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DIFFUSION APPROXIMATION FOR A CLASS OF TRANSPORT
PROCESSES WITH PHYSICAL REFLECTION
BOUNDARY CONDITIONS

By C. COSTANTINI

Universita di Roma ‘“‘La Sapienza™

Consider a stochastic process consisting of the pair of a position and a
velocity, in a piecewise ¢! d-dimensional domain. In the interior of the
domain the dynamics are assigned by a potential and by random changes of
the velocity occurring at exponentially distributed times, according to a
probability distribution which may depend on the current position and
velocity. On the boundary the process reflects physically (the angle of
reflection equals the angle of incidence). First it is shown that the process is
well defined for all times. Then, when the coefficients depend on a diverging
parameter N, in particular such that the speed and the jump rate of the
velocity go to « with order YN and at least N respectively, a diffusion
approximation is sought. The position process is represented as a solution
of a Skorohod reflection equation: A skewing effect on the boundary results
from the interaction between the dynamics and the reflection law, so that
the direction of reflection is in general oblique. The assumption that the
mean change of the velocity in the interior is linear in the current velocity,
up to order at least 1/2 in 1/N, ensures that the cone of directions of
reflection is independent of N. The continuity properties of the Skorohod
oblique reflection problem enable one to show tightness of the position
processes without having to estimate explicitly local times (boundary lay-
ers) and, together with a suitable law of large numbers for the velocity,
allow one to identify the limit stochastic differential equation with oblique
reflection. The theory is illustrated by several applications, in particular
one to a mechanical model of Brownian motion.

Introduction. This paper is devoted to studying a class of transport
processes subject to physical reflection.

The typical process can be viewed as the pair of the position and the velocity
of a particle moving in a piecewise smooth domain of R?: In the interior the
particle moves under the effect of a potential U; at random exponentially
distributed times it changes velocity, according to a probability distribution
PY which may depend on both the current position and velocity (these random
changes of the velocity in the interior can be thought of, for instance, as the
result of collisions with other particles); when the particle hits the boundary it
reflects physically, that is, the angle of reflection equals the angle of incidence.
The evolution of the motion is described in the interior of the domain by an
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1072 C. COSTANTINI

infinitesimal operator of the form
LYf(x,v) = BY[V, f(x,v) - v + V,f(x,v) - VU]

(1) N ’ N ’
+u (x,v)[[f(x,v) — f(x,0)]| PN (x,v;dv'),

where N varies in N and on the boundary by the equations of conservation of
energy and momentum:

(2) v =v—2(v-v(x))r(x)

[where »(x) denotes the unit inward normal vector]. Incidentally, note that,
even when u™ and P? do not depend on x, the process is a random evolution
with feedback, due to the reflection on the boundary.

The main goal of this work is to prove a diffusion approximation for the
stochastic process defined by (1) and (2) as the speed B” diverges with order VN
and the jump rate of the velocity in the interior u" diverges with order at least
N (or, equivalently, if the motion is observed on time and space scales,
respectively, VN times and at least N times coarser than the ones the particle
“sees’”). Of course, the question makes sense only if, at least in the limit, the
velocity is centered. Note that P is allowed to depend on N. It turns out
that, if the velocity process has sufficient ergodic properties, in the limit the
dependence of the position on the velocity averages out, and the position
approaches a reflecting diffusion process. It is worth noting that even though
the transport process reflects physically, so that the angle (with respect to the
normal direction) at which the particle leaves the boundary depends on the
angle at which it arrived there and does not depend on the particular location,
in the limit one obtains a diffusion with oblique reflection (with direction
determined by u" and P%), for which one may say that the angle of reflection
(with respect to the normal direction) depends on the particular location and
not on the “angle’ at which the path arrived there. In fact, the scaling is such
that the reflection operator defined by (2) and the internal dynamics defined by
(1) interact in the limit.

