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SPACE-TIME BERNOULLICITY OF THE LOWER AND
UPPER STATIONARY PROCESSES FOR
ATTRACTIVE SPIN SYSTEMS!

By JEFFREY E. STEIF

Cornell University

In this paper, we study spin systems, probabilistic cellular automata and
interacting particle systems, which are Markov processes with state space
{0, 1}%". Restricting ourselves to attractive systems, we consider the station-
ary processes obtained when either of two distinguished stationary distri-
butions is used, the smallest and largest stationary distributions with
respect to a natural partial order on measures. In discrete time, we show
that these stationary processes with state space {0,1}2" and index set Z are
isomorphic (in the sense of ergodic theory) to an independent process
indexed by Z. In the translation invariant case, we prove the stronger fact
that these stationary processes, viewed as {0, 1}-valued processes with index
set Z" X Z (space-time), are isomorphic to an independent process also
indexed by Z"™ X Z. Such processes are called Bernoulli shifts. Finally, we
extend all of these results to continuous time.

1. Introduction. In this paper, we consider both discrete time spin sys-
tems or probabilistic cellular automata (PCA) and continuous time spin sys-
tems or interacting particle systems (IPS). These will be Markov processes
with state space X = {0, 1}%", the set of configurations of 0’s and 1’s on the
n-dimensional lattice. The transitions will be governed by a family of functions

{c(x, n)}xez”,nex’
where
B= sup c(x,m) <3
xeZ*,neX

and c(x, n) is, for fixed x, a continuous function of n where X is given the
product topology. The reason for having the 3 bound rather than the more
natural bound of 1 is explained later.

These two conditions plus one more which is given below are the three
conditions in Liggett (1985) imposed on the spin rates of a spin system to
insure the existence of a continuous time process. This third condition is

sup Y. suple(x,n) — c(x, )| < =,
x€Z" y#xx n€X

where 7’ is the same configuration as n except switched at lattice point y. We
shall call this last quantity M, which we assume to be finite. The summands in
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the above can be interpreted as the effect of lattice point y on the spin rate at
lattice point x. Actually in Liggett (1985), any uniform bound on the functions
{c(x, n)} together with the previous assumptions suffices for the existence of
the continuous time process.

In Sections 2-4 of this paper, we deal exclusively with discrete time and do
not discuss the continuous time situation until Section 5 except for minor
comments. To obtain a process in discrete time, we only need to make the first
two previous assumptions. We make no general assumption of translation
invariance although we make this assumption later.

The evolution of our process in discrete time is defined as follows. If the
state of the system is 7, then at the next stage each lattice point x switches its
value independently with probability c(x,n). In particular, this yields a prod-
uct measure at the next stage, which we denote by T'n. We can then evolve any
initial distribution » and we denote this evolved measure by Tv where of
course, Tv = [xTn dv(n). For the definition of the continuous time process for
the above spin rates, see Liggett (1985). Informally, the process when in state
n waits an exponential amount of time with parameter c(x,7n) and then
switches its value at x. In continuous time, we let T'*»v denote the distribution
at time ¢ when v is the initial distribution. In discrete time, w is called
stationary if Tu = u, while in continuous time, one requires that T’y = u for
all ¢.

In this paper, we deal exclusively with attractive systems. We note that X
has a natural partial order defined on it: n < § if n(x) < 8(x) for all x € Z".

DerFiNiTION 1.1. A PCA (IPS) is attractive if whenever m <8, then
c(x,n) < c(x, 8) if n(x) = 8(x) = 0 and c(x,n) = c(x, 8) if n(x) = &(x) = 1.

Heuristically, one has that 0’s attract 0’s and 1’s attract 1’s. There is
another characterization of attractiveness which will be useful for us later. We
say that a function f from X to R is increasing if n < & implies that
f(n) < f(8). Let .# denote the collection of increasing continuous functions on
X. This then allows us to place a natural partial order on P(X).

DEFINITION 1.2. v < u if [y fdv < [x fdu for all functions f in Z.

The fact that < is a partial order on P(X) is easily verified, as is the
continuity of < with respect to the weak topology in.that v, < u, for all n,
v, » v and u, - p imply that v < u.

We now present an alternative definition of attractiveness in the following
proposition [see Liggett (1985) for the continuous time case].

ProposiTION 1.3. A PCA (IPS) is attractive if and only if v < p implies
Tv < Tu(T*v < T'w for all ¢t).
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In the attractive context, there are two distinguished stationary distribu-
tions which might reduce to the same one. The next proposition deals with one

of these.

ProposITION 1.4. lim, T "8, exists and is a stationary distribution where
8, denotes the unit point mass at the configuration of all 0’s. Furthermore,
this limiting distribution is smaller than any other stationary distribution with
respect to the partial order defined in Definition 1.2.

The analogous result holds when 0 is replaced by 1 or if discrete time is
replaced by continuous time. This theorem is proved in Liggett (1985) in
continuous time. The discrete time proof is analogous. We denote by v the
stationary distribution whose existence is guaranteed by the above proposition.
Similarly, if we start with the configuration of all 1’s, we denote the limiting
stationary distribution by ¥. This notation is used in both discrete and
continuous time. We point out that the main reason that one can obtain strong
results in the attractive case is that the set K = {(n, §): n < 8} is invariant for
the basic coupling, which is defined in Section 3. The reason why we take 3 as
a uniform bound on the spin rates is that Propositions 1.3 and 1.4 become
false otherwise, which one can see by taking c(x, ) = 1.

In Section 2, we give all necessary definitions and background concerning
the d-metric, the notion of isomorphic processes and Bernoulli shifts. In
Section 3, we define the basic couplings which we use throughout the paper.
In Section 4, using v as our stationary distribution, we show that the
corresponding stationary process viewed as an X-valued process indexed by Z
is isomorphic (in the sense of ergodic theory) to an independent process also
indexed by Z. If the system is also assumed to be translation invariant in the
obvious sense, we further show that this stationary process, viewed as a
{0, 1}-valued process indexed by Z" X Z (space-time), is isomorphic to an
independent process also indexed by Z" X Z, a much stronger ergodic prop-
erty. Processes isomorphic to independent processes are called Bernoulli shifts.
Finally, in Section 5, we extend all of these results to continuous time.

2. The d-metric, isomorphism and Bernoulli shifts. We first intro-
duce the d-metric and some associated theorems which we will use. In certain
contexts, this is also called the Vaserstein distance. Throughout this paper,
P(Y) will denote the set of probability measures on the space Y.

DeFiNiTION 2.1, If ,v € P({0, ...,k — 1}V) with N finite, then

) . 1N
* dN(I"l"V) = lnf{Em(N glI(xi;éyi))}’

the infimum being taken over all couplings m of u and v, where E™ denotes
expectation with respect to m, I, denotes the indicator function of A and a
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typical element of {0,...,%k — 1}¥ X {0,...,% — 1}V is denoted by
({xi}iIY—_ 15 {yi}izi 1)-

A coupling m of u and u is a measure on {0,..., 2 — 1}V x {0,...,2 — 1}V
whose first and second marginals (projections) are u and v, respectively. The
right side without the inf, which we denote by d~(u, v), simply measures the
expected percentage of errors with respect to the coupling m. We sometimes
omit N in the notation when no confusion will arise.

