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HYDRODYNAMIC LIMIT OF ONE-DIMENSIONAL
EXCLUSION PROCESSES WITH SPEED CHANGE

By T. Funaki, K. HaNDA anND K. UcHivaMa
Nagoya University, Nagoya University and Tokyo Institute of Technology

Hydrodynamic behavior of one-dimensional homogeneous exclusion pro-
cesses with speed change on periodic lattices Z/NZ, N =1,2,3,..., is
studied. For every reversible exclusion process with nearest neighbor jumps
and local interactions of gradient type it is shown that under diffusion-type
scaling in space and time the empirical density fields of the processes
converge to a weak solution of a nonlinear diffusion equation as N goes to
infinity. Two classes of examples of exclusion processes as stated are given.

1. Introduction and main result. This paper concerns the hydrody-
namic behavior of exclusion processes with speed change on periodic one-
dimensional lattices of large size. We derive a nonlinear diffusion equation for
the macroscopic density field by passing to the hydrodynamic limit for every
homogeneous exclusion process that is a reversible gradient system and in-
volves only local interactions.

Let I'y be the periodic lattice Z/N Z represented by {1, 2, ..., N}, where Z is
the set of integers. Let 2y = {0,1}'~, the set of configurations 7 = {n,,
x € Iy} with 5, =0 or 1, and Z, be the set of functions on Z}. Let 7,
x € Z, be the shift operators acting on 23 by (r,7), =n,,,, x € [y, with
addition being modulo N. They also act on Dy by 7, f(n) = f(r,n), f € Dy.
For x, y €T, and n € 2}, n™” denotes an element of 2}, obtained from 7
by exchanging the values of 7, and 7,; thus (n*?), = 9, and (*?), = n,. The
notations 7, and n*? also indicate corresponding ones for 2'= {0, 1}, the
-configuration space on the whole lattice.

Let us consider a generator L, of an exclusion process on I,

N
(1.1) Lyf(n) = ;lcx,xu("?)(f(’ﬂx’xﬂ) _f(TI)), fe9y.

The rate function c, ., (n) is supposed positive and homogeneous, namely to
be written in the form

(12) cx,x+1(77) = Txc(n)’ n € 'Q/‘Na

with a function ¢ = ¢(n) on Z" that is positive if n, # n,. Here n € 2 is
identified with its periodic extension to 2" Let n™(¢) = {nN(¢), x € Ty} denote
the Markov chain on 2 governed by the infinitesimal operator N2L,,. We
are interested in its macroscopic empirical-mass distribution, i.e., the measure

Received June 1989; revised November 1989.

AMS 1980 subject classifications. Primary 60K35; secondary 82A50.

Key words and phrases. Hydrodynamic limit, exclusion process, gradient system, reversibility,
Gibbs measures. )

245

[Z8 (€
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [& )z
The Annals of Probability. STOR ®

WWw.jstor.org



246 T. FUNAKI, K. HANDA AND K. UCHIYAMA

valued process defined by
1 N
(1.3) £N(t,do) = W Z_:lnﬁ’(t)axm(de), 0T,

where T is the one-dimensional torus identified with [0,1) and &, the &
measure at 6. ‘

We assume that the function ¢ in (1.2) is local, i.e., depending only on
{n,, —R < k < R} for some nonnegative integer R, and satisfies the conditions
GS (gradient system) and DB (detailed balance) stated here:

(GS) There exists a local function A on £  such that
(14) c(n)(mo —m1) = h(n) — 71h(n).

(DB) There exists a translation-invariant set function ® on
Z having a finite range R such that for every n € Z

W8 e(mesp[~Ef(m] = e(n* Jexp ~E& y(n")].

Here, for a finite subset A ¢ Z, E® denotes a function on 2, defined by

(1.6) EX(m)= Y ®(A)n* nt=TIn,.
AczZ x€A
ANA+#¢

The set function @ is translation-invariant if ®(A) = ®(A + 1)forall A c Z,
where A + 1 = {x + 1: x € A}, and has a finite range R if ®(A) = 0 when-
ever the diameter of A > R + 1. (These two conditions on ® necessarily follow
from the locality and the homogeneity of c.) The function Ey is called the
Hamiltonian in A (for ®) and its value EQ(n) at 7 is the energy of n in A.

The detailed balance condition (DB) implies that the process n™(¢) is
reversible and the reversible measures are the Gibbs measures on & for the
Hamiltonian

(1.7) E3(n) = AZF D(A)n*,  nE Xy,

provided N > 2R. Let #(Z) be the set of probability measures on 2" where
2 is equipped with the usual product topology. It is known that to each
p € [0,1] there uniquely corresponds v, € #(Z"), a grand canonical Gibbs
measure of density p: v,(n, = 1) = p, and v, p € [0, 1], constitute the set of
extremal canonical Gibbs measures for the Hamiltonians E; [8].

If the condition (GS) is satisfied, the exclusion process is called a gradient
system. Let us write Ly{f(n)} for Ly f(n) when f is explicit. Then, taking
f(n) = n, with an x fixed, the relation (1.4) implies (in fact is equivalent) that
Ly{n} =7.1h(n) + 7,_1h(n) — 27,h(7) or, in the form more relevant to our
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analysis, that for every function J on I},

N N
(1.8) LN{ )y nxJ(x)} = X 7.h(n) AJ(x),
x=1 x=1
where AJ(x) = J(x + 1) + J(x — 1) — 2J(x).