There is a vast literature on random evolutions [for a review of the area see
Hersh (1974)]. General limit theorems have been proved by Kurtz (1972,
1973), by means of an abstract theorem on convergence of perturbed operator
semigroups which has partly suggested the approach taken here. More specifi-
cally, transport processes. have been studied, in smooth domains and with
compact velocity state space, by Bensoussans, Lions and Papanicolaou (1979).
In their work, both absorbing and reflecting boundary operators are consid-
ered (a reflecting process now being more in general one which spends zero
time on the boundary). The reflecting process changes velocity on the bound-
ary according to a given probability distribution; however, physical reflection is
not allowed, since a certain uniformity condition on the angle at which the
particle takes off from the boundary and a form of Doeblin’s condition are
required [(3.6.7) and (3.6.8) in Bensoussans, Lions and Papanicolaou (1979)].
These conditions are used both to ensure that the process is well defined for all
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times and to obtain a diffusion approximation. The diffusion approximation is
based on asymptotic expansions in 1/N of both the interior and the boundary
operators, combined with martingale problem techniques.

The approach proposed here is a different one. Existence for all times of the
reflecting transport process is proved by using a result in the theory of
deterministic dynamical systems due to Marchioro, Pellegrinotti, Presutti and
Pulvirenti [(1976), Section 2]. A diffusion approximation is obtained for the
class of processes such that the mean jump of the velocity in the interior is
linear with respect to the current velocity, up to order at least 1/2 in 1/N;
namely,

(3)  wN(x,v) [(V = v) PY(x,v;dV) = ~NQ(x)v + VN g (x,v).

The central idea is to represent the position process as the first component of a
solution to a Skorohod reflection problem, driven by the proper semimartin-
gale, in order to exploit the continuity properties of the Skorohod reflection
problem (Section 3) to derive tightness of the position processes from tightness
of the driving semimartingales, without having to estimate explicitly the local
times, that is, the boundary layers (Section 4). Equation (3) simplifies the
problem by ensuring that all possible directions of reflection belong to one
cone, independent of N. Note that this method does not require any localiza-
tion argument, and enables one to deal, in many cases, with domains with
corners. A suitable law of large numbers for the velocity process (nontrivial
because of the dependence of the velocity on the position process), together
with the martingale central limit theorem and a recent result by Jakubowski,
Memin and Pages (1989) on the continuity of the stochastic integral, allow one
to identify the limiting stochastic differential equation with oblique reflection
(Section 5). Although the restriction imposed by (3) seems not to be intrinsic to
the techniques employed here, the general case needs additional work. How-
ever, many models of physical interest satisfy (3) (cf. Section 6). In particular,
the results of Sections 2 to 5 apply to a transport process model of physical
Brownian motion proposed by Diirr, Goldstein and Lebowitz (1981) and shown
by them to be asymptotically equivalent to the mechanical model.

1. Formulation of the problem. Let D be a domain in R? with piece-
wise € boundary, that is,

D= nDi’

h
l=A1

where D,, i = 1,..., h, are defined by
D, = {x: y;(x) > 0}, oD, = {x: y;(x) = 0},
be GERLR),  inf (Ty(x)l > 0.
x€0D;

Denote by 9,D and d,D the regular and singular part of the boundary of D
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respectively, that is,

9.D = J4D, ;D =93D; N () Dy, 9D =0D —-4,.D.

i=1 k#i

Throughout this paper it will be assumed that D satisfies the uniform
exterior sphere condition [cf. Lions and Sznitman (1984), Section 1, (1) and
Remark 1.2] and the following condition [cf. Saisho (1987), condition (B) and
Remark 1.2]:

lim inf a(x =a>0
p—0x€dD ( ,P) ’

(1.1)

a(x,p) = max min min v -u,
lul=1ye3DNB(x) VI=1,veNQ)

where B (x) denotes the open ball of radius p centered at x and N(x), for
x € dD, is the closed convex cone of inward normal vectors to D at x [cf.
Costantini (1990), Remark 2.1]. Note that both the uniform exterior sphere
condition and (1.1) are verified if 9D is of class €}2. If D is convex it always
satisfies the uniform exterior sphere condition and if it is also bounded, or if
d = 2, it always satisfies (1.1) as well [cf. Tanaka (1979), page 170].

