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UNSTABLE COLLECTIVES AND ENVELOPES OF
PROBABILITY MEASURES!

By ADRIAN PAPAMARCOU AND TERRENCE L. FINE

University of Maryland and Cornell University

We discuss issues of existence and stochastic modeling in regard to
sequences that exhibit combined features of independence and instability of
relative frequencies of marginal events. The concept of independence used
here is borrowed from the frequentist account of numerical probability
advanced by von Mises: A sequence is independent if certain salient asymp-
totic properties are invariant under the causal selection of subsequences.
We show that independence (in the above sense) and instability of relative
frequency are indeed compatible and that sequences with such features
support stochastic models expressed in terms of envelopes of probability
measures.

1. Introduction. The concept of the collective first appeared in 1919 in
the frequentist theory of numerical probability proposed by von Mises (1957,
1964). The empirical basis for that theory was the long-run stability of the
relative frequencies of events in unlinked repetitions of nondeterministic
experiments. von Mises postulated that the outcomes of such repetitions could
be modeled by numerical sequences with specific asymptotic properties. These
sequences, called collectives, facilitated a coherent definition of finitely additive
probability in terms of limits of relative frequencies and led to an illuminating
frequentist interpretation of key ideas in probability theory.

Our aim here is to explore parallels to the von Mises account, in pursuit of a
frequentist justification for an alternative aleatory concept. In particular, we
are interested in identifying numerical sequences that support upper and
lower envelopes much in the same way that von Mises collectives support
numerical probabilities. Upper and lower envelopes are set functions derived
from a given class .# of probability measures by taking the eventwise supre-
mum (resp., infimum) of the measures in .#. They are subadditive and
superadditive, respectively, and belong to the broader class of upper and lower
(or interval-valued) probabilities.

Upper and lower envelopes have been primarily studied from a subjectivist
viewpoint. In Smith (1961), Williams (1976) and Walley (1981), these struc-
tures are introduced as extremal betting rates subject to axioms of rational, or
coherent, behavior. A statistical theory based on the above interpretation is
developed in Walley (1990). Dempster (1968) and Shafer (1976) have employed
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the subclass of lower envelopes known as belief functions to represent degrees
of belief and their dependence on evidence. Upper envelopes have also been
used to specify model uncertainties in robust hypothesis testing [Huber and
Strassen (1973), Huber (1981)].

As in Walley and Fine (1982), this paper departs from the subjectivist
standpoint to consider upper and lower envelopes in an objective setting:
namely, that of a hypothetical experiment which is repeated indefinitely under
causally independent conditions, yet fails to produce outcomes whose relative
frequencies converge. This may at first seem paradoxical, in view of the
apparent convergence of relative frequencies encountered in practice. Never-
theless, the distinction between apparent and eventual (or actual) should be
borne in mind: Eventual convergence or divergence cannot be established on
the basis of any finite observation record, whereas apparent trends are always
observable and quantifiable. Thus apparent convergence and eventual diver-
gence of relative frequency are in principle reconcilable, especially when the
fluctuations associated with eventual divergence occur at a deceptively slow
rate. We also suspect that there are instances in which nondeterministic
phenomena (e.g., speech) have exhibited unstable relative frequencies and that
these instabilities have been casually explained away by invocations of nonsta-
tionarities in the process that had little independent substantiation.

A salient connection between envelopes and relative frequencies was estab-
lished in Walley and Fine [(1982), Theorem 4.2, page 750]. Given a finite
marginal sample space X, an algebra & of subsets of X and a sequence
X = (xy, %5,...) in X", denote by r,(A;x) the relative frequency of an event
A € & in the first n terms of x,

1 n
ra(A;x) = — ) Iy(x,).
nia

Then the set functions limsup, ,(:;x) and liminf, r,(-;x) are upper (resp.,
lower) envelopes on (X, 27). In other words, there exists a class .#, of
probability measures on that measurable space such that for every event A,

limsup r,(A;x) = sup{u(A): u € .4},

liminf r,(A;x) = inf{u(A): p € .4}.
Furthermore, the above envelopes are finitely generated, that is, the class .#
- can be chosen to be finite.

In the degenerate case .#, = {u,}, we have almost sure convergence of
relative frequencies of all marginal events in 7, so that

VA e, lim r,(A;x) = u (A).