DeFINITION 2.2. If p,v € P({0,..., k — 1}%") are Z™-invariant,

d—(M, V) = 1\1,im &-Nn(I.LN, VN),
where oy is the projection of o onto {0,1,...,% — 1}12---NY" obtained by
only considering the elements {1,2,..., N}* c Z".

Here we are just projecting the measure down to a box in the lattice Z" with
side lengths N. For n = 1, it is shown in Ornstein (1974) that this limit exists,
that d is a metric and that this metric can also be expressed as inf{P™{(n, 8):
1(0) # 8(0)}}, the infimum being taken over all translation invariant couplings
m of u and v. The general case is proved similarly.

Before discussing the notion of a Bernoulli shift, we introduce a few basic
notions from ergodic theory.

DEFINITION 2.3. An abstract dynamical system is a quadruple (0, &7, u, 7g)
where Q is a set, &7 is a o-field of subsets of (), u is a probability measure on
& and g is a group action of G on ) by bijective bimeasurable measure-pre-
" serving transformations.

In this paper, G will be Z" or R" for some n. All probability spaces we
consider will be Lebesgue spaces. A stationary process with index set Z" and
metric state space X is an example of a dynamical system, where Q is X?%", &/
is the collection of Borel sets of ), u is the measure on  corresponding to the
joint distribution of the process and Z" acts canonically on X%". (The station-
arity of the process is equivalent to this action being measure-preserving). In
this paper, stationary processes are always viewed as dynamical systems in this
way, and except for Section 5 these are the only dynamical systems that we
consider. It is important to keep in mind that the group acting on a stationary
process viewed as a dynamical system is the index set for the stationary
process. '

DEFINITION 2.4. (Q, o, u, mg) is isomorphic to (', 4, v, ¥;) if there are
G-invariant measurable sets A contained in Q and B contained in Q' each of
measure 1 such that for all g, m, and ¥, are bijective when restricted to these
sets and such that there exists a bimeasurable measure-preserving mapping f
from A to B so that f(m(x)) = ¥ (f(x)) for all g in G and x in A.



BERNOULLICITY OF ATTRACTIVE SPIN SYSTEMS 613

In order to distinguish between dynamical systems, there are a number of
ergodic theoretic properties, all of which are isomorphism invariants. We give
here the definitions of ergodicity, mixing and Bernoulli.

DerFINITION 2.5. A dynamical system (Q, &7, u, ms) is ergodic if whenever
m,A = A for all g in G where A is measurable, then uw(A)=0or 1.

DEFINITION 2.6. A dynamical system (Q, o, u, wg) is mixing if for all A
and B in &, lim, _,, uw(7,(A) N B) = u(A)u(B).

DEFINITION 2.7. (Q, 7, u, wze) is Bernoulli if it is isomorphic to
(WZ", B, p, m4») for some Lebesgue space W, where % is the canonical o-field
on the product space, p is product measure and 7. is the canonical action of
Z" on W%",

We sometimes call a system which is Bernoulli a Bernoulli shift and note
that this simply means that it is isomorphic to an independent process. Note
that we have only defined Bernoulli for Z"-actions. In Walters (1975), it is
shown that for Z-actions, Bernoulli implies mixing which in turn implies
ergodicity. These implications are still true for Z"-actions.

We state an important theorem concerning Bernoulli shifts. In order to do
this, we introduce a few preliminary notions.

First, we place a linear order <" on Z". This ordering is defined by
induction on n and can be thought of as a backwards dictionary ordering. If
n =1, we use the natural linear order <. For n > 2, we define <" by
induction via

(ag,---ra,) <"(by,...,b,)
if
a,<b, or (a,=b,and(ay,...,a,;) <""*(by,...,b,_1)).

This clearly defines a linear ordering. If a,b € Z with a < b, we let [a, b]
denote {y € Z: a <y < b} and call this an interval. If x € Z", we let

Past(x) = {y € Z":y <" x}.

If R c Z" is a product of intervals, which we call a rectangle, we define the
Past of R. We do this as follows. We tile the lattice Z" by R and disjoint
translates of R. There is then a natural mapping f from Z" onto itself which
maps each translate of R to a single point and sends R to the origin. We are
just collapsing each translate of R to a point so that the relative position of
two translates of R corresponds to the relative position of their images under
f. The Past of R, denoted Past(R), is then defined to be f~ Y(Past(0)), where
Past(0) is defined above.

If {l,,...,1,} cZ", we let o(l,...,1,) denote the sub o-field on {0,...,
k — 1}%" generated by these m points and let &(o(l,...,[,,)) denote the
collection of ™ atoms generating this sub o-field.
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DEFINITION 2.8. A Z"-invariant measure pu € P({0,...,k — 1}%") is very
weak Bernoulli (VWB) if V & > 0 there is a rectangle R c Z" such that if
{ty,...,1,,} c Past(R), then

d(ulg, nlr/A) <e
for all A € o (o(ly,...,1,,)) except for ¢ portion as measured by u.

Here u|r denotes the measure on {0, ..., 2 — 1} obtained by projecting u
onto R c Z", ulr/A means ul|g conditioned on A and the previous definition
means that the union of the atoms A where the previous inequality fails has
u-measure < e. We remark that the intervals whose product is R are not
required to have the same length.

Before discussing the next object of study, we need to discuss the notion of
entropy, which is an isomorphism invariant. Although we give the necessary
definitions here, we refer the reader to Walters (1975) for a complete discus-
sion.

DerNiTION 2.9. If #={P,,...,P} and 2=1{Q,,...,Q,} are two finite
partitions of a measure space (X, %, m), then the conditional entropy of &
given 2, denoted H(Z |9), is

B m(P; N Q;)
?jm(Pi N Qj)log——_m(Qj) ,

where log is the natural logarithm.

DeFINITION 2.10. If p is a Z™-invariant measure on P({0,..., & — 1}%") or
equivalently a stationary process with state space {0,..., 2 — 1} and index set
Z", then the entropy of u denoted by H(u) is lim,, _,,, H(#\2,,), where & is
the canonical partition of {0, ..., 2 — 1}%" into % sets corresponding to the Oth
coordinate, 2, is the partition of {0,..., 2 — 1}2" into k™ sets corresponding

to the coordinates {x,,..., x,,} in Z" where Past(0) is enumerated {x,}”_; and
H(#12,,) denotes the conditional entropy of & given 2,,.

It can be shown that Definition 2.10 is independent of the enumeration of
Past(0).

DEFINITION 2.11. A Z™invariant measure u € P({0,..., %k — 1}%") is
finitely determined (FD) if the following condition holds: u, — p weakly and
H(w,) —» H(u) together imply that u, =7 u.

"The following theorem plays a central role in this paper. For the case n = 1,
this theorem is due to Ornstein (1974) and Ornstein and Weiss (1974). For
general n, one should refer to Katznelson and Weiss (1972), Feldman (1980),
Conze (1972) and Thouvenot (1972).
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TueoreM 2.12. If u € P{(0,..., k — 1}%2") is Z™-invariant, then the follow-
ing are equivalent:

(i) p is Bernoulli.
(ii) u is VWB.
(iii) w is FD.