Remember that the measure valued process £7(¢) is obtained through the
diffusion-type scaling from the exclusion process generated by L, and notice
that after this scaling the relation (1.8) is transformed into a similar one with
the Laplacian A on the reduced lattice I'y/N. Then formal arguments based
on the assumption that the laws of local configurations are to be Gibbs
measures suggest that limits of £¥(¢), if any, must be regulated by the
nonlinear diffusion (hydrodynamic) equation

2

a a
(19) 5P(t,0) = Wp(p(t’o))’ 6T,

with the function P given by
(1.10) P(p) = (h)p,

where ( - ),, sometimes denoted by < - )(p), stands for the integral by v, the
grand canonical Gibbs measure of a density p. This statement will be made
precise in Theorem 1.

Throughout this paper the convergence of measures on T always means the
usual weak convergence. We notice that any limit point of £é™(z, - ) (with ¢
fixed) necessarily has a density less than or equal to 1, as is clear from the
form of £V(¢) given in (1.3).

THEOREM 1. Suppose that the conditions (GS) and (DB) hold. If £V(0)

“ converges in probability to a nonrandom measure p,(8) d0 as N — «, then, for

each t > 0, £N(t) also converges in probability to p(t,0) d0 where p(t,0) is a

unique weak solution of the nonlinear diffusion equation (1.9) starting from
the initial condition p(0,0) = py(0) and satisfying 0 < p(¢,0) < 1.

Although the conditions (GS) and (DB) combined are rather restrictive,
there are still large varieties of examples that satisfy both conditions. Two
simple classes will be provided in the last section. In the multidimensional case
these two conditions are very difficult to satisfy: there is an example, which we
shall briefly discuss in Remark 5.3, but no other examples are known.

The proof of Theorem 1 will be carried out following the strategy developed
by Guo, Papanicolaou and Varadhan [10], who treated a real valued spin
system for which the Gibbs measures are product measures. For the present
model the Gibbs measures are not necessarily product measures, which neces-
sitates appropriate modifications of their proof. Except in this respect, the
wholé story is simplified due to the compactness of the space of spin values.
The essential part of the proof consists of demonstrating two assertions,
formulated as Theorems 2 and 3 (in the next section).
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For Theorem 3, which is an assertion about local equilibrium, we shall
prove that any limit point of the space-time average of spatially shifted law for
the whole configuration 7n™(¢) as N — « is a superposition of the grand
canonical Gibbs measures v,. [An extended version of this will be stated in
Proposition 4.2 and is essentially contained in relation (4.4).] This form of the
local equilibrium is somewhat stronger than representing the local equilibrium
states by means of the specifications of the canonical Gibbs measures, a direct
analogue to the corresponding assertion in [10] (see the final step of the proof
of Theorem 4.2 therein), and accordingly simplifies the rest of the proofs: For
example, the uniform law of large numbers for the grand canonical Gibbs
measures is easier to establish than that for the local specifications of the
canonical ones [see the relation (4.16)], though in fact the required uniformity
is valid also for the latter.

Theorem 2 concerns a kind of stochastic continuity of the local density. To
prove it we must appropriately choose a rate function according to which
particles move between two prescribed sites that are macroscopically near but
microscopically far apart from each other. It turns out that Spitzer’s rate
function [13] is suitable for this, since by this choice a certain monotonicity
requirement needed in a passage of the proof is guaranteed in general under
the condition (DB).

We have assumed from the outset that our exclusion process admits only
the nearest neighbor jumps, but this assumption automatically follows from
reversibility combined with the gradient condition, if irreducibility is presup-
posed.

For physical as well as mathematical ideas on the problem of hydrodynamic
limits, readers may refer to a survey paper [2], where extensive literature
(up to 1982-1983) is also provided. Recent developments (mainly for the
Ginzburg-Landau model) are briefly summarized in [6] (see also [7]). The
method of [10] is applied in [11] to the simple exclusion process to obtain a
large deviation result where the hydrodynamic limits for some perturbed
processes are naturally involved.

Gibbs states and the diffusion coefficient. In the rest of this section we
briefly explain how the measure v, is related to the Hamiltonians E{ and then
introduce a Green-Kubo formula to see P'(p) > 0, which guarantees the
uniqueness of the solution to the Cauchy problem for (1.9).

Let us write simply E,(n) for E(‘:)(n), the energy of n at x € Z. A Gibbs
state of a chemical potential A € R is a measure v» € P(2") whose condi-
tional probabilities are specified by

(1.11) v(’\)(nx=a|ny,y=#x)(w) =Z,C_’}‘,’Aexp{—Ex(a-w) + Aa}, vMaa. o,

for @ = 0,1 and x € Z, where Z, , , is a normalizing constant and « - w € 2’
is a configuration such that

(¢ w)y=a ify=x and =o, ify+#ax.
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The relation (1.11) uniquely determines v® for every A € R [9]. We set
(™ = §o (W = §), the §-measure concentrated on the configuration O €
Z (resp., 1 € &), where O, = 0 (1, = 1) for every x € Z. Then the mean
density p = p(A) = v™(n, = 1), A € R U {—, +x}, is a continuous and strictly
increasing mapping of R U {—o, + o} onto [0, 1] [8]. The inverse function is
denoted by A = A(p). The Gibbs measure v, [appearing in (1.10)] is then related
to v by v =y,

The diffusion coefficient D(p) := 2P'(p) of the equation (1.9) can be ex-
pressed in the form

(1.12) D(p) =(c(n)(me—1)*(p)/x(p), 0<p<1,

where x(p) ==X, ., ((nen,), — p?), called the compressibility. This relation is
a reduced version of the Green-Kubo formula and generally holds for re-
versible gradient systems. It in fact follows from the triviality

1
0 =2 X X Li{ngn.}), = ¥ #%mo - L{n.}), = {e(m)(no = m)%),,

x

where L = lim, _,,, Ly, together with the relation
d ’r
(1.13) 2 P(p(1) = x(p)P'(p) = ¥ (Khn)p = pCh,),

which is readily obtained from (1.11) at least at a formal level [for justification
see (4.12) of this paper], since by (1.8) the rightmost member in (1.13) equals
31X x%(ng — p) - L{n,}),. We especially see that P(p) is increasing in p. The
function D(p) coincides with the bulk diffusion coefficient derived by solving
the equilibrium fluctuation problem [3, 14].

