' be a tree with resistances ®, unit current flow 0y,
potential P®, and harmonic measure jq. Let u be any probability measure on
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oI whose unit flow 0 determined by (4.4) has finite energy. Then
(4.6) lim P®(0) =0 u-a.e.[s].

o>
The potential of 4 with respect to the kernel given by (4.3) and (4.5) is equal
to E®(T) p-a.e.

Proor. Write (6,,0,), = L, . ,0,(c)8,5(c). Then
I, = (092 0,0%) = —(0,dP®), = —(d*9, P?),

= —d*0(0) - P*(0) — ¥ 0(a)P%(c) = E¥(T) — faFF,,dM,

oceS,

where F,(s) = P®(0) if o €, |o| = n. Since 6, is the point of the affine
hyperplane —d*§' = 1 closest to 0 when #(T') is considered as a vector space
with inner product (6,, 6,) = (6,972, 0,d'/?), it follows that

0= (0~ 6,0,) = E*(T') — (012, 0,0'/2).

Thus, I, > E®(T), whence [,F,du — 0. Let F(s) =lim,_, P®(s). Since
F, | F, we have [;rFdu = 0, which is to say F = 0 p-a.e.

In light of our previous calculation, the potential of u, at s is
L o< esP(0)84(0). This is the same as the potential drop from 0 to s, which,

by (4.6), is E®(T") pn-ae. O

Theorem 4.3 is equivalent to a bound on the eigenvalues of a certain
operator @ associated to I'. Namely, given a complex-valued function f on the
vertices of I', define

(Qf)(o) = X f(7).

In the usual basis of %(T), the matrix of @ is the directed adjacency matrix of
[. [It is perhaps of interest that the graph Laplacian A = +d*d can be
expressed in terms of @ A=Q + Q* — QQ*=1—-(Q —IXQ — I)*.] The
operator @ is bounded on {*(T') iff T is of uniformly bounded degree. In any
case, @ is always closed and it is natural to examine its spectrum, in particu-
lar, to see whether it enables us to calculate br I'. Note first that br I is not
simply a function of the spectral radius of @: If T is a tree such that ‘“most”
vertices have only one successor while T still contains arbitrarily large but
finite portions of a 2-tree, then br I' = 1 while rad(Q) = V2, which is the
spectral radius of the operator associated to an entire 2-tree. It transpires,
instead, that the point spectral radius,

rad,(Q) = sup{|A|: 3 f € I*(T) \ {0}, Qf = A f},

determines the branching number.
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THEOREM 4.6. For any tree T, rad (@) = (br I')*/2

Proor. We claim that it is enough to consider nonnegative eigenvalues and
eigenfunctions in computing rad ,(@). Assuming this, note that nonnegative
A-eigenfunctions f are in 1-1 correspondence with flows 6 via 6(o) =
A7 f (o). Since || 1|2 = X, < 10(0)%(A?)], we see that f & [%(T) iff 0 has finite
energy for the resistances ®(c) = (A2)?I=1. The conclusion ensues.

In order to establish our claim, first observe that the point spectrum is a
disc centered at the origin (this uses an artifice similar to the above correspon-
dence of eigenfunctions and flows). Next, given A > 0 and a A-eigenfunction
f € 1%(T)\ {0}, we may assume that f(0) # 0. Define

g(a) =| f(0)|0 IT a,,

<r<o

where

o - {IQf(T)I/(QIﬂ)(T) if (QIN)(r) # 0,
"o

otherwise.

Then g > 0, g € IA(T)\ {0}, and Qg = Ag. O

5. Periodic trees. Explicit calculations of energy or current flow are
generally impossible, even for a tree with the canonical resistances. Essentially
the only exception we know of is the case of periodic trees, which are trees
whose structure can be defined from a finite piece of information. We shall see
that their calculation reduces to solving a finite system of slightly nonlinear
equations, which in turn permits a convergent approximation scheme. Before
- defining and ““solving” periodic trees, we shall present a general relationship
which enables current to be calculated from the energies of subtrees.