We now state some other facts from the theory of Bernoulli shifts which we
shall need. The proofs of these can be found in Ornstein and Weiss (1987).

TueoreM 2.13. Let X ={0,1}%" and u be a measure on X% which is
Z-invariant. If ({0, 1)*v--*NZ =% Z) js Bernoulli for all I, where
u*v o * is the projection of u onto ({0, 1)*v--*N2 gqnd Z" is enumerated as
{x,}°_,, then (XZ%, u,Z) is also Bernoulli.

THEOREM 2.14. The collection of Bernoulli measures and the collection of
mixing measures are each closed in the d-metric.

THEOREM 2.15. If (X, &, u, dg) is a Bernoulli system and H is a subgroup
of G, then (X, B, u, ¢y) is a Bernoulli system, where ¢y is the restriction of
the group action ¢4 to H.

Last, we state a general theorem about Markov processes which we shall
need. This can be found in Rosenblatt (1971). First, a discrete time Markov
kernel on a compact metric state space (X, d) with Borel o-field &Z is a
function

p(+,): XX % - [0,1]

such that p(x, - ) is a probability measure on & for each x € X and p(-, A) is
measurable for each A € #. We assume that p(x, - ) is continuous in x in the
weak * topology of measures. The natural operator on measures is then given
by Tu(A) = [xp(x, A) du(x). Again, u is stationary if Tu = u. We also have
an operator on C(X), the space of continuous functions on X, which we also
denote by T given by Tf(x) = [x f(y)p(x, dy).

THEOREM 2.16. Let {p(x, - )}, x be a discrete time Markov kernel with a
compact metric state space X and let u be an extreme point of the set of
stationary distributions. Then

1Nt
— Y T, -u
_ N °
'weakly as N - o for u a.e. x.

3. Basic couplings. In the theory of spin systems, coupling techniques
have proved very fruitful. Many of these particular applications in continuous
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TABLE 1
Basic coupling probabilities for k systems

Flip only With probability
Mg+ M, Czl(x: "711)
Migs+ -5 Mg clz(x) 77[2) - cll(x, 77[1)
Mg+ oM, c1(%, M) = (%, my,)
m, e (x,m) — e (x,my, )
Mgy M, c,xm,,,
Mg+ ¢y, — e, ()
M, Czk(x, 771,,) - Clk_l(x, "71,,_1)

time can be found in Liggett (1985). In particular, the Vaserstein or basic
coupling of any two continuous time IPS is introduced there.

We introduce the discrete time analogue for % systems which we also call
the basic coupling. We assume that we have % sets of spin rates {c,(x, D}% ;.
We wish to couple these % systems in a natural way and obtain a Markov
kernel with state space X* whose %2 marginals are the Markov kernels for the
respective individual systems. The coupling is constructed as follows. What we
do will become clear if one keeps in mind that we are trying to push the
processes together as much as possible.

We assume that we are in the state (7, ..., n,). We describe how to proceed
at lattice point x and once this is done, all lattice points act independently. We
. break up the n,’s, 1 <i <k, into two sets depending upon their value at x.
Within each of the two sets, we reorder the %,’s in increasing order with
respect to the values {c,(x, n;)}\.;. This gives us two sequences (n;,...,n;)
and (7, ,...,n;,), where the first half consists of those configurations which
are in state 0 at x, the second half consists of those configurations which are
in state 1 at x, and where both sequences are ordered according to their
respective spin rate at x. We then proceed at lattice point x according to Table
1. The sum of the numbers in the right column of this table is at most 1. We
flip no configuration at x with whatever remaining probability there is. It is
clear that this is a coupling of the individual %k systems. Furthermore, one can
project this Markov kernel down to any subset of the % systems and obtain the
coupling, as just defined, for this subset of the % systems. We call this our
basic coupling and denote the corresponding Markov operator on P(X X X) or
on C(XxX)by T.

4. Space-time Bernoullicity in discrete time. Before proving space-
time Bernoullicity in the discrete time case when either v or v is used, we

prove Bernoullicity under the time evolution. There is no translation invari-
ance assumption here. The resulting measures on X% for the corresponding
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stationary processes are denoted by 7 and 7, respectively. Due to symmetry,
we only consider 7 throughout this paper.

THEOREM 4.1. If the spin rates are attractive, then (X% %,7,Z) is
Bernoulli, where % is the natural Borel structure on X% and where Z acts
canonically on XZ. '

Proor. Fix finitely many lattice points {x,, ..., x;} € Z". By Theorem 2.13,
in order to prove Theorem 4.1, it suffices to prove the Bernoullicity of the
process obtained by projecting onto lattice points {x;, ..., x;} € Z". This is just
a measure 7*v % on ({0, 1}))? which is Z-invariant.

Using Theorem 2.12, it suffices to show that 7*-->*! as a process taking on
values in {0, 1}* with index set Z has the VWB property. Let Y;*v--*} be the
I-tuple in {0, 1}’ corresponding to the values of the configuration at lattice
points x,,...,x; at time i. p*v--~>* ig therefore the joint distribution of the
Y*v--»*Pg To demonstrate the VWB property, it is useful to consider the
entire spin system since 7*v''*-**! is non-Markovian and therefore difficult to
handle.

We isolate the heart of the argument into the following lemma which we
prove afterward. Here {Y*v---»*+7), _ - denotes the process {Y*r--*}; | | con-
ditioned on 1 at time 0.

LEMMA 4.2. If the spin rates are attractive, then given ¢ > 0, there is an N
and a set A C X of v-measure at least 1 — ¢ so that for all n > N and for all
n €A,

d({Yi(xl,...,xl)}?=1 , {Yi(xl,...,x,),n}

n
") e

(Note that with regard to the d-metric, we are viewing these processes as
{0, 1}*-valued with index set [1,n].)

We show how this lemma implies the VWB property. Let ¢ > 0. Choose N
and A as in Lemma 4.2 using &2 instead of &. Therefore ¥(A) > 1 — ¢2 and
given n € A, there is a measure P" on ({0, 1}))Y x ({0,1}})"Y which is a
coupling of

{Yi(xl,...,xl)}ll and {Yi(xb:"xl}’n}ﬁl
satisfying
(4.1) ({2 (o ominll ) < o2,

If n € A, let P" be an arbitrary coupling of these two processes. Now if
o, €{0,1} for i = 0,..., m, we obtain a measure Q> -~°»} on X by consid-
ering the conditional distribution of Y, given

{ver—" =g ,i=0,...,m}.
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Since
Z Q(o-o ..... am)E{Y(—xi1 ..... x} _ o, i=0,..., m} =y
(09, -.-,0,) €0, 1}))m+1
and v(A) > 1 — &2, it follows that
2({( U ) @){Y(-xil ..... x1)=0-i,i=0’.”’m})sg,
TQy-eer O)E

where

We now complete the proof by showing that
Q("o ..... crm)(A) > 1 —¢

implies

We now prove Lemma 4.2.