2. Local equilibrium and derivation of the hydrodynamic equation.
In this section we shall outline the proof of Theorem 1. Roughly speaking, it
almost consists in demonstrating the claim that the equilibrium states are
locally builtup in average, an average in space and time, for our system, which
will be formulated, according to [10], in the form of two theorems.

Let .#Z(T) be the compact metric space, under the weak convergence, of
(nonnegative) Borel measures on the torus T of total mass less than or equal to
1. The integral of J € C(T) by a finite measure ¢ 1is denoted
by {J, ¢). When p(6) is a bounded measurable function, the integral {J, ¢),
& = p(0) do, is simply written as (J, p). The processes n™(¢) are supposed to
be defined on some probability space (P, &, Q) for all N. The expectation by P
. is denoted by E. .

As usual we decompose {J, £M(¢)), J € C*(T), into

(2.1)- (J,EN(t)) ={J,V(0)) + My(2) + [O’bN(s) ds.

Here My(t) is a martingale, for which, as easily seen, E|My(#)|* - 0 as
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N — «. The relation (1.8) shows that the drift term can be written as
b LS o E )b of 2
v() = 5 L (5 k(%) + 0 5

where |O(1/N)| < |J " [lll2]lo/N.

Let @V be the law of {¢V(¢); t = 0} on D([0, 1], .#(T)), the space of right
continuous functions ¢: [0, 1] — .Z(T) with left limits that is equipped with the
Skorohod topology.

The family {@"} is tight, as readily deduced from the relation (2.1) and the
bounds |by(s)| < C and

E[{MN(t) - MN(S)}2IO'{17N(S)}] <C(t-s)/N, for0<s<t<l.

Under any limit point of {@"} almost every sample path ¢ is continuous and

satisfies that for every ¢ the measure £(¢, d6) has a density p(t, 8) such that

p(¢,0) < 1. The sample continuity follows from the fact that the height of the

jump of (J, £M(¢)) is at most 2||/|l../N and hence vanishes in the limit.
Observe that

N x 1 1
= -1 n| N, _
by(s) = N glJ(N)(_zsNH)._Z rh(n (s))+0(N)+O(£).
x y—x|<eN
Then if we can prove
lim ki Bl 2 ﬁ ! Y 7,h(n¥(s))
iptimews| 5 & gewes, T, v
(2.2)
_ - - N -
W57, T A0 dsJ 0,
y—x|<eN
it is easy to see that
: . 4 1 N " x N,e x
ll?éllr;fng j; by(s) —ﬁxglJ (ﬁ)<h>(p ’ (s,ﬁ)) ds|=0,

where p™¢(s,0) = (2¢) " %¢M(s,[0 — ¢,0 + £]), and then that, by (2.1) and the
continuity of P = (h)(-), for every limit point @ of {Q"},

Q(f(',dO) = o(-,0) do:
(2.3)
T,0(8)) = (7,p(0)) + [T P(a(s, :)))ds) ~1.

Finally, since, by the assumption on {¢¥(0)}, Q(p(0, ) =p,(-)) =1, the
uniqueness of weak solutions to the limit equation (Lemma 2.1) completes the
préof of Theorem 1.

It remains to show (2.2). However, by noticing that an average over a long
block of length 2Ne + 1 is almost the same as an average of averages over
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short blocks of length 2/ + 1 as argued in [10] (see the last several lines of
Section 4) and by applying the continuity of (A )(:), we observe with little
difficulty that the verification of (2.2) (with ¢ = 1) is reduced to demonstrating
the next two theorems, which we shall prove through the succeeding two
sections.

Let ¥ be the distribution of n™(¢) on 2% and set

1 N
(2.4) uN = fldt/.tltV and gV=—=Y ﬁNofx‘l.
0 Nx=1
THEOREM 2.
lim 1i lim & 1 ¥ 1 > 2N
1m Iim su 1m l1m su max -
€l0 l—’°°pL_)°° N—>oopLS|2|$£Nf 2l +1 |y|slny 20 +1 |y—z|slny o
= 0.
THEOREM 3. For every f € 9,
lim li L Y (F) v daV¥ =0
= n;fzpf 20+ 1 |y|szTyf(n) Plai+t o T

ReEMARK. In Theorems 2 and 3 we can replace @V by z"Vor ! for each
x € Z and accordingly dispense with the operation of globally averaging in
space in the relation (2.2), i.e., we have that for every x € Z¢ the expectation

E[fot ds]

vanishes as N —» « and ¢ |0 in this order. To see this we do not have to
change the proof, though some estimates should be weakened [e.g., in (4.5) £2
must be replaced by ¢]. It is however found significant to take g" rather than
N in these theorems, if one considers the multidimensional case. In fact for
d-dimensional exclusion processes I(") [and hence I,(ji)] grows as N¢~2 =
N9-1. N-1 and the factor N?~! therein may cause difficulty in estimating the
local I functions for @V (cf. Lemma 4.1), while N¢ (rather than N?71) is
canceled for 4V from the effect of the averaging in space.