Given o €T, we regard I'"={reTI: o <1} as a tree with root o. If
resistances ® on I are given, then we use the resistances ®|I'* induced on I'°.
We claim that

(5.1) E?(T) = X 6(1)®(7) + 6,(a) EXT(I7)

0<r<o
when E®T(I'?) < ». Indeed,

EXT) = X 64(r)®(r) = P*(o)

0<r=<o

is the potential drop from o to «. Therefore 0¢(0)Pq’(o:) is the energy in I'? of
the unit current flow in I', which equals 04,(0)?E®"“(I'”) when normalization

is aceounted for.
When |o] = 1, (5.1) yields

(5.2) 0p(a) = [®(a) + E*T(T7)] ' E*(T).
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Since L , - 104(c) = 1, we may also deduce that

-1

(5.3) E*(I) = { Y [®(o) + Eq"r"(l“")]_l}

lo|=1

In case ®(o) = A”I"1 we will use the notations 6, and E* for 6, and E®,
respectively. Equations (5.2) and (5.3) become

(5.4) 0,(c) = [1 + AENT)] 'ENT), o] =1,

(5.5) ENT) = { Y [1+ ,\EA(FG)]‘I}

lo|=1

We are now prepared to find the current flow and energy of periodic trees.

DerFINITION. A tree T’ is called periodic if, for all o # 0, there is an
adjacency-preserving bijection T: I'” —» I'T) with T(s) € S,.

Periodic trees can be constructed as follows. Let G be a finite directed graph
with at least one cycle. The directed cover T of G is the set of finite (directed)
paths in G; T' forms a tree rooted at the empty set when each path is followed
by all its possible extensions by one vertex (see Figure 7). Clearly I is periodic
and every periodic tree is isomorphic to a directed cover of a finite digraph.

A similar notion is that of the universal cover of a connected undirected
graph H. This is the set of all finite paths in H beginning at some fixed vertex
x € H which never backtrack (i.e., no traversed edge is immediately traversed
in the opposite direction). We assume that H is finite and has at least one
cycle. The universal cover of H can be obtained from the directed cover of a
certain digraph G in the following manner. If H = (V, E), let G = (E, F),
where F = {((u,v),(v,w)): (u,v) €E, (v,w)€eE, w+u if v+u) [As in
Section 4, we are assuming that E c V X V and (u,v) € E = (v,u) € E. This
has to be modified if we wish to allow graphs H with multiple edges.] If T is
the directed cover of G and |o| = 1, then I'° is isomorphic (as an unrooted
tree) to the universal cover of H.

b
c
a b
> a d
b b
N ) c
c
- d d
d a
G a T

Fia. 7.
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Our first task is to compute the branching number of the directed cover of a
digraph G. Let A be the directed adjacency matrix of G, i.e., A,, is the
number of edges going from u to v. By the Perron-Frobenius theorem, the
spectral radius of A is equal to its largest positive eigenvalue, A,. This
coincides with br I'. For if 1 denotes a column vector all of whose entries are 1,
then M,,, is the number of paths in G of length n, and this is 17A1.
Consequently, M!/" — A,; this is br I' in view of Proposition 3.1.

We may identify S; with the vertices of G. For v € G, we set

Jy(v) = [1+ AEXTY)] .
If we regard J, as a column vector, then (5.5) applied to the tree I'” leads to
Jy(v)
5.6 AdJ, =A—.
( ) ( A)(v) 1 _ JA( v)

Solution of this system of equations is facilitated by the nonlinear operator
B,(K) = A"4K,
where
- K(v)
K(v) = ————.
(v) 1+ K(v)

We shall term the digraph G minimal if there do not exist disjoint subsets V;
and V, of the vertices of G whose induced directed adjacency matrices both
have spectral radius A, and such that if v, € V; and v, € V,, then there is no
directed path in G from v, to v, nor from v, to v;.

THEOREM 5.1. For A < A, the energy EXN(I') is given by
EXD) = (17,)
and J, is the unique solution of
J(v)
1-J()’

which has the maximum number of nonzero entries. Furthermore, if we choose
any vector K > A~'Al, then B'K — K,, with J, = K,. Let m: T\ {0} - G be
the natural projection mapping paths to their endpoints. Unit current flow is
given by

0,(c) = A_IUHI(ITJA)_IJ,\(W(U'))0<l—I< [1-dy(m(r)], o=#0.

(5.7) (AJ)(v) = A J >0,

As A1 Ay, J, = 0. Suppose now that G is minimal. Then as A 1 Ay,
Jz\ : E/\(F) _)J*’

where J ,, is the unique nonnegative A ,-eigenvector of A satisfying 177, =1
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Also, the limiting flow
04(0) = lim (o) = A" (7 (o))
AT A,

exists and satisfies lip0, = brT.

