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MINIMAX GRID MATCHING AND EMPIRICAL MEASURES

By P. W. SHor anD J. E. YukicH
AT & T Bell Laboratories and Lehigh University

In this article we solve the minimax grid matching problem in dimen-
sions greater than two. As a by-product, we settle a long-open problem
involving the Glivenko-Cantelli convergence of empirical measures.

1. Introduction. Given two sets of points X :={x,,...,x,} and Y :=
{y1,---,¥,), where x; and y, € R? for all i > 1, let L(X,Y) denote the
minimum length such that there exists a perfect matching of the points in X
to the points in Y for which the distance between every pair of matched points
is at most L(X,Y). In other words, L(X,Y) is the minimum over all perfect
matchings of the maximum matching length for points in X to points in Y;
L(X,Y) is thus called the minimax matching length for the couple (X,Y). L
is a metric on the collection of unordered sets of n points.

Let S:=[0,1)% d > 2, denote the unit cube and G a regularly spaced
n~Ydx -.. xn~1/9 array of n grid points on S (n = k%, k € N*). Partition S
into n congruent cubes of volume n~?'; call these the grid cubes. Each grid
cube is thus centered around a grid point. Let X = X(o) = {X(w),..., X, (o)}
denote a collection of n random points in S. Assume that the X;, 1 <i <n,
are i.i.d. random variables with the uniform distribution A on S.

The problem of finding the expected value of L(X, G) is called the minimax
grid matching problem. Leighton and Shor [7] have shown that the minimax
grid matching problem is fundamental in the average case analysis of algo-
rithms. When d equals 2, they have shown that with very high probability
[i.e., with probability exceeding 1 — n~%, a = c¢,(log n)*/? for some constant c, ]
there are constants ¢ and C such that

(1.1) clog®*n <n'?L(X,G) <Clog®*n.

Here and throughout, ¢ and C denote finite positive constants with values
possibly changing from line to line. They use this estimate to solve the
maximum upright matching problem (cf. [6]) and as a result obtain tight upper
bounds on the average case behavior of the best algorithms known for two-
dimensional bin packing and one-dimensional on-line packing. When d equals
1, it is easily seen that there are constants ¢ and C such that

c<n'?EL(X,G) <C.
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In this article we derive the analog of this result for dimensions greater
than two. In fact the main theorem is given by:

THEOREM 1.1. Let d > 3. There exist constants ¢ and C depending only
upon d such that

n

1/d n \d '
) L(X,G)slimsup(—) L(X,G)<C a.s.

c < liminf(
log n

log n

A long-open problem in empirical measures involves finding the a.s.
exact rate of convergence of the nth empirical measure A, := A, (0):=
n‘l(sxl(w) + ++ +8x (,) to Lebesgue measure A, as measured by the
Prokhorov metric p (defined in Section 3). This problem was studied originally
by Dudley [3] and subsequently by Gaenssler [5], Zuker [13] and more recently,
Massart [8], who found the exact order rate up to a power of log n. In the
two-dimensional case, Yukich [12] deduced from (1.1) the same rate of conver-
gence for p(A,, A). In dimensions greater than two, Theorem 1.1 will be used
to determine exact order rates for p(A,, A); see Section 3. This result, along
with that of [12], completely settles Dudley’s question. Note that the one-di-
mensional case is trivial since the inequality ([3]) [|F, — Fll. < 2p(A,, ) <
4||F, — F|l. and the a.s. bounded law of the iterated logarithm for the centered
empirical distribution function F, — F together imply the existence of con-
stants ¢ and C such that

n 1/2
cslimsup(m) p(An,)t) <C as.

Concerning other connections between matching problems and empirical mea-
sures, it has been noted that tight bounds for the upright matching problem
(see Leighton and Shor [7], Rhee and Talagrand [9], Coffman and Shor [2]) are
equivalent to discrepancies of empirical measures over lower layers.

A similar matching problem, the transportation problem, is considered
in the paper of Ajtai, Komlés and Tusnady [1]. The essential difference
between the problem analyzed in their paper and the one in ours is that they
minimize the transportation cost T(X,Y) instead of the minimax edge length.
[Recall that for the sets of points X :={x;,...,x,} and Y:={y,...,5,},
T(X,Y) is the minimum sum of the distances between matched pairs of
points, where the minimum is taken over all perfect matchings of points in X
to points in Y.] They also consider T'(X,Y) instead of T(X, G), where X and
Y are collections of n random points, but this changes only constant factors.