2eN +1 2¢eN + 1

> 775"($))

ly—xl<eN

Y n,h(nMN(s)) - <h>(

ly—xl<eN

LeEmMMA 2.1. Let & be the class of £(-,d6) € D(0,), .#(T)) such that
£(t,d0) has a density p(¢,0) and 0 < p(¢,0) < 1l a.e. for'all t > 0. Then, given
a po(0) such that 0 < py(6) < 1 a.e., a weak solution of (1.9) starting from p,
is unique in #. Here by weak solution we mean that for all J € C*(T),

(25)  {J,p(t)) =(J,po) + fot< J", P(p(s,)))yds, ¢>0.
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Proor. This proof is a modification of that to the corresponding unique-
ness theorem in [10]. Let {J}y...;,, be mollifiers in CX(T): J.(8) > 0,
(J,,1) =1, suppdJ, C[—¢,e] C T. Assuming that there are two solutions
pi(t,0), i = 1,2, in &# with the same initial datum p,, set

pi(¢,0) = (p;i(t,")*J,)(6), &>0,
and p2(¢,0) = p,(¢, ). Then further set

wi(0) = [ "(p5(t,8) — p5(t,6)} do’ — [ae [ "(p5(2,0') — (2,6} do'.

Since by (2.5) (1, p{(¢)) = (1, p,> for all ¢ > 0, wf is continuous on T, i.e.,
w;(0) = w;(1). Clearly (w;,1) = 0. We have also dp¢/dt = (P(p,)*dJ,)". With
the help of these relations apply the integration by parts to the integral
(w{,dw; /9t) and after simple manipulations you see

”th”%Z('ﬂ') = _/(;tds< pi(S, ) - pg(s, .)’ {P(pl(s’ )) - P(PZ(S, ))} *Je>

for 0 < £ < ;. Letting ¢ | 0 in this relation shows ||w?]/32r) < 0 due to the fact
that P(p) is nondecreasing. Therefore w?(6) = 0, proving p,(t, 8) = p,(t, 6) a.e.
(de). O

3. Relative entropy and I function. According to [10], we introduce
two kinds of functionals of probability measures on 2. Put Ey = Ex [the
Hamiltonian defined in (1.7)] and let vV € 9(Z},) be the Gibbs measure
corresponding to Ey, that is

vM(n) = Zy' exp(=Eyn(n)), m € Zy,

where Z, is the normalizing constant. For the arguments made in this and

the next section we do not make use of the assumption (GS), so all the results

obtained are valid for an arbitrary rate function c that satisfies the condition

(DB). In the following, as previously, we shall suppress ® from the notations.
The relative entropy of u € P(Z}) with respect to v is defined by

Hy(n) = fg ¢ log p dv¥,
N

where ¢ = du/dv¥, ie, ¢(n) = u(n)/vN(n). Observing Hy(u) <
L ,u(n)Ey(n) + log Zy, we have the a priori bound
(3.1) 0 <Hpy(p) <C)N,

with C; =log2 + 2sup,|Ey(n)| < . Let Iy denote the I function associated
with Ly, which we define as the Dirichlet form of o, ¢ = du/dv?,

In(w) = = [ VeLw/e dv¥.

Here it is recalled that the condition (DB) implies the self-adjointness of L in
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Z,(v"), the associated form given by

N
L f Ewfdvt = =T B £ = f)] s war(mp (),

and that there is the following variational representation of I(u) [4]:

LNu

du: u is a positive function on Z; N} .

(32) Iy(w) = sup - |

Zy

It is sometimes convenient to express Iy(w) in the form
(33) IN(:“‘) = Z x, x+l(:u‘)’

(84) I, (n) =3 Zg K(e(n™?),0(n))e, (m)vN(n), x,y €Ty,

where K(a,b) = (Ya — Vb)? and ¢ = du /dv™.

ProPOSITION 3.1. Let ul¥ be the law of n™(t). Then Hy(uY) is differen-
tiable in t > 0 and

d
& Hy(ul) < —4N? - I, ().

(3.5) =

Proor. Put T'(a,b) = (a — b)loga — log b) and ¢, = du/dv". Then

d
7 Hn(ul) = —=N?[Lye, - log ¢, dv™

2 N
=-—5 X X T(an™™"), 0m)es cr(m)v™(m)

x=1neZy

and hence, using the inequality T'(a, b) > 4 - K(a, b) for a,b > 0, we obtain
(3.5). O

CoroLLARY 3.1. Set gV = [§ dt ul¥ € P(Zy). Then Iy(i) < C,/4N.

Proor. Integrate (3.5) on [0, 1] and use (3.1) to first get a bound for the
integral of Iy(uY) and then the desired one by applymg the convexity of Iy,
which follows from (3.3). O

4. Proof of Theorems 2 and 3. We shall identify a measure on 2}
with its image measure on 2" under the mapping which extends n € 2y
perlodlcally to an element of 2" Define a mapping #,: 2> 2% = {(n}, n2)
nt, n2 € 2 by #m(n', 7,n?). Then the conclusion of Theorem 2 can be
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rewritten as

(4.1) limlimsup lim limsup max fIMI{ - M? Id(/.lNoi-‘z‘l) =0,
€10 Jow Lo® N_o L<|zl<eN ! !

where M} = |Al7'C, . mi, i=1,2,for ACZ and A, = {x € Z: |x| < 1}. We
first focus our attention on the limit points of {aVo# % L < |2| < &N} in
P(2?) as L, N > . Note that 2(2°?) is compact. In the proof of (4.1) that
follows we shall use as the property of iV € P(Z2°) only the translation
invariance of 4~ and the bound

(4.2) Iy(a") < C,/4N,

the latter deduced from Corollary 3.1 by the convexity and the translation
invariance of Iy.