Proor. Solutions to (5.7) are related to fixed points of B,,
B,K =K, K=>0,

via J = K. Define K, by K, = J,. Let G, be the subgraph induced by G on
the set of vertices v such that J(v) = 0. In view of (5.6), we may write
A, 0 ]

* % |’

o]

where A, is the directed adjacency matrix of G,. Since no current flows in
7~ YG@,), the directed cover of G, must have infinite A-energy, whence A > u,
where u is the spectral radius of A,. It follows that all solutions of (5.7) are 0
on G,: If J satisfies (5.7) and J' = J|G, # 0, then
J'(v)

1-J'(v)
whence A%J' > A"J' and, by the spectral radius formula, u > A, a contradic-
tion. Therefore, if J is a solution of (5.7) with the maximum number of
nonzero entries, J is nonzero on G \ G,, asis J,. If J # J,, then there are two
distinct nonnegative fixed points of B, positive on G \ G,, call them K and
K'. We may suppose that K is not greater than or equal to K’ (else we switch
notation). Then there is a numbeu €]0,1[ such that K >¢tK’' and ¢ is
maximal with this property. Now tK'> ¢t - K' for some t' > ¢, since ¢ < 1.
Consequently,

(A d)(v) = A >ad'(v),

K =B,K > B,(K') > tB,K' = t'K’,

which violates our choice of ¢. This shows that oJ, is the unique solution to
(5.7) with the maximum number of nonzero entries.

We turn now to the iterative solution of (5.7). Choose K > A~!Al. Then
B,K < A7'Al < K, which leads to K > B,K > B2K > --- by monotonicity of
B,. In particular, B}K converges to some fixed point K'. Now K > A7'A1 >
A7'AJ, = K,, whence B'K > K, and so K' > K,. As K, is the unique fixed
point with the maximum number of nonzero entries, this means that K' = K,.

To determine the current flow, we use (5.4) and (5.5) applied to the
appropriate tree and normalized for nonunit current, flow:

6,(0) = [1 + AEA(M]‘I_EA(FE)@A(&)
AW (o) J(m(5)) T [1 = J(7(5))]6(F) if & # 0,
J(m(o))(17,) if &= 0.

Iteration of this formula enables us to compute 6,(c) as stated above.
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Suppose now that J is a limit point of ¢J,. Since 0 <J, < 1, we have
0 <J < 1and J satisfies (5.7) for A,. It was shown earlier in the proof (when
considering A,) that this is impossible unless = 0. Thus, J, — 0.

Consider next any limit point, J, of J, - EXT) as A1 A,. Since EXT) =
(17J)71, it follows that 0 < J < 1 and 17J = 1. Furthermore, if we multiply
(5.6) by EX(T') and take limits, we obtain AJ = A, J. If G is minimal, then o,
as described is unique [5], whence J = J . This demonstrates the existence of
lim J, EA(T). Finally, substitution of this result into the formula for 6, gives
0, . It follows from the form of 6, thatlip6, = A, =brI. O

6. Percolation. Let I" be a countable graph and fix p € [0, 1]. We remove
each edge with probability 1 — p independently of the other edges. The
random graph which is left will be denoted I'(w,), where w, is a point in an
underlying probability space (1,. For any vertex o €T, let I,(w,) denote the
connected component of o in I'(w,). By the zero—one law, the probability that
I[,(w,) is infinite for some o € I is either 0 or 1. This probability is increasing
in the parameter p, whence we define the critical probability,

p.=p(T) = sup{p: P[EI o€l card [ (w,) = w] = O}.

One of the main interests of percolation theory is the calculation of p_. This
problem is usually phrased in a slightly different manner. Namely, when we
are concerned with a connected countable graph I' and a fixed vertex 0 € T,
we ask for

sup{p: P[card Iy(w,) = OO] = O}.

It is not hard to see that this equals p.I') by virtue of the connectivity and
countability of I'. Thus, as we have defined it, p(I') is equal to the infimum of
the critical probabilities of the connected components of T.

It transpires that the critical probability of the random graph I'(w,) bears a
simple relation to p ().

ProposiTiON 6.1. For any countable graph T,

p(T(w,)) = (p(T)/p) A1 a.s.