In two dimensions, Ajtai, Komlés and Tusnady [1] show that if X and Y are
distributed uniformly on the unit square, then with probability 1 — o(1),

c(nlogn)?> < T(X,Y) <C(nlogn)?

Thus, one can make the average length of an edge in a matching
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n~'21log'/? n, which is less than the minimax edge length by a log'/*n
factor.
In one dimension, it is easily shown that

en'’? <ET(X,Y) < Cn'/?,

giving the same results as in the minimax grid matching problem.
As Ajtai, Komlés and Tusnady [1] remark, an easy generalization of their
proof to d dimensions shows that with probability 1 — o(1),

en'~4 < T(X,Y) < Cn'~ V4,

In this case, the average edge length in the transportation problem is less than
the minimax edge length by a log!/? n factor.

Notice that for both the minimax matching problem and the transportation
problem, the case of two dimensions is different than the case of three or more
dimensions. Intuitively, this is because in three or more dimensions, the
matching length is determined by the behavior of random points on small
scales, that is, locally. In one dimension, the matching length is determined by
the behavior of random points on large scales. In two dimensions, however, the
matching length is determined by the behavior of the points on all scales, and -
the interaction of these different scales adds an extra log'/* n factor for
minimax matching and an extra log’/? n factor for the transportation prob-
lem.

Both our proof and the similar proof of Ajtai, Komlés and Tusnady give an
upper bound which is the sum of log n terms, each term representing the
behavior of the random points on a different scale. For dimensions three or
more, the sum is convergent and the terms corresponding to small scale
behavior dominate. Thus, one obtains the correct bound by considering only
these terms. In two dimensions, however, all the terms are of size O(n!/2),
leading to an O(n!/?log n) bound, which is an overestimate. To obtain the
correct bound for two dimensions, one must use a more complicated proof that
takes into account the interaction between the terms for different scales.

Although Theorem 1.1 is considered only in the context of Dudley’s ques-
tion, there are also possible applications to bin packing problems and dynamic
allocation (see [7]). These applications will not be pursued here. Also, no
attempt is made to estimate the constants in Theorem 1.1.

NoraTiON. We write f(x) = O(g(x)) iff there is a constant C such that
lim, ., f(x)/g(x) < C. Likewise, f(x)= Q(g(x)) iff there is a constant c
such that lim , _ . f(x)/g(x) > c¢. If f(x) = O(g(x)) and f(x) = Q(g(x)), then
write f(x) = O(g(x)).

K = Bin(n, p) means that K has a binomial distribution with parameters n
and p.

2. Proof of the main result. The upper estimate of Theorem 1.1 is the
more difficult one and is proved first. To this end, we recursively subdivide S
in a manner used first by Ajtai, Komlés and Tusnédy [1] and subsequently, by
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Shor [10]. For simplicity and ease of exposition assume that the dimension d is
equal to 3.

First, divide S in half horizontally and linearly transform each half so that
it has volume equal to the fraction of sample points X; in it. When each half of
S is transformed, the sample points in that half are similarly transformed.
Next, subdivide each of these halves vertically and transform each to have
volume equal to the ratio of the number of transformed points contained
within to the total number of points n. This process generates four rectangular
solids which partition S. Then divide each of these solids in half laterally and
transform. Apply the procedure recursively, alternating horizontal, vertical
and lateral divisions. Repeating this refining procedure until each solid con-
tains at most one point yields n nondegenerate rectangular solids. For any
random sample X :={Xj,..., X,}, each of the n transformed sample points
X, is contained in a nondegenerate solid with volume n~!. Notice that any
solid generated in this process is a linear transformation of a rectangular solid
taken from a 2¢ X 2/ X 2* subdivision of the cube, with 0 <i <j <k <i + 1.
Notice also that the points in any solid are uniformly distributed.

Let X denote the collection of points X after the recursive transformations
described above. It will be shown with high probability that

L(X,G) = O((log n/n)"®);

the expression with high probability will be made precise shortly. This esti-
mate is established in two steps. First, it is shown with high probability that

(2.1) L(X,X) = O((log n/n)""?).

Clearly, (2.1) will follow if it can be shown that the successive transformations
shift an arbitrary point by O((log n/n)'/3). Second, it is shown with high
probability that

(2.2) L(X,G) = O((log n/n)"?).