By the strong law of large numbers, the above relationship will hold for a set of



UNSTABLE COLLECTIVES 895

sequences x of probability 1 under the i.i.d. measure with marginal u,. It is
natural to ask whether a similar statement can be made for the nondegenerate
case, where .#_ contains more than one measure and where the relative
frequency of at least one event diverges. In other words, does there exist an
i.i.d. envelope model that strongly supports the oscillation of relative frequen-
cies with (asymptotically) extremal values specified by the marginals of that
model? If so, then one could envisage a series of unlinked repetitions of a
nondeterministic experiment with relative frequencies that fail to stabilize
eventually.

The above question was one of the main issues addressed in Walley and
Fine (1982). In that work, a defensible method of extending an arbitrary pair
of upper and lower envelopes defined on (X, .27) to an i.i.d. envelope model on
the algebra ¢ of cylinder events of X" was proposed. It was shown, however,
that the resulting i.i.d. model only supported the (apparent) divergence of
relative frequencies in a weak sense. Kumar and Fine (1985) further examined
the support that a stationary model defined directly on the power set of XV
could lend to eventual divergence. Their study concluded that any monotone
set function possessing basic monotone continuity properties and dominated
on ¢ by a measure must fail to support the divergence of relative frequencies.

Our work was motivated by an inquiry into the above results regarding the
construction of an i.i.d. envelope model and the notion of support for diver-
gence. The following two questions arose: How does one construe indepen-
dence in the nonadditive case in which the model is specified through two set
functions, an upper and a lower envelope? And what is the objective meaning
of the (possibly distinct) values assumed by these two functions on any given
event?

We have found the von Mises approach to similar interpretational issues in
numerical probability particularly helpful. The primary stochastic entity in
that theory is the collective, which represents the outcomes of unlinked
repetitions of an experiment. By taking limits of relative frequencies of cylin-
der sets along the collective, one obtains the i.i.d. stochastic model P for the
repeated trials. In that framework, the role of P is limited to summarizing the
asymptotic relative frequency characteristics of the collective and probability
statements are strictly interpreted in terms of frequencies. In the same vein,
the independence relationships derived from P reflect those built-in frequency
properties of the collective that are consistent with an intuitive notion of
causal unlinkedness.

In this paper we seek answers to the following questions. First, do there
exist sequences that resemble von Mises collectives in possessing features
typical of causal independence, yet differ from colle¢tives by exhibiting unsta-
ble relative frequency behavior? Second, to what extent do such unstable
collectives support, in a frequentist sense, an ii.d. envelope model whose
values coincide with the limits inferior and superior of the relative frequen-
cies? We show that the answer to the first question is affirmative and we
propose an answer to the second question assuming the existence of sequences
with additional asymptotic relative frequency properties.
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2. Invariance of asymptotic properties under the selection of sub-
sequences. We begin this section with a brief discussion of von Mises
collectives. For more details, see von Mises (1957, 1964), Martin-Lo6f (1969),
Schnorr (1971) and Kolmogorov and Uspenskii (1987).

Intuitively, unlinked trials of a nondeterministic experiment should be
mutually noninformative. Thus given an infinite sequence x of outcomes of
such trials, any subsequence of x selected in a causal, or nonpredictive,
fashion, should itself share the same salient properties as x. In the von Mises
theory, these properties are identified as the limits of relative frequencies of
marginal events and sequences x that represent the outcomes of unlinked
trials are termed collectives. Thus informally, a von Mises collective is a
sequence along which the relative frequencies of events converge to limits that
are invariant under the causal selection of subsequences [von Mises (1957)].
We note here that invariance under causal subsequence selection does not
suffice to guarantee all of the properties commonly held by probabilistically
random sequences (e.g., law of iterated logarithm); however, this invariance is
a necessary first step in characterizing such sequences. For a review of the
main contributions to the definition of a random sequence, see Kolmogorov
and Uspenskii (1987).

Mathematically, causal selection can be defined in terms of a binary {0, 1}-
valued function f on the space X* of finite strings from X (including the
empty string e). Given any sequence x in X", one can generate a finite or
infinite subsequence x, of x by taking x, = e and applying the following
recursion: For every n, append x, to the current string of x_ if and only if
f(xg,...,%,_1) = 1. Such functions are commonly called place selection rules.