Let U be a nonpositive function in €2(D,R) and E: E(x,v) = %Ivl2 — U(x),
x € D, v € R% All results in this work apply both when the state space is
taken to be O =D X R? or O = {(x,v) € D X R% E(x,v) =c}, for some
positive constant ¢ > [|U|l. Also let A, = {v € R?: (x,v) € O} [note that A, =
R¢ or A, =S ‘/m(O), where S, is the ball of radius r centered at the
origin].

Here and in the sequel | - | denotes the norm of a vector or a matrix, while
|- |l denotes the supremum norm of an R-valued (R%valued, R%*%-valued)
function. The symbol df, for f of class ¢!, will be used indiscriminately for
the gradient and the Jacobian; the subscripts x and v will be used to
distinguish between differentiation with respect to the first and second vari-
able, respectively.

For f e €,(0O,R) and for f € €D X R% R), respectively, define

Af(x,v) = M(x,v)ij[ f(x,v) = f(x,0)] P(z,v;dv),
Lf(x,v) = B[d, f(x,v) v +9,f(x,v)dU(x)] + Af(x,v),

where B is a positive constant, u is a nonnegative measurable function,
P(x,v;-) is a probability measure on A,, for every v € A,, x € D, and

(1.2)

P(-, - ; B) is a measurable function, for every Borel set B. It will be assumed
that
(1.3) suppu(x,v) = p <

x,v
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and that A maps €,(0,R) into itself and is continuous with respect to the
topology of uniform convergence over compact sets (u.c. topology); this holds,
for instance, if u is continuous and P is continuous as a function from O into
the space of probability measures on R¢, endowed with the topology of weak
convergence.

Obviously, (1.2) extends immediately to

fe g,,(ﬁ, Rdlxdg) and fe gbl(ﬁ X R, Rd1><dz),
respectively, by setting

(Af)i; =4, (Lf)i,j = Lf; ;, i=1,...,d,j=1,...,d,.

REMARK 1.1. Without loss of generality we can always suppose
p(x,v) =p, V(x,v)€O.

In fact A can always be represented as

Af(x,v) = qu [£(x,v') = f(x,v)]

><[u(o;,v)P(x’v;dv,) N ( M(J;,U) )av(dv’)},

where 8,(+) denotes the Dirac measure on v.

Let m denote the Lebesgue measure on O, as well as on D, and let m(x, - )
denote the Lebesgue measure on A, [the surface Lebesgue measure on O and
A, respectively, if O = {(x,v) € D X R?: E(x,v) = c}l.

As antlclpated in the Introduction, the first goal of this work is to construct,
for any given initial distribution P, on O, a transport process (X, V) whose
behavior is assigned in D by an 1nﬁn1tes1ma.l generator of the form L, and on
4D by the laws of physical reflection. This is achieved in Section 2 by showing
that if:

(H,) P, is absolutely continuous with respect to m on the Borel o-algebra,
and, for every nonnegative p € L'(m/(x, -)),

fA P(x,v; -)p(v)m(x,dv)

is absolutely continuous w.r.t. m(x, - ) on the Borel o-algebra, for m-almost
all x € D, then there exists a unique solution, well defined for all ¢ € R* with
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probability 1, to the following system of pathwise stochastic equations:

X(t) =X, + Bjo’V(s) ds,

V(t) =V, + p[o‘aU(X(s)) ds

(1.4) +fot+[F(X(S),V(S‘);éw(s,) — V(s7)] dY*(s)
+ [ v(X()) dAGs),
A@®) = E [-2V(s7) - v(X() Ein( X(5)),

X(t)eDud.D, VteR",

where Y* is a Poisson process with parameter u, {¢,}, £, =4 £, is'a sequence
of i.i.d. [0, 1}-valued uniform random variables, F: O X [0,1] - R? is a mea-
surable function such that F(x, v; £) has the probability distribution P(x,v; )
(as it is well known, such a function always exists) and (X, V) is an O-valued
random variable with probability distribution P,; (X, V,), {¢,}, Y* are realized
on the same complete probability space (), %, P) and are mutually indepen-
dent.

REMARK 1.2. Note that the assumption made earlier that A maps €,(S, R?)
into itself and is continuous in the u.c. topology is satisfied if, for instance,
F(-, - ;u) is continuous for each u € [0, 1].