Proor. It suffices to establish the equation for p > p (T'). Fix such a p and
consider any g € [0, 1]. Edge removal with parameter p followed by indepen-
dent edge removal with parameter g is equivalent to edge removal with
parameter pq: Abusing notation, we may write, for fixed w,,

Joel(w,),card(w,) (w,) =~ <« FoeT, cardl,(w,) NI, (w,) =



952 R. LYONS

and, on Q, X Q, and Q,,,
P[3oeT,card I, (0,) NT,(0,) = =P[Fo T, card I, (w,,) = ©|.
The result follows from Fubini’s theorem in conjunction with this pair of

observations. O

As a rule, p(I') is extremely difficult to calculate. For example, when I' is
the square lattice Z2, it was proved only a few years ago that p, = 3; the
critical probability for the cubic lattice Z2 is still unknown [17]. When T is an
n-ary tree, it has long been understood that p, = 1/a. This is easily proved
with the aid of some elementary theory of branching processes [2, Theorem
1.5.1]. Our principal result extends this calculation to all trees.

THEOREM 6.2. For any tree F,
1
pc( ) ] T l'\ °

Proor. Given a cutset II and A > 0, let

(6.1) Zy= Y A7l

oell

Also write [I(w,) = I1 N F(w,) and

Zl):l(wp) = Z /\—|¢7| = Z A_lalll"o(mp)(o')'

ocll(wy,) oell

Then

(6.2) E[Zl.,| = L PloeTly(w,)] = L p"'=2f".
ogell oell

If pl_l > brT,ie., p <(rI)"! then there is a sequence II,, - « such that
Z? - 0. From Fatou’s lemma applied to (6.2), we obtain

liminfZy , , =0 as.

n—o

This is the same as [)(w,) being finite a.s.
It remains to show that if p~! < br I, then T olw,) is infinite with positive
probability. For any unit flow 6, set
Xo(w,) = X 6(a)p

g8, (wy,)

(Phis may be considered as a normalized version of Zén(wp).) Let %, be the
o-field of subsets of O, generated by the events {w, € Q,: edgeo e
I'(w,)}, 0 < |o| <n. Then {X}} is adapted to {#,} and forms a martingale,
E[X!,,|%,] = X]. Since {X}} is nonnegative, the martingale converges a.s. to
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some random variable X°. Now

E[(x¢)] = T 6(0)8(r)p~"P[o,7 & [y(w,)]

o,TES,

Y. 0(a)8(r)p 2 (plonTiploiloAripiri=io Al

o,7TES,

= T 6(e)(rpor

o,7€S,

= X p " X 8(a)e(r)

lpl<n oAT=Y
o, TES,

= X pMe)?- ¥ 6(a)

ll<n U
lo|l<n

Y 0)’[p ¥ —p¥] +1

0<|¢|<n

(1-p) X 6(¥)’p"+1.

0<|y|<n

If p~! < br T, then we may choose 6 to be of finite p~'-energy. In this case,
sup E[(X?)?] < », whence X - X° in L2-norm [23, Proposition IV-2-7] and
so E[X°] = E[X}] = 1. Since X’ + 0 with positive probability, I'y(w,) is infi-
nite with positive probability. O

COROLLARY 6.3. If T is a tree and p > (br I')~1, then
sup brI,(»,) = sup br I'"(w,) =pbrT a.s,

oel oel’
where I'’(w,) = T'" N T, (w,) and where the branching number of a finite tree
is deemed to be zero. Therefore, ess sup br I'w,) =pbrT.

This is an immediate consequence of Theorem 6.2 and Proposition 6.1. The
final conclusion can be strengthened when TI' is an n-tree: Given that card
Fo((l)p) = w,

br I\(w,) =pbrT" as.

for p > (br )™ = 1/n. In fact, we may state the following extension of the
usual growth law for branching processes. (For background, see [2, pages
1-10])

PROPOSITION 6.4. Let the probability of k offspring of a given particle be p &
(0 <k <) in a Galton-Watson process. If m = ¥, okp, > 1, then, given
the event that the process does not become extinct, the associated genealogical
tree has branching number m a.s. and is quasispherical a.s.
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Proor. If the Galton-Watson process is followed by independent edge
removal with parameter ¢, the resulting connected component of 0 has the
same law as a Galton-Watson process with mean mgq. The latter process
becomes extinct a.s. iff mqg < 1. Therefore, the original process leads to a tree
with critical probability at least 1/m a.s., i.e., with branching number at most
m a.s. Let A < m be such that a tree with branching number at least A is
produced with positive probability, 7, and E the corresponding event. Then