Henceforth we will assume that X is a finite space and &/ is the power set
of X. € denotes the algebra of cylinder sets of X™.

DEFINITION. Let &# be a family of place selection rules which includes the
identity f = 1 and u be a probability measure on (X, 27). A sequence x in X"
is a (#, p)-collective if every infinite subsequence x, = (x,, %, ... ) generated
by a place selection rule fin # satisfies

VACX, limr(A;x,)=u(A).

The existence of sequences with the above invariance property depends on
the choice of the family &#. In the least restrictive case where & contains
every binary function on X*, such sequences do not exist except for degener-
ate measures w. This is so because for every sequence x, there exists a place
selection rule that yields a constant subsequence x,. To remove such obsta-
cles, one may impose a further requirement that all rules in -# represent
systematic, rather than haphazard, selection procedures. This intuitively natu-
ral restriction on ## can be made precise by utilizing the concept of com-
putability: A rule f is computable if there exists a Turing machine 7 that can
determine f(s) in a finite number of iterations for every s € X*. As there are
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only countably many computable rules, any family -# solely consisti-ig of such
rules is countable and the ‘ollowing theorem of Wald (1936) applies to +#.

THEOREM 2.1. There exist (#, w)-collectives for every countable family ¥
of place selection rules on X* and probability measure u on (X, &). Further-
more, the set of such sequences has probability 1 under the i.i.d. product of n
on (XN, o(£)).

Thus collectives exist for any countable family of place selection rules and
the ensuing development of the von Mises theory (based solely on computable
rules) is nonvacuous.

In what follows we prove an analogue of the previous existence result for
sequences with unstable relative frequencies. The asymptotic properties of
interest here are the limits superior and inferior of the relative frequencies of
the marginal events. As discussed in the introduction, for any sequence x,
these limit points are given by the upper and lower envelopes (respectively) of
a class .#, of probability measures on the marginal space. Our question is
whether there exist sequences x for which the limits superior and inferior of
the relative frequencies differ, yet are preserved under a countable family
of place selection rules. The answer is affirmative and the precise statement of
our result is given in:

THEOREM 2.2. Let J# be a countable family of place selection rules on X*
and # be a family of probability measures on (X, /). Then there exists a
sequence X such that for every infinite subsequence x, generated by a rule
in A,

limsup r,(4;x,) = sup{u(A): u € £},

VAcCX, "
liminf r,(A;x,) = inf{u(A): p € .#).
n

REMARK. The two relationships in the above statement are equivalent,
since r,(A;y) + r,(A%y) = 1 and sup{u(A): p € A} + influ(A°): p € £} = 1.

In the argument that follows, we will construct a probability measure P on
(XN, 0(€)) such that every rule in &# almost surely selects a subsequence
with the required asymptotic properties. Then by the countability of -, the
set of sequences satisfying the statement of Theorem 2.2 will have P-measure
1. This technique was used by Wald to prove Theorem 2.1 with a particularly
simple choice of P, namely the i.i.d. product of w. In our case, the construction
of P will be somewhat more complex.

ProoF oF THEOREM 2.2. (A) Preliminaries. Consider the probability space
(XN, 0(€), P), where P is specified by the family {P(:|s),s € X*} of condi-
tional distributions on (X, &/). Denote the generic element of XV by x (as
before) and the ¢th coordinate function on XN by Z,, that is, Z,(x) = x,. In
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keeping with earlier notation, set Z, equal to the empty string e. For every
t > 0, define &, = 0(Z,,...,Z,) and let &, = o(¥).

Consider a fixed place selection rule fe& . The random sequence of
indices selected by f (in increasing order) is denoted by 7 = (7;,7 € N), and is
given by the recursion

T, = min{t: t> Ti—1 \% Oand f(ZO""’Zt—l) = 1}.

Here we take min & = +, so that 7,(x) = + if and only if f selects a total
of fewer than % terms from the sequence x. It is easy to show that for every i
and every ¢ (including +), the event {r, — 1 = ¢} lies in %, so that o; =
7; — 1 is a stopping time of the coordinate process.