Proor oF LEMMA 4.2. To prove this lemma, we form the basic triple
coupling of our process with initial distribution 8, X 8, X v, where 7 is now
arbitrary. Let P" denote the resulting measure on (X X X X X)N, where N
are the nonnegative integers. Let Y,’, ¥,” and Y, denote the three marginal
processes. If superscripts {x,, ..., x;} are attached to these processes, then this
modification refers to the process projected onto lattice points {x;, ..., x;}.

Note that the set

K={(8,y,0):86<v,6 <0}

is invariant for the triple process. Fix x € Z". The invariance of K together
with the fact that 7”8, — v weakly as n — « implies that for all n in X,

P{Y(x) # Y,(x)} > 0 asn - o.
From this and the invariance of K again, it follows that
(4.2) P{Y"(x) =0,Y,(x) =1} -0 asn—->o VnelkX,
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since {Y,’(x) = 0, Y,(x) = 1} c {V,2(x) # Y,(x)}. (4.2) then implies that
lim sup P"{Y,;7(x) = 0} < p{n: n(x) = 0}.

n—o
On the other hand, v is an extreme point of the set of stationary distributions.
See Liggett (1985) for the continuous time proof of this fact while the discrete
time proof is analogous. Therefore it follows from Theorem 2.24 that
1 N-1
N Y, T"5, »v weaklyas N -

n=0
for v a.e. n. Let X denote this set of full y-measure. Hence for all n € X,

N-1

1
Lim — ngoP”{Yn"(x) = 0} = »{n: n(x) = 0}.

Next, in general, if {a,}, ., and a are all nonnegative with limsup, .2, <a
and

1 N-1
lim — ) a,=a,
N—oo n=0

it follows that a, — @ on a set of density 1. Therefore, for all n € X,
P{Y"(x) = 0} - »{n: n(x) = 0} as n — »on aset of density 1.

(The set of density 1 may depend upon 7.) This last fact together with (4.2)
implies that for all n € X,

P"Y(x) # Y,(x)} » 0 asn — xon aset of density 1,
from which one deduces that for all n € X,

1 N
N Y, Py (x) # Y,(x)} >0 as N - o.
n=1

Since x € Z" was arbitrary and [ is fixed, this then implies that

Since »(X) = 1, the lemma follows with the projection of P" being the desired
coupling. O

Under the assumption of translation invariance, we now prove the space-
time Bernoullicity of # in discrete time. To prove the Bernoullicity, we first
deal with finite range spin rates and then extend to infinite range spin rates.
[By finite range spin rates, we of course mean that ¢(0, ) depends on 7 only
through some fixed finite number of coordinates of 7.] We prove this by
showing that 7 has the VWB property. We introduce a number of lemmas
throughout the argument in order to make it more palatable. As always,
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{Y;(x)},,;)c z»xz denotes the stationary process with stationary distribution ¥
and {Y;"(x)}, cz~ ;- o denotes the process with initial configuration 7.

We verify the VWB property by showing the slightly stronger following
condition:

For every & > 0, there is a box B, , € Z"*' of the form
IT7_,[—a,a] X [1, b] such that if

{yl""7yr} c (Ba,b)c N {w € zn+1: Wy =< b}’

the following holds: For all but Ve portion of the atoms A in 2/ (a(y,,...,¥,))
(with respect to the probability measure 7),

d({Y:(%)}x,00eB, 4> (Yi(2) )z, 0e, ,/A) < 10824,

(Note that with regard to the d-metric, we are now viewing these processes as
{0, 1}-valued with index set B, , as opposed to {0, 1}-valued with index set
[1,n] as we did before.)

The outline of the proof is as follows. One first proves this when {y;, ..., y,}
all have their time coordinate being 0. This is the heart of the argument. Here
one actually conditions on the entire configuration at time 0. Lemma 4.2 gives
us that for most n the measure P" on (X X X)N corresponding to the basic
coupling couples Y;” and Y; well at lattice point 0 for most i if one runs the
process sufficiently long. Using Fubini’s theorem, this then implies that most
times i are good in that P couples Y;” and Y, well at lattice point 0 for most
7. Once one has this, one averages all the couplings P" over n with respect to
v to obtain a measure P on (X X X)N. For each i € N, P yields a coupling of
v with itself. One then shows that v is mixing and that T takes ergodic
measures to ergodic measures. (The only places where attractiveness is used
are in the invoking of Lemma 4.2 and in showing that v is mixing.) One then
concludes that these couplings of v with itself induced by P are ergodic. One
can then apply the ergodic theorem (to the spatial action) to conclude that with
respect to P, the two processes are at good times coupled well at most lattice
points in arbitrarily large spatial boxes. One can then leave the averaged
process P and conclude that at good times, for v most n, the basic coupling
couples Y;” and Y; well at most lattice points in arbitrarily large spatial boxes.
This will take care of the case where {y,, ..., y,} all have their time coordinate
being 0. Once one knows how long (timewise) one must wait to get a good
coupling, one then chooses a exceedingly large relative to b and uses the finite
range assumption to show that further conditioning on lattice points in (B, ,)°
whose time coordinate is in [1, 5] has only a little effect. This is the basic
outline of the proof. In verifying the VWB property, we first prove Proposition
4.3 which contains the heart of the argument.

E4
ProrosITION 4.3. Given & > 0, there is an integer b and a set E c X of
v-measure at most € such that for all a sufficiently large,

J({Y;n(x)}(x,i)EBa,b’ {Yi(x)}(x,i)EBa,b) = 8el/
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for all n & E, where

B, ,= ilf[l[—a,a] X [1,5].

Proor. We already have a canonical way of coupling {Y;"};. , and {Y}};. o,
namely, the basic coupling together with initial distribution §, X v. Our goal
is to show that this particular coupling is the desired d-coupling. We let P"
denote the resulting measure on (X X X)N. Given any & > 0, Lemma 4.2
implies that there is an integer m and a set A € X such that v(A) > 1 —¢
andVn €A,

1 m
P
EPN — 3. Lynoyevion| < &
m =1

Letting u be uniform measure on (1, ..., m}, one can apply Fubini’s theorem
to the space ({1,...,m} X X, u X v) and the function g(i,n) = P™{Y;"(0) #
Y;(0)} to show that this implies that for all 2 € {1,..., m} except for at most
(2¢)'/2 portion, the following holds:
P(Y;1(0) # Y,(0)} < (2¢)"*

for all n except for a set of y-measure at most (2¢)'/%. Let A, be the set of 7
where the above inequality is satisfied and let S:, denote the good set of
k €{1,..., m} of percentage greater than or equal to 1 — (2s)*/2,

Now let P™* denote the measure on X X X obtained by projecting P onto

the time % coordinate. As indicated in the outline of the proof, we want to
average the couplings {P"}, . x with respect to v. We therefore let

i = fXP”’kdz(n)~

Clearly u, is a y-v coupling which is translation invariant. Restricting to good
times, we want to use the ergodic theorem to conclude from the fact that for
most n we have a good coupling at lattice point 0 that we also have a good
coupling at most lattice points for most 7. We therefore naturally want that
W, is spatially ergodic. This is the content of Lemma 4.4, whose proof we give
later.