The triangle inequality and the Borel-Cantelli lemma then give the desired
result. The estimate (2.2) is proved by showing that the transformed solids
have a bounded aspect ratio and then applying Hall’s marriage theorem to
match each transformed solid to an overlapping grid cube. This provides a
perfect matching of the transformed points X, to the grid points.

Before proving (2.1) and (2.2) we establish some lemmas, the first of which
is well known and describes the tail behavior of binomial random variables
(see, e.g., [4], 2.2.7 and 2.2.8).

LeEMMA 2.1. Let K = Bin(n, p).
() Ifp < 3 and k < np, then

Pr{K <k} < exp{—(np - k)*/2np(1 -p)}.
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i) If k > np, then
Pr{K >k} < (np/k)" exp{k — np}.

LEMMA 2.2. On the first step, let K be the number of sample points
Xy,..., X, falling on a given side of the horizontal bisecting plane. Then for
all a > 0,

Pr{IK— (n —K)| = (an log n)l/z] <2n7%/2,

Proor. Notice that K = Bin(n, 3). By Lemma 2.1, it follows that
Pr{IK —(n —K)| = (anlog n)l/z} = 2Pr{0 <K< (n — (anlog n)1/2)/2}

< 2n7*/2 O

Fix a > 2; its exact value will be specified later. From now on, the expres-
sion with high probability will mean with probability at least 1 — p,, where
p, = O(n'~@/?),

In the following lemma and in the sequel, S, denotes one of the 2*
transformed solids at the kth step of the recursion, where 1 <k <
log(n/4a log n). Note that the total number of solids Sy, 1<k <
log(n/4alog n) is O(n). Also, vol(A) denotes the volume of the set A.

LeMMA 2.3. There exist positive, finite constants ¢ and C such that with
high probability, the number of points in any S, is between c(n/2*%) and
C(n/2*). Moreover, with high probability c/2* < vol S, < C/2*.

Proor. Since S,: is an affine transformation of a grid cube of volume 2%,
the number of sample points in S,: equals the number of sample points in a
grid cube of volume V:= 2% > (4alog n)/n. The proof of the lower bound
will be complete if we can show that such a grid cube contains at least nV/2
sample points with high probability. This, however, follows easily from Lemma
2.1(1) since if K denotes the number of points in a solid with volume V, then
K = Bin(n,V) and

Pr{K < nV/2} < exp{—(nV - nV/2)*/2nV(1 - V))
< exp{—nV/8}

<n~%/2,

The upper bound is proved similarly, where we may actually show that
C = 2. By Lemma 2.1(Gi),

Pr{K > 2nV} < (nV/2nV)*" exp{nV}
= (e/4)"

< (6/4)4alogn
<n~¢
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where the last step follows from (e/4)* < 1/e. The desired high probability
bounds hold uniformly over all S,:, since
log(n/4alog n)
Z 2kn—a/2 — O(nl—(a/Z))'
k=1
This completes the proof of the first statement of the lemma. The second

statement follows immediately, since, by construction, the volume of S,k is
proportional to the number of points in it. O

The next lemma shows that with high probability, the aspect ratios of the
rectangular solids change very little. By aspect ratio of a rectangle, we mean
the ratio of the longest side to the shortest; by aspect ratio of a rectangular
solid we mean the largest aspect ratio of any of its six faces.

LEMMA 2.4. Suppose that the rectangular solids are constructed as above,
by dividing the solid at the previous stage in half and moving the boundaries
so that the volume of the rectangular solid is equal to the fraction of points in
it. Then with high probability, the aspect ratio at the log(n/4a log n) stage is
bounded uniformly over all solids by some finite constant.

Proor. This lemma is proved by bounding the change of the aspect ratio of
a rectangular solid at each step and then multiplying these changes together.
These factors will form a convergent product dominated by the last term.