We are interested in the asymptotic behavior of the time average

1 n
rn(A;z‘r) = Z IA(Z‘ri)
nia

over the event D, = N {r; < =}, for every A c X. This behavior is linked to
the conditional distributions P(-|s) through the following variant of the strong
law of large numbers [Theorem 32.1.E, Loéve (1978)]. For every increasing
sequence (%, i € N) of o-fields in (<€) and every uniformly bounded adapted
process (Y,i € N),

1 n
li,l;n;.z(Yi“ E[Y,.,|%])=0 as.

To apply this result to the problem in hand, we take %, = o Y =I(Z, )

-1

and for definiteness, let Z_ be constant over X". Then by the above theorem,
liminf— Z I(Z,) = liminf— E P[Z,i € AIZi] a.s.
noony noon

In other words, there exists a set O; of P measure 1 such that for every
sequence in X € Oy N D, and every marginal event A,

1 r
liminfr,(4;x,) = liminf; Y P(Alxg,...,x, ).
n n i=1

Now consider the entire family &#. If we can specify {P(-|s): s € X*} in
such a way that every infinite subsequence y, generated by any rule f in #
satisfies

n

1
hmlnfn Y P(Alygs-- ., 9,-1) = inf{u(A): p € 4},
i=1

then the disjunction
x, finite or liminf r.(A;x.) = inf{u(A): p € #}

will hold for every x in N ;. 4 Oy. Since # is assumed countable, the last
intersection will have probability 1 and the proof will be complete.
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(B) The construction of P. Let X ={1,...,J}. It is convenient to think of
X* as a J-ary tree, with nodes corresponding to strings s € X*. Specifying the
family {P(-|s): s € X*} then amounts to assigning a measure P(:|s) to each
node s. We shall do so by recursion on a suitable ordering of X*,

Let 2X ={A,,..., Ag}. Since .# is isomorphic to a bounded subset of R7~1,
there exists a finite collection .#' = {u,,..., ug} C cl(.#) such that -

Vi<k <K, pu(A,) =inf{u(A,):p €.£)=min{u;(A,):p; €L}

In what follows, the conditional distributions P(-|s) will be drawn exclusively
from the collection .#'.

Underlying our construction is the following idea. Suppose that for a certain
rule f and an infinite subsequence x, selected by f, the sequence of measures

(P(-Ixo,...,xn_l),i S N)

consists of successive blocks of identical elements of .#’; for example, a block
of N; pn,’s, followed by a block of N, u,’s, and so on, continuing in a cyclical
fashion. Then the sought relationship

1 n
€)) Vi<k<K, liminf— 3 P(A.lx,,...,%, 1) =pui(A,)

nooNio
will hold provided the block lengths grow fast enough, for example, if

lim N,(Ny + -+ +N,_;) ' = +w,

Although the above effect is easily achieved for all infinite subsequences
drawn from any single rule f, it is clearly infeasible in the general case of two
or more rules with conflicting selection patterns. OQur construction resolves
such conflicts by allowing contaminations of blocks of identical measures: For
fixed f, the sequence (P(:|x,,...,x, _;),i € N) may exhibit deliberate irregu-
larities which serve to satisfy the demands of competing rules without affect-
ing the limit inferior of the time averages.

Briefly, in recursively assigning conditional measures to the nodes corre-
sponding to the initial substrings of a sequence x, we are guided by a countable
hierarchy of constraints we call phases. Each such phase has associated with it
a characteristic place selection rule f, a measure pu and a bin of size N.
Initially, all phases have empty bins; at any given step of the recursion on x, a
phase is said to be complete if the corresponding bin is full.

To determine the conditional distribution at nede (x,,..., x,), we consider
all incomplete phases whose corresponding rules f satisfy f(x,,...,x,) = 1.
The highest such phase in the hierarchy wins node (x,...,x,): it sets
“P(-|xg,...,x,) equal to the corresponding measure u and also places a copy of
that node in its bin. By suitable choice of the triplets ( f, u, N), one can obtain
the desired effect, that is, time averages satisfying (1) above for all infinite
subsequences of x drawn by rules from #. The details are as follows.
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For g e N, let b(q) € N, c(¢) €{1,..., K} and N, € N be such that

(@) for every (b,¢) in N X {1,..., K}, the pair (b(q), c(q)) equals (b, c) for
infinitely many values of ¢; and
(i) the N,’s satisfy

(2) h;nN YN + 0,

Here f,,, is the place selection rule, Ko the measure and N, the bin size
corresponding to the gth phase in the hierarchy.