REMARK 1.3. Condition (H,) holds in particular in the following two cases:

(i) when P(x,v;-) is absolutely continuous with respect to m(x, ) for
m-almost all (x,v) € O;

(i) when F(x, - ;u) belongs to €X(A,, R%) and |det(d, F(x, v; w))| is strictly
positive for every v € A, for m-almost all x € D, for every u € [0, 1] [here
differentiation is meant with respect to the local coordinates on A, if A, =

S\/z(c+U(x))(0)]'
Suppose now that P, B and u depend on the index N in such a way that

BN =0(VN), ,uNfA (v — v)PN¥(x,v;dv') = O(N) and

uN [ 10— oPN(x,v; dv') = O(N).
Ax

Typically this is the case when (X, V) is a central limit theorem space-time
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rescaling of a fixed process (X, V), that is, with our notation,
PN=p, BY =0O(VYN) and uV=O(N)

(the potential U is supposed to vary on the macroscopic space scale). Here a
more general formulation has been chosen which allows a unified treatment of
many applications, in particular some which do not fit in the classical central
limit theorem space-time rescaling set up [see, for instance, examples (A) and
(B2) in Section 6]. Then, if, as N — », V¥ oscillates averaging to 0, it is
possible to study the limit behavior of the process X”. In this context, setting
for simplicity

BY =N,

the second goal of this work is to obtain a diffusion approximation for the class
of processes such that

p,NfA (v = v)PN(x,v;dv") = uNE[FN(x,v;¢) — v]

(1.5) = —NQ(x)v + VNq"(x,v),

lgN(x,v)l <c,(1+ lvl),

for all (x,v) in O, for some positive constant c,. Then (1.4) can be written as

XN(t) = X, + \/IVfOtVN(s) ds,
VN() =V, + \/IVfotaU(X(s)) ds — N[O‘Q(XN(s))VN(s) ds

+\/IVj:qN(XN(s),VN(s))ds

(1.6)
+VNMN(¢) + W];t+v(XN(s))dAN(s),
1
NI(8) = o T [=2V () w(X () Lo X7 (3)),
XN(tyeDudD, VteR",
with

1 tt N
MYN(t) = T_ﬁfo {FY(XN(s),VN(57), £yuy) — V¥(s7)} dY*'(s)
(1.7)

+f0t{x/1VQ(XN(s))VN(s) — g¥(X™(s),V¥(s))} ds.

A diffusion approximation for the process X* defined by (1.6) and (1.7) will be
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derived in Sections 4 and 5 under the following assumptions:

(Hy) Q € €)(D,R¥9), inf_) |I.’tlli_nlu‘Q(x)u =gq,>0;

(Hs) E[IV,*] < ;
(H,) PN(x,v; ) has finite fourth moment and, setting

N
N K ’ ’ tpN '
= e—— — — P .
HY(x,v) NLx(v v)(V' —v) (x,v;dv'),
/-“N 2
N _ N _ ' N g
RN (x,v) = tr(HY(x,v)) = NfAJ" v[*P¥(x,v;dv),

N
N _fL_ r_ 4pN . ’
gV (x,v) = NfAJ” v[*PN(x,v;dv),

one has
sup suph™(x,v) <
N «x,v

and

supg™(x,v) <g,(v*+1), V(x,v)€O,
N

for some positive constant g,.

N
(Hy) lim — < .
N-ox l'l’

REMARK 1.4. Let €,(0,R) [€,(0,R?), €,(0,R4*?)] denote the set of con-
tinuous functions f such that

If(x,v)l < £, (1 + [v]%), V_(x,v) e 5.‘

Note that every f € €,(0, R[€,(0,R?), €,(0,R**?)] can be approximated in
the u.c. topology by a sequence {f"} c €0, RI£€(0,R%), €(0,R?*?)] such
that { £ "(x,v)/(1 + |v|*)} is uniformly bounded. Then, if (H,) holds, A" can be
extended to a continuous operator in the u.c. topology from +€,(O,R)
[€,(0,R?), €,(0,R?*?)] into itself, for every a < 4. Moreover, for every se-
quence {f"} c €0, R[£€,(0,R?), €,(0,R?*?)] converging to zero in the u.c.
topology and such that {f"(x,v)/(1 + [v|*)} is uniformly bounded,
{ANf™(x,v)/uN} goes to zero in the u.c. topology uniformly in N, and
{ANf™(x,v)/[u™M(@ + |v|*)]} is bounded, uniformly in n and N.
Let b: O — R? be defined by

¢ A@DLE

j.

