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THE RANGE OF A LEVY PROCESS

By T. S. MouNTFORD! AND S. C. PORT

University of California, Los Angeles

It is shown that all Lévy processes on the line whose paths are of
bounded variation have a closed range over any finite time interval that is -
nowhere dense except for those processes having positive (negative) drift
with Lévy measure finite on (0, «) [finite on (—, 0)].

We will consider a Lévy process X(¢) on the line with initial point being the
origin 0. A problem of some interest is to determine the structure of the
closure R, of the range of the process over the interval [0,¢], ¢ > 0. An
important tool in the investigation of this problem are two results due to
Barlow [1]. The first, known as Barlow’s 0-1 law, asserts that for every ¢ > 0,
either R, is nowhere dense with probability 1 or with probability 1 R, contains
an interval. The second asserts that if R, contains an interval with probability
1 and 0 is regular for (0, ») [respectively, for (—, 0)], then R, contains an
interval of the form (0, 8] (respectively, [ —8§, 0]) with probability 1.

In this paper we will consider processes X(¢#) having paths of bounded
variation. We will show all such processes have R, nowhere dense with
probability 1 except those having either drift & > 0 and Lévy measure u such
that u(0,©) < wor b < 0 and u(—x,0) < =,

Investigations of the structure of R, for certain processes X(¢) having
paths of nonbounded variation were carried out by Kesten [6], Pruitt and
Taylor [7] and Barlow [2]. These authors investigate processes having the
property that 0 is regular for {0}. Such processes have at each point x a local
time [,(¢) with ¢ — [_(¢) continuous. Kesten [6] shows that if [ (¢) is jointly
continuous in (x,¢), then R, contains an interval about 0 with probability 1.
He also investigates certain processes close to asymmetric Cauchy processes
and shows that these have R, nowhere dense with probability 1. Pruitt and
Taylor [7] show that the asymmetric Cauchy processes have nowhere dense
range provided their Lévy measure is not one sided. In [3], the problem is
posed of determining if all Lévy processes having 0 regular for {0} with Lévy
measure of both (-, 0) and (0, ) infinite have R, nowhere dense iff there is
no version of [ (¢) that is jointly continuous.

Let X(¢) be a Lévy process. Then the paths are of bounded variation iff

—log Ee'**™ = jgb + [(e“’x - Dpu(dx),

where [, _lxlu(dx) < ». (See [5], page 279.)
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THEOREM. For every t > 0, X(¢) has R, nowhere dense with probability 1
except if (i) b > 0 and u(0,°) < o or (il) b < 0 and u(—=,0) < «. In these
cases R, contains an interval with probability 1.

The proof will be carried out via a sequence of lemmas. For any x, let P, be
the law of the process starting at x. Set P = P,. For a Borel set A let
= inf{t > 0: X(¢) € A} (= » if there is no such ¢).

LemMA 1. If either (i) or (ii) holds, then R, is not nowhere dense.

Proor. Assume (i) holds. The time 7 to the first positive jump is exponen-
tially distributed with mean u(0,»)~!. Rogazin’s theorem (see [5], page 316,
Theorem 1) shows that X,/t — b with probability 1 as ¢ | 0. We can thus find
¢t such that P(r < ¢) < ; and P(X, > (b/2)t) > 2: Hence P(R, 2 (0,(b/2)t)) >
P(X,> (b/2)t) — P(r < t) > ;. Barlow’s 0-1 law now shows R, cannot be
nowhere dense. A similar argument shows that when (i) holds, R, is not
nowhere dense. O

It is a known fact that if a process has paths that are cadilag and if it fails to
hit points, then its closed range over any finite time interval is nowhere dense.
However, we have not been able to locate this fact in the literature. Since we
need this fact we will take this opportunity to place it in the literature. This
will be done in the Appendix.

LEmMA 2. Ifb = 0, then R, is nowhere dense.

Proor. If b =0 and u(—o,®) < x, the process is a compound Poisson
process. Its range R, is then a finite set. If u(—o,®) =  the process fails to
hit points (see [4]). In that case the Lebesgue measure of its range is 0. Since
the paths are cadilag it follows that R, must be nowhere dense. (See Proposi-
tion 3 of the Appendix.) O

Henceforth we consider processes with & > 0 and w(0,®) = . The
same arguments applied to —X(¢) will establish the theorem for & < 0 and

/'L( — o, O) = oo,
Let y > 0. The process X(¢) is distributed like the sum of two independent
processes Y(¢) and V(¢), where

~log Be'®® = igb + [* (&' - 1)u(dx)
and

—log Eei®v® = fw(ewx _ l)u(dx).
Y

Let 7, = inf{z: X(@#) — X(¢t =) > y}. Then 7, and Y are independent and 7, is
exponentlally distributed with mean u(y, oo) 1. Hence P(7, < ) = 1 for a.ll v
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sufficiently small, say y < y,. For such vy let
Z(t)=Y(r,—¢t) - Y(r,.) on0<t<r,.