LEMMA 4.4. pu, is ergodic under the natural Z™-action for all k.
Next, if & € S;,, then
wil(8,7):8(0) # ¥(0)} = [ P"{¥7(0) # Y(0)} dx(n)

- ' < (2e)V* + (26)"* < 464,

by integrating over the pieces A, and (A,)°.
Applying the ergodic theorem to u,, we can choose a box B, c Z" (all of
whose sides have equal length) sufficiently large so that the ergodic theorem
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kicks in to within ¢ on all but £2/m? of the space for the function f(8,v) =
Ti50) % v0y defined on X X X. We can therefore find E, c X X X such that

u(E) < ez/m and if ({, o) & E,, then

|B| E (L) # o(x)) — mi{(8,7):8(0) #y(0)}| <e

for all boxes B 2 B,. If k € S¢,, it follows that for (¢, o) & E,,

1
1/4 1/4
x€B

for all B 2 B,
Letting B:, be the largest of the boxes B, for k € S;,, we have that

VEkeS; V({,cr)eEEk andV B 2 B:,,

1
1/4
B L gy s oy < 564
x€B

Let k € S¢,. Since u,(E,) < ¢2/m?. It follows that

- &

P"k(E,) < —

(Ey) =~

for all n € X except for a set of at most y-measure ¢/m. Let E, denote the set
of n where this inequality fails and so

v(E,) <eg/m.
Letting E = U, < g: E;, we have that v(E) < .
Let a be suﬂ'lc1ently large so that B:, c I17_;[—a,a] and let b =m. To
prove the proposition, we show that V n ¢ E,

1

PN 1/4
E Y Ly Y,-(x»] < 8¢'/%.

|Ba ol (x,i)eB,

By the previous equation, for n & E,
- &
P"*(E,) < 7n—V keSE.

We denote I1?_,[—a, al by B, for convenience. It follows that for £ € S;,,

nk
E*? [IBI Z I( (x)*Yk(x))}

x€B,

_EP""

1
nk
+ Ef [IE;,|B| Y Typeywvyen

x€B,

(E,,>‘|B| Z I(Y 7(x) # Yy(x))

x€B,

E .
< Bel/% + — < 674,
m
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It now follows that

pn )y (x,i)€ Ba,bI(Yi"(x) * Yy(x)}

E
IB,, 5l

pni
_ Z:n=1E [ZxEBGI(Yi"(x)aé Yi(x))]

lBa’bl
pmi pni

rin= 1 E [2 x € B‘,I(Yi"(::c)ae Yi(x))] E ’in= 1 E [E x € BaI(Y{”(x)aé Yi(x))]

— ieSm® + i¢€Sm®
1B, sl 1B, 4|

'in=1 |Ba|681/4 rin=1 IBaI

ieSm® i&€Sme
< +

|Ba,bl lBa,bl

6:/*mIB,l  (2¢)'*’m|B,
IBa,bl lBa,bI

[since 1S5, = (1 - (2¢)"*)m]

= 6e/* + (215)1/2 < 8¢l/4. m]

We now prove Lemma 4.4.

Proor oF LEMMA 4.4. We first need to show that v is mixing. This is
proved in the continuous time case in the IPS literature. We give a simpler
proof here based on the d-metric. By coupling 8, with v in our basic coupling
and letting time go to o, it is clear that 7”8, »7 v as n — ». Since the set of
mixing measures on {0, 1}2" is d-closed by Theorem 2.14, it suffices to show
that each T"§, is mixing and hence to show that T takes mixing measures to
mixing measures since 8, is mixing. This is proved in a standard way as
follows [see Liggett (1985) for the continuous time version of an analogous
result]. First note that Z™ acts canonically on X which induces an action on
C(X) which we denote by 7,. For finite range spin rates, assuming v is mixing
and letting f and g depend on only finitely many lattice points,

Tim [ (n,(£))(m)g(n) dT v(n)

Tim [ T(7,(£)g)(n) dv(n)

Tim [ 7(r,(£))(m)T(8)(m) dv(m)
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[since f and g depend on only finitely many lattice points and T'is finite range]

= lim [ 7,(T(£))(n)T(g)(n) dv(n) [by spatial invariance]
= [T(F)(n) dv(n) [ T(g)(n) dv(n) [as v is mixing]

= [ f(n) dTv(n) [ g(n) dT »(n).

Since the class of functions depending upon only finitely many lattice points is
dense in C(X), it follows that T'v is also mixing. We conclude that v is mixing.

To show that u, is ergodic, we show that w, is ergodic and that T, the
coupled process, preserves ergodic measures on X X X. Once this is done, we
need only check that T, = u,,, which is obtained as follows:

Ty = T[ P dy(n)

= fXT (P™*)dy(n) [as T is a continuous operator|

= fXP"’k“ dv(m) = Kpy1-

We next note that u, = v X v since

ko4 X B) = [ P™°(A X B) dy(n)
- fx(a” X v)(A X B) dy(n)
= fxan(A)y(B)dZ("?)

= ([ 54 axem umy
=v(A)x(B) =v X (A XB).

Since v is mixing, it follows that u, = v X v is ergodic [see Walters (1975)].

Finally one shows that T preserves ergodic measures in a way analogous to
the proof that T' preserves mixing measures and so we omit the proof which is
in Liggett (1985) for continuous time. O

We are now in a position to prove our main theorem using what we have
just proved together with the following lemma. This next lemma shows that
the process conditioned on 7 at time 0 in B, , is d-close to itself if we further
condition on elements in Z"*! whose spatial coordinates do not lie in B, =
IT?_,[—a, a] and whose time point is in [1, b] providing a is sufficiently large
relative to b. It is precisely in this lemma where the assumption of finite range
comes into play.



BERNOULLICITY OF ATTRACTIVE SPIN SYSTEMS 625

LEMMA 4.5. If the spin rates are finite range, then given any b and ¢ > 0,
one has that for all a sufficiently large, the following holds: If n € X and

{ly,...,1,} ¢ (Ba)c x [1,8],
then for all A € o/ (o(ly,...,1,,)),
d({Y"(%)}z, 0B, o {Y"(%) }x,00eB, ,/A) < €.

Proor. Since the process has finite range, if the spin system starts in a
given configuration, lattice points sufficiently far away from each other evolve
completely independently for some finite amount of time. Hence for fixed b,
there is a K such that if the spin system begins in any fixed configuration,
then lattice points more than distance K away (in L' distance on Z") evolve
completely independently up until time . Now choose a sufficiently large so
that the points in B, which are distance less than or equal to K from some
point in (B,)¢ have cardinality less than or equal to {£(2a + 1)”, that is, so that
this set of points fills up at most ¢ portion of the whole set B,. Let S ¢ B, be
those points which are not in this set, that is, have distance greater than K
from (B,)°. Then [S|/(2a + D" > 1 — &.

Now given {l,,...,1,,} € (B,)° X [1,b], the way we have chosen S im-

plies that for all A € (o, ...,1,), {Y;"(x), ijcsxp,e and
{Y;"(2)}, iye sx[1,5,/A have exactly the same joint distributions. Since
IS % [1, 5]
—m T =1-¢
1B, sl

this clearly implies that
d({Y:"(%)}x, peB, o (Y (%)}, 002, ,/A) < €. ]

THEOREM 4.6. If the spin rates are attractive and of finite range, then
(XZ’ g’_ﬂ’zn+1)
is Bernoulli, where % is the natural Borel structure on X% and where Z"*!

acts canonically on X% which is identified with {0, 1}2""".