Let & = o{n,: y € A}. We may assume that c(n) is s, Mmeasurable with
the same R as appears in (DB). Let L, .., x € Z, be operators acting on 2
(and also on Z,,) defined by

(4.3) L,,f(n)=c.,(m)(f(n*?) = f(n)).

Fix an arbitrary Gibbs measure v € F(2") (that has no component of v, or
v,) for Hamiltonians E, (e.g., take v = v®). For u € #(2°?) and a bounded
set A of Z, define

I&P(p) = —/gz\/;fol’z)\/;’;d(V X v), ¢ =du|g-x5:/d(v X V)| saxs s

where A ={x € Z: |x —y| <R for some y € A} and L{? is an operator
defined by

LY Pu(n', %) = (Lyu(-,7%)(n") + (Lu(nt, ) (n?).

Here Ly =X, (; x+1ycaLly x+1- For the proof of Theorem 2 we introduce an
auxiliary Markov process on 22 in which only the spins 5} and 52 are
exchanged. Its generator is given by

LOu(n",n%) = (¢(n') + ¢*(n)} - {w((n*,%)°) = w(n®,n%)}.
Here

c®(m) = mgexp Ey(n)

and (n',7%)° € 2'? denotes the configuration (5!, n%) with the values of n}
and n? exchanged. We also define for a bounded A D A,

I0(w) = = [ VoLNVed(rxv), ¢ =dulsxs/d(v X ¥z -

Clearly I{%? and I{” are continuous functions of u € P(Z?).
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LEmMMA 4.1. Fix 0 < & < . Let u be an arbitrary limit point in P(2°?) of
@No# 1 L <l|z| <eN, as L, N > «. Then

(4.4) I&2(w) = 0 for every bounded interval A
and
(4.5) IO(u) < Cye®  for every bounded interval A O Ap

with a constant C, depending only on ®.

Proor. For a given A, take L, N large enough that A and A + z can be
regarded as disjoint subsets of I'y for all z satisfying L < 2| < ¢N. Using the
variational formula for I{"#?(u), which is similar to the representation of
Iy(w) in (3.2), we obtain

Lysasot
IGP(aNe 1) = sup{—fg ———(l;——zl— diViu > 0is Iz measurable}
N

]' Lyt
2,

diV: u is a positive function on Z; N}
u

< sup| -

< )y L, (")

x:{x,x+1})cAUA+2)

< 2|AlLy(aN)/N < C,JAl/2N2.

N

Here we applied the fact that I, ., (u) has the same variational representa-

tion as Iy(u) given in (3.2) but with Ly replaced by L, ., (the supremum is

_ attained by du /dv® for all x). By taking the limit N — « in this formula we
get (4.4).

For the proof of (4.5), we set

ck (m) =7.c°(n) + 7,¢°(n).

Let I*, be defined like I, , by (3.4) but with ¢}, in place of c, ,. Thus
2
Li(w) =3[ es(m{Ve (n°) = Ve (M) dv™, ¢ =dusdv™.
N

We claim that there exists a constant C3 such that

z—1

(4.6) Ig (1) <Csz X I, ()
y=0

for 1,<z <N — 1and p € P(Zy). Note that here (and only here) ¢} (n) for
|x — y| > 1 enters into our computation; it satisfies the detailed balance condi-
tion also for such x and y, namely, the function c} (n)exp(—E (7)) is
invariant under the exchange of values of 1, and 7,, which guarantees the
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variational formula for I? and Ij,. To see (4.6), observe that

Ve (n%%) = Ve (n) = zgl:{ﬁ((ﬁyn)y’y”) ~ Ve (&m)}

* Z {\/_((5 )7 = Ve (G

where &, and 5y are one-to-one mappings on £  given inductively by
am=(3_m)" """ (1<y<z), witham=n

and

om = (5y_
respectively, and moreover that (a,_,;1n)%! = n%2. Then applying Schwarz’s
inequality and the change of variables we see

i Z/coﬂ )V (7*) = Vo () d(¥e 5;)

-y,z2=y+1 . = —
ln)zyzy (2<y<z-1), witham =o0on,

IOﬂ:z(:u’) <

(4.7)
+ X fesul VR () Ve (o)) o 51)].

Now we set (and see)
C,=sup{ci (n):m € X, 2€Z} <,

Cs =inf{co 1(n):m € Z',mg # m1} >0

and
(vNea, )(m) (vNog, )(n)}
Ce = , < o,
’ 5,‘?&{ ) e
Using these bounds and (4.7), we obtain
-12C,-
Ig.(n) = —5—— Z f Mo (1Y) = Ve (m) d
z—1
= 2(2z — 1)C,CeCy ! E ¥, y+1(l"’)
and*hence (4.6).

We return to the proof of (4.5). Fix A D Ap. Let L}, be defined analo-
gously to L, , with c¢* in place of ¢ in (4.3). Then for N large enough and z
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satisfying L <z <e¢N,

L¥ u
IO(aN##71) = sup{—fg Ol’: diN:u > 0is F a4 measurable}
L§ u
< sup{ — %2~ 4iV: u is a positive function on 2
2y U N
N

z—1
= Isz(/lN) =< C3Z Z Iy,y+1(/j’N)
y=0

z
< C3ZNIN([.LN) < 4N2

where we have used (4.6) and (4.2). The same estimate is obtained for z
satisfying L < —z < eN. These prove the desired estimate (4.5). O

C,2%,

We can now replace (4.1) by

(4.8) hm lim sup sup f IMA1 M,\zlldu =0

- pe,
where o7, is the set of all u € #(2°?) that satisfy (4.4) and (4.5) and are
translation-invariant: u = wo(r,,7,) "% For u € o7 we denote by 4 the distri-
bution, under u, of (M;, M) = (lim, My , lim, , M7 ), which exists w-a.s.
owing to the individual ergodic theorem.