(1.8) bi(x,v) =

g k=1 dx;
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Note that by (H,),
b(x,v)l <b,(1+ lvl*), V(x,v)€0,
for some positive constant b,,.
(H4) There exist functions
b, € ¢,(D,R%), He €,(D,R¥%),
and sequences of functions
{(8"},{g"} ¢ U €(O,R%), {H"} c U £(0,R™9),

a<4 a<4
such that, for every compact set K c O,
— N_
lim lim sup |b(x,v) —b(x) — —xb"(x,v)|=0,
n—oo Now» (x,v)eEK K

— AN
lim lim sup |¢V(x,v) —q(x) - —x7"(%,v)| =0,
n—oo Now (x,v)eK K

— — AN _
lim lim sup |HY(x,v) — H(x) - —H"(x,v)| =0,
n—o Nox (x,v)eK . 1.2

and, for some a < 4, for every compact set K C D,

AN _
—b"(x,v)
lim lim sup sup — < o,
n—oo Nowo x€K v 1 + |U|
AN
—N—qn(x’v)
T T H
lim lim sup sup ~ < o,
n—oo NooxeK v 1 +|U‘
AN _
—ﬁH"(x,v)
Iim Iim supsup————— <.
A R BT

n—oo Nowox€K v
(H,) H(x) is strictly positive definite, uniformly in x.

Despite its complicated appearance due to the general formulation of the
problem that has been adopted here, (Hy) is essentially an ergodicity condition
which ensures that in the limit the dependence on the velocity averages out, as
appears clearly from the following remark.

REMARK 1.5. In the case when u"/N — u, and the kernels P¥N(x,v; ) of
AN /uN converge weakly, uniformly over compact subsets of O, to a probability
measure P(x,v; ), (Hg) can be easily verified as follows: For f <€ €,(0O, R)
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[€/0,R?), €,(0,R?*?], @ < 4, define
Af(x,0) = [ [f(x,v) = f(x,0)] P(x,0;dv)

and assume that, for every compact set K c D,

AN
;A—,f(x,v) — Af(x,v)

(1-9) sup h—m sup sup < o
fe,O,R) NowxeK v 1+ |Af(x,v)l

By (H,) we know that there exists H € ¢,(0, R%*?) such that

HN _*c. g
N-oox

Now suppose there exists also a function ¢ such that

N u.c.
T Noo 4
[in which case g belongs to €,(0, R%)].

Assume that, for every x, the family of transition probabilities P(x, - ;)
admits a unique invariant probability measure 7(x, - ), with finite moment of
order a, > 2, uniformly bounded in x, and define, for f e €(0,R)
(€0, [Rd) €(0,R4*9)], @ < a,,

I f(x) = [A f(x,v)m(x,dv').

Then (Hg) holds with b = 116, g = llq, H = [1H if
(1.10) b—TIb,q—Ilg, H—TIH € #(A),
or if
V f € Rer(IlI€,(0,R)), 3I{f"} < 6(0,R) sit.

(1.11) 1AF
Af " %’ f ’ sup sup _.:Af_
rekexmeo,my » Nl
A sufficient condition for (1.11), for a family of transition probabilities
P(x, - ;) of period d(x), d(-) bounded over compact sets, is

d(x)-1

x, V)P *(x,v; dv x,V)m(x,dv"),
d()kZOff( ) PHHA( ) ff( )m(x, dv')
where P"(x, - ; - ) denotes the hth power of P(x, - ;- ) with respect to convo-
lution. Equation (1.12) holds if P(x, - ; - ) is uniformly positive recurrent (in a
suitable sense) over compact sets. For instance, (1.12) holds if for every x € D,
P(x, - ;) is ¢,-recurrent, for some positive o-finite positive measure ¢,, and
for every compact set K, c D for every compact set K C O and for every