Proor. We demonstrate the VWB property and then apply Theorem 2.12.
Let £ > 0. By Proposition 4.3, there are integers ¢ and b and a set E ¢ X
with ¥(E) < ¢ so that: If o' > a and n € E, then

d({¥"(%)}x,0eBy, o0 (Yi(*) e, 0e, ) < 8%,
By Lemma 4.5, we can choose a' sufficiently large (since b is fixed) so that if
| (L0, € (By)° X [1,b],
then for all A € &(o(l4,...,1,,)) and for all n € X,
d({Y;"(%)}x, €8, 0 (Y7 (%) a0y, /A) < €.
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Together this gives us

(44) d({Y"(%)}w, reBo /A {Yi(8)}r, 0By, ) < 961
forn ¢ E, Aec oA (a(ly,...,1,,)).
Now let

{yl’“"yr} c (Ba,b)c n {w € z,n+1: Wpi1 S b}

Partition {y,, ..., y,} into two sets {l,,...,!,,}and {l%,..., [}, where [,..., 1,
all have their time coordinate positive and [',...,7,, all have their time
coordinate nonpositive. Then any element in & (o(y,...,y,) is A; N A,,
where A, € &(o(ly,...,1,)) and A, € L (o(ly,...,1,)).

Now we let @42 denote the measure on X obtained by considering the
conditional distribution of Y, given A,. By (4.4), if n & E, there is a measure
Pm 41 on {0, 1}Beb X {0, 1}B=» which is a

{Yin(x)}(x,i)GBa:,b/Al - {Yi(x)}(x,i)eBa,,b

coupling which gives d-distance < 9¢'/%. If n € E, we let P™ 1 be any
{Y"(2)}x, eBy /A1 — {Yi(%) }x, 0B,

coupling. It then follows that

PALAr fxpn,Al dQ“2(n)

is a coupling of
{Y;(x)}(x,i)EBar’b/(Al NA,;) and {E(x)}u,neaa.,,,.

However, this is only a good coupling if @42 does not give too much measure
to E. In particular, if @42(E) < V&, then

JPAI’A2({Yi(x)}(x,i)EBa:,b/(Al N Az), {Yi(x)}(x,i)eBat,b)
< 9% + Ve < 10614,

Since

> Q40(Ay) =v

Agest(o(l],..., 1)

and v(E) < ¢, it follows that

~

v

U Az}'s Ve .

{ (Aze (o, ..., 1)) Q4AE) = J&)

Hence for all A € A (o(yy,...,y,) except for Ve portion with respect to 7,
d({Yi(%))x,neB, /A {Yi()) s 0eB,,) < 10674
This demonstrates the VWB property. O
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We now extend this result to infinite range systems.

THEOREM 4.7. If the spin rates are attractive, then (X% #,5,Z"*") is
Bernoulli, where % is the natural Borel structure on XZ and where Z"*! acts
canonically on X% which is identified with {0,1}%""".

Proor. Let {c;(x, n)} denote the spin rates corresponding to modifying the
original spin rates to make them finite range by cutting off their sight more
than L units away. Formally, ¢;(0, ) = ¢(0, n;), where

_|n(x) iflxl <L,
(%) {0 if x| > L,

and then we take c;(x,n) to be ¢;(0,7_,n). Here, |x| denotes the L' norm on
Z" of x. Clearly the rates {c;(x,n)} are translation invariant, attractive and
finite range. Let ¥ denote the smallest stationary distribution for these rates
and 7~ the measure on {0,1}2""" corresponding to the resulting stationary
process. Theorem 4.6 then tells us that 7~ is Bernoulli. If we can show that
#L >5 7 as L — , we can then invoke Theorem 2.14 to conclude that 7 is
also Bernoulli, as desired.

We note that it is clear that the {c;(x, n)} rates can be coupled below the
{c(x, n)} rates; that is,

K={(n,8):n=<8cXxX

is invariant for the basic coupling of the {c;(x,7)} and {c(x, n)} rates. Now
consider the basic coupling with initial distribution 8§, X §,. Since K is
invariant, one can conclude that »~ < v by letting the coupled process run in
time to . Next, an easy argument shows that any weak limit of {»*} must be
invariant for the rates {c(x, n)}. Since »Z < v for all L it follows that »* - v

weakly as L — o,
Now letting ¢ > 0, we have that for all large L,

le¥{n: n(0) = 0} — »{n: n(0) = 0}| <e.
We claim that
d(?%,7) <e foralllarge L.
Consider the coupled process T, for the rates {c,(x,7)} and {c(x, n)} with
initial distribution &, X 8,. Taking a weak limit of

1 N-1 - n
N > (TL) (80 X &) A
n=0

yields a measure m on X X X which is stationary for the coupled process, is a
L — v coupling, has its support in K and is invariant under the natural
Z"-action.

We next note that since m(K) = 1 and

lpE{n: m(0) = 0} = z{n:n(0) = (0)}] <e,
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it follows that
m{(n,8):n(0) # 8(0)} <e.

Since m is both translation invariant under the Z"-action and stationary for
the coupled process, it follows that the stationary process

m € P(({0,1) x {0,1})*"")

induced from m is a coupling of #* and 7 which is invariant under the entire
Z"*+1.action. Since m{(n, 8): n(0) # 8(0)} < &, it follows that

Jrh(l_;L’i;) <e

as desired. Hence 7% -7 # as L —» ». O

5. Space-time Bernoullicity in continuous time. Throughout this
section, Dy(R) is the space of right-continuous functions with left limits from
R to X. If R is replaced by [0, »), there is the so-called Skorohod metric on this
space [see Ethier and Kurtz (1986) for details of this metric]. In this case, the
Borel field generated by this metric can be shown to be [see Ethier and Kurtz
(1986)] the same as the Borel field generated by the projection maps f — f(¢)
from D([0,)) to X for ¢ > 0. Therefore, by analogy, in dealing with Dx(R),
we put the Borel structure & on it that is generated by the above projections
for t € R.

Our continuous time process clearly yields an action of R X Z”" on the space
D4 (R). Extending the definition of Bernoullicity to R¢ x Z™-actions is done as
follows. In general, an action of R? x Z" is called Bernoulli if the action of the
restriction to Z¢ X Z" is Bernoulli as defined in Section 2. Moreover, for such
actions, one still has that Bernoulli implies mixing which in turn implies
ergodicity. We need a slight generalization of Theorem 2.13, Lemma 5.1,
whose proof can also be found in Ornstein and Weiss (1987).

LEMMA 5.1. Let &, be the sub o-field of % generated by time points
(/2™ cz. If (Dx(R), B,,,7,Z % Z") (Dx(R), #,,,7,Z)) is Bernoulli for
each m, then (Dyx(R), #,7,Z X Z") (Dx(R), #, 7, 7)) is Bernoulli.