ProposITION 4.2. If u € o7, then

P (4‘9) r = 10,1 ]2Vp1 szlj’(dpl de)'

Proor. Let A be a bounded interval of Z and y, ,(-|w) the canonical Gibbs
measure for the Hamiltonian E, = E{® [defined by (1.6)] with particle number
n and boundary condition w, i.e.,

YA,n(’ﬂlw) = l(NA(n)=n) 'ZX,;,weXP{—EA("I ~w)}, n € {0, 1}A,

where Ny(n) = X,cn, for n € &, Z, , , is the normalizing constant and
n - w € & is a configuration that coincides with n on A and with « on A°.

Let u(n) = n(nln? o, n) be the conditional law of 1 == {n’, x € A} under
pl x5 (dntdn?) given 0%, w == {nl, x & A} and Ny(n') = n; py(n) is simi-
larly defined. Then an application of (DB) together with the relation K(a, b)c =
K(ac, bc) shows that I{"?(u) can be expressed as a sum (for i = 1,2) of
integrals (by u|g+x 55 over the conditioning) of

> Y K(cya(n® 1 0)u(n® ), ey pa(m - @) pi(m).

{x,x+1}CA ne{0,1)*

Since vy, ,(:|w) is a unique stationary measure for the exclusion process on A
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generated by L, with the boundary condition w and the particle number n,
the relation I{" 2)(/.L) = 0 therefore implies that (7112 w, n) = uy(nln', ®,n) =
Y, n(nlw) a.s. or, equivalently,

(elszxsz) ([0 ?]|(Fxa V AN X (Fraa V o{N)) (), 0?)

= Ya, NA(wl)(nllwl) * VA, NA(w2)(772|w2)

for /.elgAxng-ahnost all (o', w?) and all n',5? € {0,1}*. Here [n',n?] is a
cylinder set in 22 given by

[ 7?] = {(o', 0?) € 2% w! = 7}, w2 = 72 for every x € A}.

(4.10)

From (4.10), for every f,, f, € 2 and A sufficiently large, we have
| (o) fo0®)p(det dw?)
Q”z

=f <f1>A,NA(w1),w1 : <f2>A,NA(w2),w2M(dw1 dwz),

where ( - )4, ,, . denotes the expectation with respect to Ya, (" l®). Since due to
the equivalence of ensembles [see [8], (7.13) and (7.14)] vp (o) weakly
converges to v, for all w as A1Z and n — « in such a way that n/IAI — p, an
application of the bounded convergence theorem proves (4.9). O

REMARK. (4.9) can be deduced only from (4.4); in other words, we can
dispense with the assumption of u being translation-invariant. Indeed (4.10)
tells us that each marginal distribution of u is a canonical Gibbs measure and
by absence of phase transition it is translation-invariant. Consequently
(M,, M,) exists almost surely and the argument in the proof of the proposition

still works.

We prepare a uniform mixing property of W), c0,11

LEMMA 4.3. There exist positive constants C, and Cg which are indepen-
dent of p such that

(4.11) |<f1 “fade — (1o (fade | < Cill fallsll £5llee eXP{_Csd(Al,Az)}

for every p € (0,1], A; C Z and ¥, measurable bounded functions f,,i = 1,2,
where || fll. = sup,,lf(n)l and d(Al, Ap) = min{lx; —x,: x;, €A, 1 =1, 2}

Proor. It is known that v, € P(2"), p €0, 1], is the distribution of a
stationary (R — 1)-dependent Markov chain with the state space {0,1} by
regarding x € Z as the time parameter; see Ellis [5, page 330]. We notice that
the mapping p € [0, 1] » v, € P(Z') is continuous and also that each cylinder
set of 2" has positive measure under v, if p € (0, 1) [e.g., use the relation like
(4.15)]. Consequently the transition matrlx p, of the Markov chain corre-
sponding to v, is continuous in p € [0, 1] and so are its characteristic roots.
Moreover, p, is primitive when p € (0,1), so that according to the
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Perron-Frobenius theorem its characteristic root 1 is simple and larger in
absolute value than the others. This fact is obvious when p =0 and 1.
Therefore the desired uniform bound (4.11) can be deduced by quite standard
argument. O

REMARK. The uniform bound like (4.11) holds in arbitrary dimensions and
for a general potential ® = {®#(A), A c Z% if ® belongs to the Dobrushin
uniqueness region; cf. Kiinsch [12]. It proves that, for every f<€ 9, the
function G(A) = {fY® = vM(f) is differentiable in A € R and justifies a
formal manipulation that leads to

(4.12) G'(N) = Y {{fn)® = Y HP).

xe”Z

Proor oF THEOREM 2. Let us apply Proposition 4.2. With the help of
Lemma 4.3 we have then

lim sup [ M} —MZ|du= sup [lp, — polit(dpy dpy),
LT A pes,
where /i is defined just before Proposition 4.2. Therefore for the proof of (4.8)

we have only to show

(4.13) lim sup [lp, ~ pli(dp, dps) = 0.
tl0 peo

To this end we shall use (4.5). In the variational formula

LOy

du:u>0is ¥, X % measurable},

IO = sup{ —fgz
take u = expl3al AH(MD? + (M3} for a > 0. Then
L%y
u

- [{e(n®) + e(n™))exp( ~a(nb - n) (21 - 213)