(1.12)
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&€ > 0 there exist a set B, C R? and a positive integer h, such that
¢ (B,NA,) >0, Vxek,,

1 dx)-1 ]
sup sup sup |—— P"*(x,v; B) — w(x, B)| <e,
xeK, veA,nB, Bca, | 4(x) [T
Vh>h,
(1.13) lim sup Z PéonAx(x,v; B,NA,) =0,

b (o ek i=h+1

(Phuns e B a) = [

X [
A

In the case when A, and P(x, - ;- ) are independent of x, (1.13) is implied by
the “uniform over compact sets” -recurrence condition; namely,

x

P(x,v;du')
B,

P(x,u""%du'"")P(x,u'"%; B, N a,)).
-B,

x

(1.14) lim sup ), Pi(v;B) =0 for every compact set K,
ho©yeK i=p+1 .

for every Borel set B such that ¢(B) > 0.

Finally, if 9D is not smooth enough, namely if 4D is not of class €} with
v(+) uniformly continuous, at least one of the following assumptions on D and
® will be required to hold.

For every x € dD let

(1.15) I'(x) = {@ ' (x)v,v € N(x)}.
Hei inf,_; u'Q@ Y(x)u . 2 V1 +4a* -1
(Hsi) 1Q (x| Va® + 4 A 204

where a is defined in (1.1).

V 1- ﬁ(x’ P)2

(i o e ooV La(e, 2]
where
a(x,p) = max  inf min  y-u
lul=1yeaDNB(x) YETW), lvI=1
and

B(x,p) = inf min max v-y)VO0).
( ) y€4DNB,(x) Y€ (y), lyl=1 veN(y), |V|=1(( ) )
(H,iii) @ is symmetric and D satisfies the following admissibility condition:
There exists a sequence {D,} of bounded smooth open sets in R% such that D,
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satisfies the uniform exterior sphere condition for all 4, uniformly in A, and if
x), € D, X, = , L%, then x € D and if K is compact, K C D, then K C 0,,
for h large enough.

REMARK 1.6. (Hgi) implies (Hgii) [cf. Costantini (1990), example of
Section 3].

REMARK 1.7. (Hgi) is trivially satisfied if @Q(x) is proportional to the
identity matrix, at each x € dD.

REMARK 1.8. If 9D is of class €} and »(:) is uniformly continuous, then
(Hii) is satisfied [cf. (3.13), (2.21), (2.20) and Proposition 2.5(ii) in Costantini
(1990)].

REMARK 1.9. The admissibility condition for D in (Hiii) is satisfied if 9D
is piecewise smooth or D is convex [cf. Lions and Sznitman (1984), Remark 4.3
and Remark 2.4].

2. Construction of physically reflecting transport processes. In
this section, existence and uniqueness of the solution to (1.4) is shown. As the
jump rate of the velocity in the interior is constant (see Remark 1.1), this
reduces to showing that the boundary of D is never hit with tangential
velocity or in its singular part, and that the boundary hitting times do not
accumulate. The proof which is presented here (Theorem 2.2) relies on the
observation that between two random changes of the velocity the solution to
(1.4) evolves deterministically according to a special flow. This allows one to
apply a result by Marchioro, Pellegrinotti, Presutti and Pulvirenti (1976), for
deterministic dynamical systems, which exploits the fact that in the phase
space of position and velocity the Lebesgue measure is preserved both by the
potential and by physical reflection, to prove that the set of ‘“bad’ initial
positions and velocities has Lebesgue measure 0.

The theorem by Marchioro, Pellegrinotti, Presutti and Pulvirenti (1976) is
stated below in a suitable form to be applied to (1.4).