1-w=P[E] = ¥ P[E‘card S, =k]p,= L P[E°]"'p,= ¥ ps(1-m)"
k=0 E=0 k=0

It follows that = is the probability of nonextinction and that the branching
number is a constant a.s. given nonextinction. Finally, that constant is m,
since when mgq > 1, Fubini’s theorem shows that the (original) process has
positive probability of producing a tree with critical probability at most q.

It is immediate from [2, Theorem 1.6.1] that the growth of any nonextinct
tree is a.s. at most m. Since the growth is at least the branching number, the
nonextinct trees are a.s. quasispherical. O

Completely analogous reasoning leads to the following generalization of
Proposition 6.4 to multitype branching processes. (For the relevant definitions
and theorems, see [13, pages 34-42] and [2, page 192].)

PROPOSITION 6.5. Let m be the maximum eigenvalue of the mean matrix of
a supercritical positive regular nonsingular multitype branching process. Given
the event of nonextinction, the genealogical tree has branching number m a.s.
and is quasispherical a.s.

Another critical value of p often considered in percolation theory is

pr= sup{p:E[card Fo(wp)] <00}, -

where ‘“card” refers to the cardinality of, say, the vertex set. For certain
homogeneous graphs, p; = p, (1, 21]). In the case of trees, p, is very easily
calculated:

E[cardTy(w,)] = ¥ Ploel(e,)] = X p'= ¥ M,p",

0#c€el’ 0+#cel nx>1

whence

prl = limsupM}/".
n—ow
(It is curious that pr! also separates ergodicity from nonergodicity of the
canonical random walk.) In particular, p, = p, iff T’ is quasispherical and
lim M}!/" exists. Examples of such trees I' include subperiodic trees and
almost any nonextinct tree produced by a Galton-Watson process (in light of
Proposition 6.4 and [2, Theorem 1.6.1]) or by a positive regular nonsingular
multitype branching process.
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The above considerations suggest investigation of the following critical
probability for an arbitrary connected countable graph I'. If 0 € T, define

Peu(T) = sup{p: itﬁf E[card II N To(w,)] = 0}

= sup{p: ilﬁf Y P[v S I‘O(wp)] = O},

vell

where the infimum is taken over all cutsets II (i.e., collections II of vertices
such that each path emanating from 0 and containing infinitely many distinct
vertices must include a vertex from II). Then p_ (') = (br [)~! virtually by
definition when I’ is a tree. In general, we have

pT(F) < pcut(r) Spc(l—‘)

Therefore, p.,(I') = p(I') when T is any tree or when I is a euclidean cubic
lattice ([1], [21]). It is quite possible that this relation holds for all connected
graphs.

Random resistive or capacitative networks will be the last topic from
percolation theory that we consider. The kind we shall examine have proved
useful in the study of random fractals ([8], [9]). Consider a tree T, to each edge
of which is assigned a nonnegative random variable A_. Let

Clo)= TI A;
0<7r<0o
this will be the conductance or the capacity of the edge preceding o, depending
on the problem considered. We are interested in the probability that the
. associated electrical network admits current flow or that the associated capaci-
tative network admits flow [i.e., that there is a nonzero flow 6 bounded by C: V¥
o 0(a) < C(o)l.

THEOREM 6.6. Suppose that {A_} are independent, each having mean p. If
pbrT <1, then a.s. the electrical network has infinite resistance and the
capacitative network admits no flow. If pbr ' > 1, V o, E[A2] < p, and for
some A €]l,pbrI[, V o, A, <X a.s., then with positive probability, the
electrical network has finite resistance and the capacitative network admits

flow.

-REMARK 1. The case where A, takes only the values 0 or 1 reduces to
ordinary (‘“‘Bernoulli’’) percolation. More precisely, when A takes only one
nonzero value, A ~! < 1, the above result for capacitative networks is equiva-
lent to Theorem 6.2 and Corollary 6.3 by the max-flow min-cut theorem.