Given below is the recursion for {P(-|s),s € X*}. We assume a linear
ordering of J-ary strings by increasing size, with ties broken arbitrarily.

R1. Initially let s = e and m (s) = 0 for all ¢ € N.

R2. Let 0(s) = {g: m (s) < N ).

R3. Let r(s) be the least index q in O(s) such that fy,(s) = 1.
R4. Let P(:l8) = pogre(*)-

R5. For every a € X, let m,,(sa) = m,4(s) + 1.

R6. Go to the next string s.

The recursion will be valid iff every s € X* is selected by some rule in #;
this is ensured by assuming w.l.o.g. that the identity rule f = 1is in #.

(C) The validity of (1). Let f, € # and x be such that the subsequence x,
generated by f, is infinite. Again, we write o; = 7, — 1.

Consider any g for which b(g) = b, and take L to exceed the sum of the bin
sizes of all phases up to and including the gth one, for example, L =1 +

Ny + -+ +N,. We claim that m (x,,.. s %,,) = N,, that is, the gth phase is
) complete at node (xg,. .., %,).
Indeed, assume the contrary, namely m (x,...,%,, ) < N,. Since for every

i < L we have that
fb(q)(xo,...,xo.i) =fb(x0,...,x7._1) = 1

our assumption implies that q lies in O(x,, ..., x, J)forall i < L. But then for
each such value of i, r(x,,...,x, ) < g. As there are at most N, + - +N, =

L — 1 substrings s of x such that r(s) < q, the sought contradlctlon is
obtained.

Now consider a marginal event A,. By construction of the sequences b(-)
and c(-), for any g, there exists ¢ > g, such that d(q) = b, c(q) = k. Denoting
by T the least index i such that m,(x,,...,x,)=N,, we have by the
foregoing discussion that

() N,<T<1+N;+- +N;
(i) at least N, of the summands in £7_, P(-|x,...,%,) are equal to
Koy = Mp- Thus
17X 1+N;+ - +N,_;
T Y P(Aylxg, ..., x,) — mu(Ay)| < ~ i

i=1 q
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where by (2), the right-hand side can be made arbitrarily small by choosing q,
sufficiently large. Since u,(A;) < u;(A,) for j # k, we also have

n

1
Vn, -~ Y P(Aylxg, ..., x,) = ui(Ag),
i=1
whence we conclude that

1
liminf'— Z P(Aklxo, .o .,xa.i) = I"l’k(Ak)'

L |

Hence we have shown that for almost all (P-measure) x, if f € &# yields an
infinite subsequence x_, then

V1<k<K, liminf r,(A,;x,.) = n,(A,). m]

Thus there exist sequences that exhibit unstable relative frequencies and
possess invariance characteristics akin to those of von Mises collectives. In the
following section, we discuss the possibility of using such sequences to repre-
sent the outcomes of unlinked trials governed by i.i.d. envelope models.

3. On the derivation of i.i.d. envelope models. As pointed out in the
introduction, the collective is the primary entity in the von Mises theory and
the concept of probability is essentially a derived one. Thus given a random
experiment & with sample space X, the probability of an event A c X is given
by the limit of the relative frequency of A along a collective x that represents
the outcomes of unlinked trials of &.

The derivation of the i.i.d. model on ¢ is based on the following idea. Let x
be the sequence of outcomes of unlinked repetitions of &. Then a partition of x
into successive blocks of length % should yield a sequence representing the
outcomes of unlinked repetitions of the experiment &% where &% itself
consists of £ unlinked trials of &. In other words, if x is a collective for &,
then the sequence x* € (X*)V defined by

Xk = ((xl"'"xk)7(xk+1’-~~,x2k),~--)

should also be a collective for &%.