Consider the kth stage of the recursion, 1 < & < log(n/4a log n). At this
stage, one edge of S,: is stretched by a factor of 3 and then by a factor of
2K/m, where K = Bin(m, ;) and m = ®(n/2*) by Lemma 2.3. Thus the
aspect ratio at the kth stage is essentially multiplied by a factor of either
m /2K if the shortest side is halved or by 2K/m if the longest side is halved,
where it is noted that the factors of ; may be ignored since they cancel on
successive stages. Lemma 2.2(i) and the lower bound of Lemma 2.3 imply that
I2K/m) — 1| = (K — (m — K))/m| is bounded by

(alogn/m)"/? < (a2**'log n/n)"*
except on a set with probability at most 2n=*/2 + O(n'~(/?), Thus the aspect
ratio is at worst multiplied by (1 — («2**'log n/n)/2)~ 1.
At the log(n/4alog n) stage, the aspect ratio of the O(n/logn) trans-
formed solids is bounded by the product of the collective changes, that is, by

log(n/4alog n) 172y —1
Il (1 — (a2**1log n/n)" ) .
k=1
Note, however, that the above product is O(1) since (a2**!log n/n)*/2 >
2712 1 -x>e 2 when 0 <x <212 and
log(n/4alogn) 12
Y (e2**'logn/n)* = 0(1).
k=1
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Moreover, noting that the high probability lower bound of Lemma 2.3 holds
over all S,:, the above O(1) bound holds for all O(n /log n) transformed solids
except on a set with probability at most

log(n/4alog n)
O(nl—(a/2)) + E 2k+1n—a/2 — O(nl—(a/z));
k=1

that is, the bound holds with high probability. O

The last lemma is used only to prove (2.1) and justifies the presence of the
log(n/4a log n) bound on the number of recursion steps.

LEmMMmA 2.5. To show (2.1) it suffices to repeat the subdivision of the cube
until the log(n/4a log n) stage.

Proor. Recall that with high probability the aspect ratios of the rectangu-
lar solids are uniformly bounded and their volumes roughly equivalent. We
may stop the recursion when the rectangular solids have diameter
®((log n/n)'/®) since successive recursions would shift points at most
O((log n/n)'/3).

However, since the aspect ratios are uniformly bounded, a solid with
diameter ®((log n/n)'/3) has volume ®(log n/n). Thus with high probability,
we may stop when there are O(n/log n) rectangular solids; that is, we may
stop at the log(n /4« log n) stage. O

FirsT STEP: PROOF OF (2.1). On the first step of the recursion, Lemma 2.2
implies that with high probability the difference between the fractions repre-
senting the proportion of the points in the two respective halves of the cube is
at most n~1/%(a log n)'/2. Thus, with high probability we need to shift the
horizontal bisecting plane by at most n~'/%(alog n)'/? to insure that the
resulting volumes equal the fraction of points within.

With high probability on the kth step of the recursion, 1 <&k <
log(n /4a log n), the number m of points in S,: satisfies

c(n/2%) <m < C(n/2%).

The number K of points falling in one-half of S,: satisfies K = Bin(m, 3).
By Lemma 2.1 and the above upper bound on m, the difference between the
fraction of points in the two respective halves of S,: (i.e., between K/n and
m — K/n) is bounded above by '

(2.3) (amlogn)?/n < (Calog n/2kn)1/2,
except perhaps on a set with probability 2n /%2 + O(n!~/?), Note that (2.3)
represents an upper bound on the required volume change.

Next, let s, denote the distance through which the bisecting plane of S,:
must be moved in order that the resulting volumes equal the fraction of points
within. By Lemma 2.4, the aspect ratios of all of the transformed solids are
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uniformly bounded [except on a set with probability O(n!~(/?)] and since
vol(Sy:) = ©(27%), it follows that the edge length of Sy is ®(27%/3). The
required volume change is thus ©(s,(272#/3)). Bounding this by (2.3) yields,
modulo a constant factor independent of %, the estimate

(2.4) s, < (Ca2*/310g n/n)l/z.

Clearly, s, = O((2*/%log n/n)*/?) except on a set with probability 2n~*/2 +
O(nl-(a/2)).
Thus, each point is clearly shifted through a net distance of at most

log(n/4alog n) log(n/4alog n)

y s,=0 Y (2*/3 log n/n)1/2 = O((log n/n)1/3),
k=1 k=1

as claimed. As in the proof of Lemma 2.4, these bounds hold everywhere
except perhaps on a set with probability O(n!~(*/?). This concludes the first
step. : .

SECOND STEP: PROOF OF (2.2). In this step the recursion is carried out until
each solid contains one point. It is easy to show that with high probability,
O(log n) steps suffice.