LemMmA 3. The process Z(t) is distributed like the process —Y(t) killed at
an independent exponential time T distributed like T,

Proor. Straightforward computations show the finite marginals of the Z
process are the same as those for the Y process killed at time 7' from which
the result follows. O

LEMMA 4. Let vy, be such that P(1, < ) =1 for y <y, and let £ > 0.
There are then a ty, > 0 and a y, > 0, y; < v, such that for y < Y1
(1) P(R,O N [(X(‘Ty_), X(‘ry))] =0,7, < to) >1-—¢.

Proor. Let A, =[R, N[(X(r,-), X(r,) = @], 7, <¢,] and let B, =

[R(r,,ty) N [(X(7, ), X(yﬂry)) = O], where R(r,, t,) is the range of X(¢) over
the interval (7., ¢,). Then

P(B, ¥ ) =Py (R, . N (X(1,.), X(r,)) = @)L, _,y + L[, > t,]

(2)

= PXr.,(Rto n (_00’ X(Tv)) = @) = P(T(—oo,O) > to)-
Thus
(3) P(B% )2 P(T .0 > t,).

Since A, € 7, , it follows from (8) that
(4) P(R,n(X(7,-), X(7,))) = @, 7, < ty) = P(A,)P(T(_. o > t,).

Now the range of X over (0, 7,) is the same as the range of Y over (0, 7).
Let Ty ., be T ., for the process —X(¢) and let Tj ., = inf{t > 0: Z(z) €
(0, ©)}. Then using Lemma 3, we find

P(4,) = P([Range Z over (0,7,) N (X(r,), X(r,)) = 2], 7, < t,)

> P(T§n>1,7 < t)

= fot°P(:i’(g,w, > t)A(y)er" dt

~

= P(T(g,m) > tO)[l — e—A(y)to],

where A(y) = u(y, ®). Since P(T ., > to) > P(T}, ,, > t,) we see that
(5) P(A,) 2 P(Tig . > to)[1 — e 7).
Since b > 0, 0 is irregular for (—,0) for the X process and 0 is irregular

for (0, ) for the —X process. Hence we can choose ¢, such that P(T 0> to) =
(1 - )2 and P(T_,, > t,) > (1 — £)'/3. Since A(y) T as y | 0, we can then
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choose y; < vy, such that 1 — e=*@V% > (1 — £)'/2. Using (4) and (5) we find
that (1) holds. O

Proor oF THE THEOREM. Fix 6 > 0. Then
P(R, 2(0,8)) = P(R,, N (X(7,.), X(7))) =9,
X(r,) <8,7, <t T(_wo > o)
> P(R, n(X(r,-), X(r,)) = 2)
- P(X(r,) 28) = P(T(—w,0) < to)-

By Lemma 4 we can find ¢, and y; < v, such that P(R, N [X(r,.), X(7,)] =
@, 7,<t9) 21— 3. Since P(T_,q <?)—> 0 as t|0, we can assume that ¢,
is also such that P(T(-%,0) < ¢,) < 3. Now 7, 2p 0 as y — 0. Hence there
is a subsequence y, !0 such that P(r, — 0)=1. By right continuity of
X@®), P(X(r,)—>0)=1 Therefore we can find 0 <y <y; such that
P(X(r,) = 8) < §. Using (6) we find that P(R, 2(0,8) > 1 - 3. Thus for
any & >0, P(R, 2(0,9) > 3. Hence P(R, does not contain an interval
(0,8)) = lim, ., P(R, 2 (0,(1/n)) > 1. Barlow’s two results now show that
P(R,, is nowhere dense) = 1. O

(6)

APPENDIX

ProposITION 1. Suppose x, is defined on [0,%] and is right continuous
with left limits at each point. For t > 0, let R = {x: x, =x,0 <s < t} be the
range of the function x, on [0,t]. Then the closure R, of R} is S8 = {x: x, or
x,_=x,0<s <t} U{xg,x}

Proor. Suppose x, € R} and x, — x. Since [0, ] is compact we can find a
sequence ¢, € [0,¢] that converges to some 7 € [0,¢] and x(¢,) = x,,. Since
either ¢, < 7 i.0. or ¢, > 7 i.0., we can assume that either ¢, < for all n or
¢, > 7 for all n. In the first case x = x,_ and in the second case x = x,; thus
R, 2 S. Since x, has left and right limits for all £, SC R,. O

ProposITION 2. Let x, be a function as in Proposition 1. If R; has 0
Lebesgue measure, then R, is nowhere dense.

ProoF. Proposition 1 shows that R, is obtained by adding all the left limit
points of the function on (0,¢] to R,. Since x, has no discontinuities of the
second kind, it can have for any finite ¢ at most countably many jump
discontinuities. Thus R, must also have 0 Lebesgue measure. But then R, can
contain no open interval. Thus R, is nowhere dense. O

sProposiTioN 3. () If X, is a standard stochastic process, X, =0 and
P(X, = x for some t <®) =0 for all x, then the range of X, on [0,¢] is
nowhere dense with probability one.
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Proor. (i) Let R be the entire range of X, and let |R| be its Lebesgue
measure. Then E|R| = [fP)(X, = x for some ¢ < ©)dx = 0. Hence P(|R| =
0) = 1. Proposition 2 now shows P(R, is nowhere dense) = 1. O
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