It turns out that the above is true for appropriate place selection systems &#
and #* on X* and (X*)*, respectively (the simplest such choices are the
~ classes of computable functions on the respective spaces). More importantly, it
can be shown [von Mises (1957, 1964)] that the probability measure governing
&* is the k-fold product of the measure u, governing &. Thus from a single
collective x, it is possible to establish the i.i.d. model on ¢ as the unique
stochastic model for the unlinked repetitions of &.
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One might expect that a parallel derivation is feasible for ii.d. envelope
models, using sequences such as those in Theorem 2.2. Unfortunately, this
does not seem to be the case: The fact that lim inf,, (A, x,) is the same for all
subsequences x, selected from x does not readlly 1mp1y that x* possesses
similar invariance properties. To escape this impasse, we discuss i.i.d. envelope
models issuing from sequences whose invariance properties encompass the
asymptotics of relative frequencies of all cylinder sets and which we term
unstable collectives. In what follows, T'(x) denotes the left shift of x by i
positions.

DEFINITION. Let &% be a family of place selection rules which includes the
identity f = 1 and P be a set function on the algebra € of cylinder sets of X" N
A sequence x in XV is an unstable (#, P)-collective if for every infinite
sequence 7 = (7,, 7o, ...) generated by a place selection rule in %7,

1
VCed, llmmf Z Io(T" 1x) = P(C).
i=1

Note that in the previous definition, relative frequency is understood in the
context of a sequence of translations of x. Also, if we let P(C) = 1 — P(C®),
the defining relationship becomes equivalent to

1 —
vCed, limsup— Y. Io(T" 'x) = P(C).

i=1

Theorem 3.1 effectively states that an unstable collective representing the
-outcomes of an experiment & gives rise to a unique envelope model for
unlinked repetitions of & (such as &%).

THEOREM 3.1. Let # and H#* denote the classes of computable binary
functions on X* and (X*)*, respectively. Then for every unstable (#, P)-col-
lective, the following statements are true:

(i) P is the lower envelope of a class of stationary probability measures
on €.

(i) There exists on the algebra €* of cylinder sets of (X*)N a unique lower
envelope P* whose marginal on X* agrees with that of P and for which the
sequence x* is an unstable (%, P,)-collective.

Proor. (i) The first assertion follows from the lemma given in the Ap-
pendix, which states that for every sequence y in X N’ there exists a countable
family 2, of stationary measures on ¢ such that

vVCed, hmmf Z Io(Ti'y) = min{u(C), n € 2,}.
i=1
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For the case in hand, we take f = 1 in the definition of the unstable collective
and note that

L Io(T*'x) = lim inf — Y I,(T7"'x) = P(C).

lim inf —
no N i=1 »

(i) Let f* be a computable place selection rule on (X*)* that selects
infinitely many terms (i.e., k-tuples) from x* and let » = (v;,i € N) be the
sequence of selected indices. To prove that x* is an unstable collective, we
must show that the relationship

1
P:(-) = liminf— Y I(T" !x*)
o N
defines a unique set function P* on €* which is independent of the choice
of f*.

Consider an arbitrary set C* € €* and let m be the dimension of C*. Then
for some S € X*™ we have

Ct={y":yeX", (¥, -, %m) €S}

Also let C be the (km)-dimensional cylinder in € comprising the sequences
with initial segments in S,

C= {y:yeXN’(yl’*'-’ykm) ES}'
Noting that the »;th k-tuple of x* begins with Xpe—19+1, We have
Ick(TVi_lxk) =Ig(%pp,—1y410- > xk(vi+m—1)) = IC(Tk(Vi_l)x)~
Thus with P* defined as above,
1
P*(C*) = liminf — Y, Io(T** Dx).
nooRiay

The sequence (1; = k(v; — 1) + 1,7 € N) of indices is generated from x by
the place selection rule f on X*, defined by

F(gre s 2) = {fk(xo,(xl,...,xk),...,(x(t_l)kﬂ,...,xtk)), if n =tk,
0, ' otherwise.
“One easily sees that the computability of f* implies that of f, hence f & #.

" Since x is a (#, P) unstable collective, we have

1 n
liminf; Y I(T" 'x) = P(C),
n i=1
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and therefore P*(C*) = P(C) regardless of the choice of f*. This proves that
x* is an unstable (#*, P*) collective. By taking m = 1 (so that S c X*), we
also see that the marginals of P and P* on X* coincide. O

4. Discussion. The results of the preceding sections suggest that the
frequentist interpretation of numerical probability may be adapted to support
an alternative stochastic concept based on envelopes of probability measures.
The framework for this frequentist account of upper and lower envelopes is
borrowed from the von Mises theory and comprises

1. a nondeterministic experiment & with finite outcome space X;

2. a system &7 of causal subsequence selection schemes;

3. a quantitative property II(£) that manifests itself asymptotically in the
outcomes of & and is invariant under subsequence selection through #.