REMARK 2. In view of Section 4, the above result for electrical networks
may be interpreted as determining the character of a random walk in a
random environment.
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REMARK 3. If A, > 0 a.s., then by the zero—one law, the final conclusions
hold not only with positive probability, but a.s.

PrROOF OF THEOREM 6.6. Define the random variables {;; = £, C(0).
Then

Elz]= ¥ T1 E[A]l= X p"'=2f,
gell 0<7=0o oell
in the notation of (6.1). Hence, if p~! > br I, there is a sequence II,, — « such
that Zfj o 0, whereupon liminf, _, {y =0 as. By the max-ﬂow min-cut
theorem the capacitative network admits no flow a.s. and, by Corollary 4.2,
the electrical network has infinite resistance a.s.
For the converse, if p~™'A <brT and A > 1, set

Y 8(a)p~C(a),

ceS,

where 6 is a unit flow of finite p~!A-energy. Then (¢9,.%,) is a martingale,
where &, is the o-field generated by {4, : |o| < n}, and thus converges a.s. to
some random variable £°. Furthermore,

E[(£)] - 0(0)0(7)p_2"E[ 1 Ag]pzn—zww

o,7€S, O<y<oAT

Y. 8(a)o(r)p o

o, T€S,

(1-p) X 6(0)’p"+1

0<|o|<n

if E[A2] < p. As this is bounded, £2 — £° in L? hence £° # 0 with positive
probability. This, however, is not enough to ensure a nonzero flow bounded by
C; we need a lower bound for all cutset sums. We use Lemma 3.2 for this
purpose.

Let I'(w,) ={oc €I CloXw,) # 0} and set f(o)=0(a)p~""IC(0) and
glo) =1~ I"'C(a) where A is as in the hypotheses. Define

Y,= Y glean) ' f(a)f(r)= ¥ 8()e(r)p A~ [T A,

IA

cr,‘rES,,ﬁl"(a)p) o,TES, 0<([150'
0<1//<‘r
Then
_ oAT _ — lol
E[Y,]= ¥ 6)o(r)(p~ )" =(1-pr"). L 8(a)(pN)" +1,
o,TES, 0<|o|<n

which is bounded in n. Therefore, liminf, . Y, < as. [In fact, one may
show that (Y, %, ) is a submartingale and hence converges to a finite limit a.s. 1
We have already shown that X, c 5 ~re,) f(o) = €2 has a nonzero limit with
positive probability. Lemma 3.2 ensures that inf; Zaenmr(wp)g(ff) > 0 with
positive probability. The proof is completed with the aid of Corollary 4.2. D
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7. Boundary sets. Very little effort is needed to extend several of our
results to subsets of the boundary of a tree. Given a subset E of the boundary
of T, we denote the set of covers of E by

€(E)={IIcI:Vs€E,snIl+ Q).
We define the dimension of E by
dim E = loginf{A >0: liminf Y A-ll= 0}.
C(E)SN>® 11

Thus, dim oI’ = logbr I'. It is easy to see that this is the usual Hausdorff
dimension when dI' is considered as a compact space with metric d(s,t) =
e s U For A > 0, the function

INE)= inf Y AW
Ne€(E) ser1

is a capacity on dI' [6, Chapitre VI, Corollaire 19]. Since dim E = inf{log A:
I'(E) = 0}, it follows that
dim E = sup{dim K: K c E, K compact}

when E is Borel or, more generally, analytic. Of course, compact subsets of oT
correspond to boundaries of subtrees of I' rooted at 0. From Section 4, we may
conclude that, when E is analytic,

dm E = sup{log A: E carries a Borel probability measure u such that

[N du(s) du(t) < oo}.

A slight modification of the first half of the proof of Theorem 6.2 shows that
for any set E C dT,

dim(E N y(w,)) < (dim E + log p) VO a.s.
and when dim E + logp < 0, EN dly(w,) = & a.s. Hence, when E is ana-
Iytic,
esssupdim(E N 6I‘0(wp)) = (dim E + log p) Vv 0.
Let us write
M (w,) = {s ear: card(s\F(wp)) < 00};
this is essentially the set of boundary points of the infinite components of
I'(w,). Corollary 6.3 implies that if E is analytic, then
dim(E Nl (w,)) = (dim E + log p) V 0
= (dim E + dim il (w,) — dim T) Vo as.
In the language of [12], dl(w,) is a.s. transverse to any given analytic set
E coaT.
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