Notice that after recursing log(n/4alog n) times, with high probability
each transformed point X; belongs to one of the O(n /log n) rectangular
solids of diameter ®((log n/n)'/?) (since the aspect ratios are uniformly
bounded with high probability and since the volumes are roughly equivalent).
Moreover, after recursing O(log n) times, with high probability each point X,
belongs to one of n transformed solids, each with diameter O((log n/n)/3)
and volume n~!. It only remains to show that there is a perfect matching
between the n transformed rectangular solids and the original grid cubes of
diameter O(n~'/%), such that each transformed solid is matched to an overlap-
ping grid cube. This is accomplished with the following lemma, which is
actually a simple corollary of the marriage theorem.

LemMa 2.6. ((10). Suppose that there are two partitions of [0,11® into n
solids of equal volumes Q,,...,Q, and R,, ..., R,. Then there is a matching o
between the R ;s and the @;’s such that @; N R,,;, # .

Proor. By Hall’s marriage theorem, it suffices to show that any j of the Q;
solids can always be matched to j of the R, solids. This will be true unless we
can find j — 1 R;’s and j @,’s such that

J Jj-1
U c UR..
i=1 i=1
However, since all of the solids have volume n~!, this implies that a solid of
volume j/n is contained in a solid of volume (j — 1)/n, a contradiction. O
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This completes the second step. Having shown (2.1) and (2.2), the claimed
upper bound

n \1/38
limsup(B-g-;) L(Xn,G) <C as.

follows immediately from the Borel-Cantelli lemma, provided that « is chosen
large enough so that

O(n'~@/?) < .
1

M

Clearly it suffices to choose a = 5 to ensure convergence. This concludes the
proof of the upper estimate; a simple proof of the lower estimate is at the end
of the next section.

3. Application to Glivenko-Cantelli convergence of empirical mea-
sures. On the space P((0, 1]%) of probability measures on [0, 1] define the
Prokhorov metric:

p(p,v) =inf{e > 0: u(A) < v(A®) + ¢ for all Borel sets A},
where u, v € P(0,1]%) and A® denotes the e-neighborhood of A; that is,
A= {y e R%: |ly — zll < & for some z € A}.

As in Section 1, A,(w) denotes the nth empirical measure for Lebesgue
measure A on [0, 1. It is well known that A, (w) converges weakly to A a.s.
[11] and, as noted, Dudley’s question concerns finding the exact order of
convergence for p(A,, A). Massart [8] has recently obtained the estimates

n 1/d
csliminf(lo n) p(A,,A) as. and

1/d
limsup( ) p(A,,A) <C as,

n
log? n
where ¢ and C are constants depending only on d.

Using the upper estimate of the main theorem, it is now a simple matter to
determine the exact order of convergence of p(A,, A) for d > 3. Let G, be the
discrete uniform measure based on the n grid points g;, 1 <i < n, that is
G,=n"'C7 10, First, from the definition of p it is clear that if n = k9,
k € N*, then

p(An,G,) <L(X,G) and p(G,,)) = O(n~1/%).

Thus, with high probability p(A,, A) < p(A,,,G,) + p(G,, A) = O((log n/n)*/9).
Next, for index values between k¢ and (k + 1)¢, notice that if j =
O(n@~b/?), n = k<, then for all , p(A,,A,,;) = O(n~'/?). Thus, with high
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probability,
P(AnsjsA) < p(AnsjsAn) +P(Ay, A)
= 0(n™%) + p(A,, 1)
= O((log n/n)l/d)
= O((log(n +,)/(n +4))").
Therefore, for arbitrary n the upper estimate p(A,,A) = O((log n/n)*/4)

holds with high probability. Thus lim sup(n /log n)/%(A,, ) < C a.s. Com-
bining this with Massart’s lower estimate settles Dudley’s question for d > 3:

COROLLARY 3.1. There exist constants ¢ and C depending only upon d such
that

1/d n 1/d
) p(An,A)slimsup(——) p(A,,A) <C a.s.

¢ < liminf (
log n

n
logn

Next, notice that the lower estimate of Theorem 1.1 follows from the
triangle inequality

L(X,G) 2 p(G,, 1) 2 lp(G,, 1) = p(A,4,)],

the estimate p(G,, ) = O(n~1/%) and Massart’s lower bound. A second and
more direct proof simply involves showing that with high probability there
exists a cube of volume « log n/n centered at a grid point but not containing
any of the sample points.

Finally, it would be worthwhile to extend both Theorem 1.1 and Corollary
3.1 to general probability measures.
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until now.
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