The notion of unlinkedness, or causal independence, is critical here. Our
experience with a diverse body of aggregate phenomena, and in particular with
experiments repeated under carefully controlled conditions, substantiates a
link between causal independence and the apparent convergence of relative
frequencies. For most such phenomena, a priori claims of causal independence
can be made on the basis of detailed knowledge of the mechanisms generating
the repetitions. This raises the question as to what happens in situations
where such knowledge is unavailable and where the relative frequencies do not
appear to converge. Does the asymptotic instability of relative frequency
always signify causal dependence? Or is it possible for the time series in
question to exhibit other traits that still exemplify causal independence?

An affirmative answer to the latter question is conceivable within the above
theoretical framework, where unlinkedness is construed independently of any
“ extrinsic empirical input. Thus a sequence of repetitions of & is unlinked if
the resulting sequence of outcomes x exhibits property I1(&’) and if the same is
true for any subsequence of x selected by a rule in -#. By postulating
convergence of relative frequencies along x to a limit given by II(&£’), one can
retrace the familiar von Mises account to obtain the complete stochastic model
{II(€*), k € N}.

In this paper we have suggested an alternative avenue suited to the case in
which unlinked repetitions yield unstable relative frequencies. We have identi-
fied II(¢) with the limit inferior of the relative frequency of the marginal
events and shown the existence of sequences x that satisfy the invariance
constraints with respect to any countable (hence including computable) system
# (Theorem 2.2). Our transition from II(&’) to the unique i.i.d. envelope
model {II(£*), ¢ € N} (Theorem 3.1) presupposed the existence of sequences x
with additional invariance properties, which we termed unstable collectives.

Two issues that remain open are the existence of unstable collectives and
the fepresentation of the class .# of lower envelopes P on ¢ associated with
unstable collectives. To date, our attempts at resolving the former issue by
modifying the proof of Theorem 2.2 so as to accommodate all cylinder sets
have yielded little. With regard to the problem of representation of .#, our
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knowledge is limited to the first statement in Theorem 3.1, namely that 2 is
a subclass of the stationary lower envelopes on ¢

We hope that this account will motivate further inquiry into the possibilities
of stochastic modeling based on envelopes of probability measures, as well as
other unconventional probabilistic structures.

APPENDIX

LEMMA. Let x € XV, where X is any finite set. Then there exists a count-
able family 2, of stationary probability measures on € such that for every
Ced,

12 ,
lim sup -~ Y Io(Ti 'x) = max{u(C), n € 2.},
n i=1

17 .
liminf; Y I (T 'x) = min{u(C), p € Z,}.
n i=1

Proor. For A c XV, we define
17 .
p(A) = — X I(T" 'x),
ni-1

and note that p,(+) is finitely additive on €. We shall construct the family 2,
with the aid of a Banach limit L on the space [,, of bounded real sequences.

Consider a fixed cylinder set C and an increasing sequence (¢,,n € N) of
indices such that p, (C) converges to lim inf, p,(C). We define the set function
uon ¢ by

Ve es, u(C)=L{p,(C),neN).

Since L is nonnegative on [, and L(1,1,...) =1, we have that u >0,
u(X"N) = 1. From the linearity of L on [, and the finite additivity of p,(-) on
¢, we deduce that u is a finitely additive probability measure on ¢; it is also
countably additive since every cylinder set is both open and compact in the
product topology induced by the discrete topology on X. Furthermore, the
property

V(a) el,, liminfa, < L(a) < limsupa,
implies both
liminfp,(C) = u(C) and VC' liminfp,(C') <u(C’).

Finally, stationarity of u follows from the stated properties of L and the
relationship

p(C) = p(T7IC") - 0.
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By letting C range over ¢, we obtain a collection 2, of probability
measures u on ¢ such that

VCe#, liminfp,(C)=min{u(C),n € 2.).

The corresponding identity for lim sup follows from ‘
liminf p,(A) + limsup p,( A°) = 1. |
n n
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