I”(n) du

v

+ ,—z—l(né —Anﬁ)z) - 1] dp
> af{eo(n') + ()} (s — n3) (M ~ M?) du

1
2, 2a| .0 1_ 212 -
a?e?||c Ilm-/{MA MY du +O(IAI)'
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Combining this with (4.5) and letting A 1 Z, we have

a A 1]2F(p1,p2) di < Cye? + a2l

for all 4 € & and a > 0, where
F(py,py) = {<C°>p,(1 - p2) — <c°>pz(1 - P1)}(P1 = P3), P, P2 € [O,‘l]'
Denote by &7 * the set of all limit points of {2; u € &7} in 2([0,1]*) as ¢ | 0.
Then, due to the continuity of F, we have
sup [ F(py, py) dii < ae?|ic”]l..
pew*

Since a > 0 is arbitrary, this together with Lemma 4.4 implies [i(p; = p,;) = 1
for all i € &7*, which proves (4.13).
To complete the proof of Theorem 2, we must prove

LEMMA 4.4. Let F be the function defined above. Then F(p,,p,) > 0 if
p1 #* Pa.

Proor. We first show the equality
(4.14) (¢, =e*(1-p) forO0<p<1.
Since Ey(n) is %, , measurable,

(€)= X exp{E(1-n)}y,([1-n]),

n€ Z(Ax\{0))
where [1 - 1] represents a cylinder set given by
[1n]={weZ2:w,=1n, forxe A\ {0} and w, = 1}.
The DLR equation (1.11) shows
(4.15) v,([1-7n]) = exp(A(p) — Eo(1 - ), ([0 n]).
Therefore,

(c®), = Y ([0 9]) =1 -p).
ne Z(Agr\{0D)

We have by (4.14),
F(py,p) = (X0 — e*2)(1 = p)(1 = p3)(py — p2)
for 0 < p;, p; < 1. On the other hand,
F(1,p,) = exp{Ey(1)}(1 - P2)2~
The lemma then follows from the fact that A(p) is strictly increasing. O

PROOF OF THEOREM 3. Let u be an arbitrary limit point of {i"} in P(Z).
Then u is a superposition of », as readily seen from Proposition 4.2 by
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considering the first marginal in the expression (4.9). Therefore, it suffices to
verify that for »,’s the law of large numbers holds uniformly:
>(p) = 0.

But this is an immediate consequence of Lemma 4.3 since { f )(p) is continu-
ousin p €[0,1]. O

. nyf(n)—<f>( ! Zny)

20+1 lyl <t 20+1 lyl <t

(4.16) lim sup<
l—o p

5. Examples. We present two classes of examples for the rate function
c(n) that satisfies both (GS) and (DB). The second one is less trivial than the
first. A multidimensional model to which the present method is applicable is
given in Remark 5.3.

ExampLE 1. Let b(k), £ =0,1,2,..., be a real sequence with 5(0) = 0.
Forxe Z,n € &, put

n(x,n) = max{|A|: A C Z, A is connected, x € A, n* # 0}

[i.e., n(x, n) is the size of a component of the 1-cluster {y: n, = 1} that contains
x] and

(5.1) c(n) = no(1 — m,)e? @™ + 7y(1 = 7)™,

Then one immediately observes that the assumption (GS) is satisfied with
h(n) = noe®" ™.

The condition (DB) is also satisfied: The potential function ® is

. (52) D(A) {ulAl if Ais f:onnected,

0 otherwise,
where u, = b(k) — b(k — 1) and u, = 0. In fact we have E,(n) = EX(n) =
L a5l am* that coincides with b(n(x,n)) if n,,, = 0 or n,_; = 0, so that

c(n) = Ing = m1l(mee ™™ + n,e"™),

showing (DB). ® has a finite range if and only if &(%k) eventually become
constant.

If we interpret 0 and 1 as representing, contrary to the usual, the occupancy
and the vacancy of particle, respectively, then this model may be regarded as a
random evolution of a system of particles whose transition rates depend on the
distances between two neighboring particles.

For the potential function (5.2) the Gibbs measure », is identified with the
law of a stationary renewal process on Z, by regarding the occurrence of 0 as
renewal events. Put
* k-1 j k-1
v(k) = 3 Y ou;= Y b(j)

i=0

j=0i=0 Jj
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and
(5.3) 2(y) = Y evkv®, v < klim b(k).
k=1 -e

Then E (n) = v(|Al + 1) if A is a component of the 1-cluster in the configu-
ration 7, from which one can easily deduce that the interarrival time, taking

values 1,2,..., is distributed according to {e”*~® /2(y)};_, with y deter-
mined by

1
(5.4) 1=, ¥'(y) where ¢(y) =log2(y).

The correspondence between the chemical potentials A = A(p) and y = y(p) is
given by e* = z(y) [thus z(y) is nothing but the activity]. The functions P(p),
D(p) and x, appearing in (1.10) and (1.12) also can be written explicitly in
terms of v as

2"y’ (y)?
P(p) =e?, D(p)=%{/(i+), x,,=%)g.

ExampLE 2. Let a and B be two real numbers such that 1 + a > 0,
1+B>0and1 +a+ B> 0. Put

c(m) =no(1 - n)(1 +an_; + Bns)
+my(1 - M0)(1 + any + Bn_,).