We are now assuming the three conditions on our spin rates given in
Section 1 to insure the existence of the continuous time process. Before
proving space-time Bernoullicity in the continuous time case when the station-
ary distribution » is used, we discuss Bernoullicity under the time evolution
where there is no translation invariance assumption. Using Lemma 5.1 and
Theorem 2.15, it suffices to show that the continuous time process projected
onto time points of the form {k/2™}, ., (which is just a measure on X?%) is
Bernoulli for each m. Without loss of generality, we take m = 0. One should
note that this process which is Markovian is not a discrete time PCA and that
the transition probabilities are much more complicated than for a PCA.
Nonetheless, one can follow the proof of Theorem 4.1 almost verbatim to prove
the following theorem, whose proof we therefore omit. One need only use the
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continuous time coupling [defined in Liggett (1985)] and make the observation
that v is still an extreme point among the stationary distributions for the
Markov process which is the projection of the continuous time process onto
integer times.

THEOREM 5.2. If the spin rates are attractive, then (Dx(R), #,v,R) is
Bernoulli, where Dy(R) and % are as defined above and where R acts
canonically on Dy(R).

The proof of space-time Bernoullicity in continuous time is not just a trivial
extension of the discrete time proof since Lemma 4.5 is no longer true as
stated. We use ideas from first-passage percolation. We first prove space-time
Bernoullicity for finite range spin rates and then extend to infinite range spin
rates as in Theorem 4.7.

THEOREM 5.3. If the spin rates are attractive and of finite range, then
(Dx(R), 4,7,R X Z")

is Bernoulli where Dy(R) and % are as defined above and where R X Z" acts
canonically on Dy(R).

Proor. Our comments concerning the proof of Theorem 5.2 also hold here
and so it suffices to show space-time Bernoullicity of the process projected onto
integer time points.

We let Y;"(x) and Yj(x) be defined as before. We let P" denote the measure
on (X X X)N obtained from projecting the continuous time basic coupling
[defined in Liggett (1985)] with initial distribution 8, X » onto integer times.
We now state two propositions, the first of which we omit the proof of (it is
proved exactly as is Proposition 4.3) and the second of which we prove later.

ProposITION 5.4. Given & > 0, there is an integer b and a set E C X of
v-measure at most € such that for all a sufficiently large,

J({lfi"(x)](x,i)eBa,b, {Yi(x)}(x,i)eﬂa,,,) < 8¢'/4
for all n & E, where B, , is defined as before.

In Proposition 5.5, 77 denotes the measure on XY~ induced by the random
variables {Y;"};  o.

ProposITION 5.5. If the spin rates are finite range, then given any positive
integer b and ¢ > 0, for all a-sufficiently large, the following holds: If n € X
and {l,,...,1,,} €(B,) X[1,b], then for all atoms A in A/ (a(l,,...,1,)
except for e portion (with respect to v"),

J([Yi"(x)}(x,i)eBa,b’ [Yin(x)}(x,i)EBa,b/A) se.
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We call an A satisfying this last inequality n-good, although there is also an
obvious dependence on a and b. We now proceed with the proof of Theorem
5.3. Combining Propositions 5.4 and 5.5, we obtain the following.

Given £ > 0, there is a set E C X of v-measure less than ¢ and a box
B, , S Z"*! such that for all n & E and for all {,,...,1,} < (B,) X [1, 8],

J({Yin(x)}(x,i)eBa,b/A’ {Yi(x)}(x,i)eBa,b) = 981/4

for all atoms A in &/ (o(l,,...,1,,)) except for & portion (with respect to 7).
We now proceed analogously to Theorem 4.6. Let

(-9} S(Bop) ' N{weZr 0w, <b).

Partition {y,, ..., y,} into two sets {{,,...,!, }and {l}{,...,1},}, where I,..., 1,
all have their time coordinate positive and [{,...,7’,, all have their time
coordinate nonpositive. Then any element in & (o(y,,...,¥,)) is A; NA,,
where A, € & (a(l,,...,1,,)) and A, € A (o(l],..., 11D

Again let @42 denote the measure on X by considering the conditional
distribution of Y, given A,. We call A, a good atom if @42(E) < Ve . Since
v(E) < ¢, all but Ve portion (with respect to #) of the atoms A, are good
atoms. We call A; an A,-good atom if

Q42{n: A, is n-good} = 1 — Ve .

Proposition 5.5 implies that for any A, atom, at least 1 — Ve portion [with
respect to [x77 d@Q“2(n)] of the atoms A, are A,-good. Note that [y77 d@“2(n)
is just the measure on XZ obtained by conditioning on the atom A,. It follows
that all but 2Ve (with respect to 7) of the atoms A=A, NA, in
o (o(yy,...,y,)) are such that A, is good and A, is A,-good.

To complete the proof of the VWB property, we show that if A, is a good
atom and A, is an A,-good atom, then

A({Yi( %)}, e, o/ (A1 N Ag), (Yi(%) )z, 0B, ,) < 96"/* + 2Ve .
If n ¢ E and A, is n-good, let P™41 be a

(Yi"(x)}(x,i)eBa,,,/A1 - {Yi(x)](x,i)eBa,,,

coupling which gives them d-distance less than or equal to 9¢'/%. If n € E or
n ¢ E and A, is not n-good, let P™#1 be an arbitrary coupling of the previous
two processes. Then P4r4: = [, P™41dQ4%(n) is a

{(Yi(2)}a, 08, ,/ (AL N Ag) = {Yi(%)}x,0eB,.,
coupling satisfying A
dpmao({Yi(%)}x, 0B,/ (A1 N Ag) {Yi(%)}x,00eB, )

= fXJP‘n»Al({Yin(x)}(x,i)EBa,b/Al’ {Yi(x)}(x,i)eBa,b) dQAz(TI)

<94 + Ve + Ve
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by integrating over the two pieces
(E)° n {n: A, is n-good}
and its complement. This demonstrates the VWB property. O

We now prove Proposition 5.5.

Proor ofF PrROPOSITION 5.5. In proving this proposition, the problem is to
recognize when the atoms in &/(o(l,...,1,,)) affect the evolution in B, ,. We
therefore couple the process with a modified process where there is no effect of
the atoms of &/(a(l;,...,1,,)) on B, , and show that this coupling is good in a
certain sense.

If D is a box in Z" of the form IT" ,[—c,c], let TP denote the Markov
operator corresponding to the Markov kernel obtained from modifying the spin
rates so that points inside and outside of D evolve independently. These spin
rates should therefore be

cp(x,8) = c(x,"8P),

where

%D _ 8(y) ifx,y€Dorx,y € D",
0 ifxeD,yeDorx D’ yeD.

We let P™? denote the resulting measure on (X X X)N corresponding to the
basic coupling of {c(x, 8)} and {c,(x, 8)} with initial distribution 8, X §,, and
we let Y! and Y2 be the two marginal processes. Next, if B is a box in Z™ of
the form [17_,[—a,a], we let B° denote the largest box containing B of this
same form and satisfying |B¢| < (1 + ¢)|B|.

Ideas from first-passage percolation theory allow us to establish Lemma 5.6
which enables us to complete the proof of Proposition 5.5. The proof of this
lemma is given afterward.