Then, as is seen in the following, c(n) satisfies the assumption (GS) as well as
(DB), with the energy being of the nearest neighbor interaction:

- (5.6) E\(n) = x (log ¢) 0,41,

x€EAorx+leA

(5.5)

where
l+a

1+’

This example, by regarding 0 and 1 as two spin states to stress their
symmetric role, may be taken as a spin-exchange model of the nearest neigh-
bor interaction in which spins are exchanged between each couple of successive
sites and the exchange rate is determined only by the spin states on the two
neighboring sites to the couple. The functions ¢ in (5.5) exhausts all spin-
exchange models of this sort that satisfy both conditions (DB) and (GS). By
(5.6) one sees that the same kind of spins attract’ (repel) each other if
0 <q <1 (resp., g > 1.

When B =0, the formula (5.5) turns into a special case of (5.1) with
b(1)"= 0 and b(k) = log(1 + a), k > 2, and similarly when « = 0 with roles of
0 and 1 interchanged; in general, it represents a sum of these two kinds of rate
functions. Therefore the corresponding process must be a gradient system. In

q
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fact, if a # B, the decomposition into the two is provided by
@ B
noc(m) = mo(1 — nl){q—_—l*[(l —m_1) tan_y] - q__l["72 +q(1- "72)]},
where g is the same constant that determines E, in (5.6). The two compo-

nents are “reflective’” of each other by the “reflection” n — 7% where 4, =
1 - n,, so that we find the function (%) in the form

RDO(n) + d
7-

a
= @(H
(5.7) h(m) pr 1h (7) + const.,

where
h(")('r,) =qno+ (1 —q)(1 —n_)ne(1 —mn,).

If a = B, we directly see that A(n) = (a + Dng + a(n_; — no)(ne — M)
If & #+ B, c¢(n) can be expressed, with E, given in (5.6), as

20-p) exp E, ()
Ey, 1)(77) + exp E(O,1)("70'1) ©,1\7)

where p = (a + B)1 + B)/(a — B). [Conversely c(n) defined by (5.8) is ex-
pressed in the form (5.5), if ¢ # 1, ¢ > 0 and ¢(n) > 0 for all n with n, # 7,
or, what amounts to the same, if ¢ > 0, ¢ # 1 and (g — 1)p + 1 > 0.] There-
fore this model satisfies the condition (DB). [Notice that in the case a = 8,
(1.5) is obviously satisfied with ® = 0.]

Let us compute P(p) = {h), up to an additive constant, whlch is insignifi-
cant The energy (5.6) is a spec1al case of that corresponding to ® in (5.2) with

=0and u, = log q, k > 2, 2(y) in (5.3) being given by

(6.8) c(m) =Ing — ml{p + p—

1 1
z(y)e—v=q{—~1+ } y=
q 1-y

By z/z=1/(1 — p),

bt

Noticing y < 1, we obtain

1 .
y=1~§;{1—\/1~4r(1—p)p} ifg#1,

where r =1 - ¢! = (a — B)/(1 + @). Finally, if a # 8,

P(p) = (A, +

1 o[ B
= ——=r
2 {p 1-p

and if a = B, P(p) =p + ap?

}{1 —-y1-4r(1 —p)p} + const.
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REMARK 5.1. For the first example the locality assumption on c¢(n) can
be relaxed to obtain Theorem 1 (due to the underlying renewal structure):
We have only to assume that lim b(k) = B exists and v(k) = b(0) + --- +
b(k — 1) — kB is bounded, though we accordingly have to alter certain state-
ments given in Section 4 and their proofs as well (especially for Proposition 4.2
and Lemma 4.3).

REMARK 5.2. The whole class of ¢ satisfying (GS) and (DB) would be much
larger than those previously given. For example, if ¢ is allowed to depend on
{n., =1 <x < 8}, the essential degree of freedom for parameters determining
¢ is 6 (in the second example it is 2). It is noted that a sum of ¢ given in (5.1)
and its reflection does not satisfy (DB) anymore.

REMARK 5.3. The special case @ = B of the second example has a multidi-
mensional analogue. Let Iy = Z¢/NZ7Z® and e(k) = (8, )1, k= 1,...,d (the
standard basis of Z?). Given real numbers a,, k = 1,...,d, such that 1 +
2a;, > 0, the spin exchange rate between two neighboring sites x and y is
defined by

cx,y(n) =1+ ak(nx—e(k) + ny-f—e(k)) lfy =x+ e(k)’

where 1 €{0,1}' and 2 =1,...,d (otherwise no exchange). Then both
conditions (GS) and (DB) are satisfied: The reversible measures are the
Bernoulli measures and the function A(n) in the gradient condition is now a
vector function & = (h,,..., h,), where

hk(”l) =(1+ a/g)"lo + ak("?—e(k) - 770)("70 - ne(k))‘

_ Precisely the same result as stated in our Theorem 1 is valid for this multidi-
mensional model where the nonlinear diffusion equation in the limit is

a a 92 9

P kgl 802(/0 + a,p0?),
p=p(0),0=(6,...,0,) € R/Z? The proof is much the same as for the
one-dimensional case except for the uniqueness of the solution to the limit
equation, which can, however, be verified by adapting the method of [1] for the
proof of its Theorem 1. [The main idea therein is to compute the derivative
(d/dt)G,z(t), z(t)) where z(t) = z(¢, 0) is the difference of two solutions and
G, is the resolvent operator associated with the Brownian motion on the
d-dimensional torus instead of {w¢,dw¢/dt) in the proof of our Lemma 2.1.
After that let a go to zero, noticing that aG. z(#) approaches zero for every ¢
by the ergodicity of the Brownian motion.]

REMARK 5.4. The second example also is found in the forthcoming book by
Spohn [15], where the hydrodynamic limit for the special case « = B is
discussed in some detail.
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