LeEMMA 5.6. If the spin rates are finite range, then for all ¢ > 0 and b € N,
for all sufficiently large boxes B € Z™ of the form T1}_|[—a, al,

P 5{Y}(x) # Y2(x) forsomex € BU (B*) andi < [1,b]} <&
forall n € X.

By Lemma 5.6 choose B sufficiently large so the conclusion of this lemma
holds. Now let @ be chosen so that [17_,[—a,a] = B®*. We claim that the
conclusion of Proposition 5.5 holds with this particular a.

. Consider the projection of P™ 3" onto (B X [1,bD U {l,,...,1,,}. The two
marginals of this factor corresponding to Y! and Y2 give us two measures i,
and u, on

{0’ 1}(B><[1,b])u(l1 ..... 1)
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satisfying
(5.1) L lui(2) — pa(2)l < 26

by Lemma 5.6 where the sum extends over all z € {0, 1}(BX[L8DVUCs- - In} Let
2= {Q,} denote the partition of :

{0 1}(B><[1,b])u(l, ..... 1)
b

into 2/B*[L.8) gets according to B X [1, 5] and let %= {R;} denote the analo-
gous partition into 2™ sets corresponding to {/,,...,[,,}. Clearly 2 and % are
Wo-independent. This together with (5.1) implies that

.Z. k(@ N R;) — ny(@)mi(R;) < 6e,
i,J

since

Z' k(@ NR;) — ni( @) 1q( R)l
iJ
< Z (@ NR;) — ue(@; N R + Z lua(Q)1a(R;) — mi(Q;) e(R;)l
i,J iJ

[since 2 and Z are u,-independent]
<2+ Z lno(@)ra(R)) — pa( Q) ma( R))l
l’n]
+ Z |M2(Qi)#1(Rj) - #1(Qi)#1(Rj)| <6e.
l’J
From this it follows [see Shields (1973)] that for all but V6¢ portion of the

atoms R; in % (with respect to u,),
L (@) = mi(Q/R:)l < VBe,
J

which implies
d({¥7"(%)}x, e i, o0 {Y"(2)}x, e mxns, 51/R:) < V6 .
Since |B%¢| < (1 + 2¢)|Bl, it then follows that
J({Yin(x)](x,i)eBz‘X[l,b]’ {Yin(x)}(x,i)estxu,b]/Ri) < V6e + 2e.
This proves the proposition with ¢ replaced by V6e + 2¢. O

Proor oF LEMMA 5.6, We prove the stronger conclusion that

n, BE
(5.2) EF Y Iyimevpay | <€
xeBU(B%*)°
iel1,b]
for all n € X if B is sufficiently large. Since the spin rates have finite range,
there is some integer F such that e, (0) = 0 for all x satisfying |x| > F. Since
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all the spin rates are bounded by 1 (in fact %), we reduce this to another
problem. We construct the following auxiliary IPS:

0 if 8(0) =1,
&(0,8) = {0 if 5(0) = 0 and 8(y) = O for all y with ly| < F,
E if 5(0) = 0 and |{y: 5(y) = 1 and ly| < F}| = £.

Assuming translation invariance, we have defined é(x, 8) for all x and 6. If 1 is
interpreted as sick and 0 as healthy, this system is a model for the spread of
disease where no one is ever cured and where a healthy individual becomes
sick at rate £ when there are % sick individuals within F units.

We shall show that all sufficiently large boxes B satisfy

(5.3) E?[#of I’sin B U (B%*)° at time b] <,

where the rates {é(x, n)} are being used and where the superscript dB* means
that one is taking the initial configuration to be 1’s on the boundary of B® and
0’s elsewhere. Since the collection of lattice points where the Y! process does
not equal the Y2 process can be dominated by the lattice points which are in
state 1 in the auxiliary system, it follows that (5.3) implies (5.2).

Let N denote the length of one side of the box B¢. Simple geometry then
implies the existence of a constant C, (depending only on the dimension n of
the lattice) so that

d'(oB,dB*®) > C,eN
and
d'(dB¢,0B*) > C,eN.
Here d! denotes the L' distance on Z™ between two sets. A sequence y of
distinct lattice points (x,, ..., x;) is called an F-path if |x; — x, ;| < F for each
i. We let |yl denote the number of elements in the F-path .

A more convenient way to view this problem is using the graphical repre-
sentation as discussed in Liggett (1985). In our case, this becomes the follow-
ing: First, for every x; # x; satisfying |x; — x;| < F, we let Z(x;, x;) be an
exponentially distributed random variable with parameter 1. We take the
family of random variables {Z(x;, x;)} to be independent. Now we construct a
new process: At time ¢, lattice point x is 1 if and only if there is an F-path
y = (x,...,x;) from dB® to x satisfying ¥:2}Z(x;, x;,,) < ¢. This can easily
be seen to be the same system we defined above with initial configuration dB°.
Moreover, it is easier to make calculations using this graphical representation.

Note that any F-path from dB® to B U (B?*)° must have |y| > C,eN/F. If
y = (%, ...,x,), we call £:_3Z(x;, x;,,) the time of y and denote it by T,.
This is, of course, a random variable. Introducing some convenient notation,
we let

’ T, = {y: y is an F-path from dB°® to x},
= {y: v is an F-path from dB° to B U (Bze)c},
I; = {y: v is an F-path from 3B° to B U (B%)" with |yl =j}.



634 dJ. E. STEIF

In addition to these, we let K(n, F) be the number of lattice points in the
closed ball of radius F contained in Z” in the L! metric and let P(jj, b) be the
probability that a Poisson process with parameter 1 has j occurrences by time
b. Finally, in the graphical representation,

E%[#of 'sin B U (B*)® at time b]

= Y P’®(thereisalat x at time b)
x€BU(B?*)°

L X P <)

xeBU(B2%*)° yeT,
= ¥ PP(T, < b)

yel

Y X PE(T, <b)

j=[C,eN/F] v€ET,

< Y  2nN""'K(n,F)’P(j,b)

IA

J=[C,eN/F]
. e bpr
= Y 2aN""K(n,F)Y '
Jj=[CeN/F] r=j T*
. 1
< Y 2nN""'K(n,F)’C(n,F,b) :
j=[C,eN/F] (K(n,F) +1)’
[where C(n, F, b) is some constant depending only on 7, F and b]
K(n,F !
=2nN""C(n,F,b) Y (—(—)) which - 0as N - .
J21C.eN/F K(n,F)+1

D

THEOREM 5.7. If the spin rates are attractive, then (Dx(R), &,7,R X Z™)
is Bernoulli where Dx(R) and % are as defined above and where R X Z" acts

canonically on Dx(R).

Proor. The proof of Theorem 4.7 using Theorem 5.3 instead of Theorem
4.6 can be repeated here almost verbatim replacing sums by appropriate
integrals. O

6. Extensions. Possible extensions would be to replace the one particle
state space {0, 1} by a more general partially ordered space, consider a different
type of dynamics or replace Z" by a more general group. From a pure ergodic
theoretic point of view, the more general group should at least be amenable
since these are the groups to which classical ergodic theory can be extended. In
another paper Steif (1990), we prove all of the previous results plus more for
another general family of spin systems, not necessarily attractive.
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