THEOREM 2.1 [Marchioro, Pellegrinotti, Presutti and Pulvirenti (1976)].
Let

9,0 = {(x,v) €80:x €9,.D,v-v(x) > 0},
9_0 = {(x,v) €30:x €9,D,v-v(x) <0},
O=({(x,v) €3d0:x€9,Dorx €9,D,v-v(x) =0}.
Consider the system of ordinary differential equations,
e, o(t) = 0,,0(2), %.,0(0) =,
Ur,o(2) = U(%,,0(2)),  v,,(0) = v,
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and define
S RIXRY - RYXRY,  Sy(x,v) = (2, ,(2), 05 ,(2)),
0:0 - RTU{ +}, o(x,v) = inf{t > 0: S,(x,v) € D¢ X Rd},
S: {(x,v) € 0: 0(x,v) < +o} - 90, S(x,v) =8, ,(x,v),
R:9_0-9,0, R(x,v) = (x,v - 2(v - v(x))r(x)),
T: {(x,v) € 0:0(x,v) < +, 8(x,v) € 8_0} -4.,0,
T(x,v) = R(S(x,v)).

Let T * denote the kth power of T, 2(T*) its domain and T° the identity map
on O. For k € N, define

0, D(T* 1) > RYU{+w)},

k-1
| X o(TM=x,0))  if o(T* Y(x,0)) < +,
o,(x,v) = n_o
too if o(T* Y(x,v)) = +o.

Then the set O,

0, = {(x,v) € a 2(T*): lima,(x,v) < +oo}

(2.1) A ke

U U {(x,0) € D(T*): 01 11(x,0) < +, S(T*(x,v)) € 9,0}
=0

is measurable and
m(0,) =0
[m being the Lebesgue measure on O or the surface Lebesgue measure on O if
O = {(x,v) € D x R% E(x,v) = c}].
For every (x,v) € O — O,,

St—(rk(x,v)(Tk(x’v))’ o (x,v) <t < o 1(%,0),
T (x,v) = Vks.t o x,v) < +o,
S,(x,v), 0 <t<oyx,v) for (x,v) €0-9_0

is defined for all t € R*. For every t € R*, T, is a one-to-one measurable map
of O — O, into itself; as a map from R*x(0 — 0,) — O, it is jointly measur-
able. The measure m is invariant under T,, for every t € R*.

REMARK 2.1. Theorem 2.1 is a special case of Theorems 2.4 and 2.5 in
Marchioro, Pellegrinotti, Presutti and Pulvirenti (1976) [see also Section 4 in
Marchioro, Pellegrinotti, Presutti and Pulvirenti for the case O = {(x,v) €
D x R%: E(x,v) = c}l.

In Marchioro, Pellegrinotti, Presutti and Pulvirenti (1976), D is supposed to
be bounded, but the result extends to unbounded domains by a standard
localization argument.
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TuEOREM 2.2. If (H,) holds, then there exists a measurable set (1, C (1,
with P(Q,) = 0, such that, for every w € Q — Q, there exists a unique solu-
tion to (1.4), defined for all t € R*; for every w € Q — Q, the counting
measures dY* and dA are mutually singular.

Proor. Equation (1.4) is pathwise equivalent to
(X(0),V(0)) = (X,, V),
2.2) (X&), V(@) =T, (X(7,-1),V(7a-1))s T2 SE<Tn,

(X(7,),V(7,)) = F(T,_,,_(X(70-1),V(1,-1))5€)

where {7} is the sequence of the jump times of the Poisson process Y*, 7, = 0
and F(x,v;u) = (x, F(x,v;u)). 3

Let O, be a Borel set such that O, 2 O, and m(0,) = 0 (O, itself is not
necessarily a Borel set, but the existence of O, is ensured by the regularity
of m),

Q5 = {0: (X(7,), V(7,)) € Oy},
and, for 0 € Q771,
Qr=Qr U {we Q- Q% i (X(7,),V(1,)) € 0,V 40}
The claim is that
P(Q;) =0, VneZ*.
This can be easily seen by induction; in fact,
P(Q2) = P,(0,) =0,

because m(0,) = 0 by Theorem 2.1, and P, is absolutely continuous with
respect to m.

Moreover, denoting by P, the probability distribution of (X(r,), V(7,)), for
every n € Z*, it follows from (H,), by the independence of ¢,, 7, — 7,1,
(X(r,_,),V(r,_,), and by the fact that T, preserves the Lebesgue measure m
for every t, that if P,_, is absolutely continuous with respect tom, so also is
P,. Therefore P, is absolutely continuous with respect to m for all n e 7",
and

P(Q2) = P(Qr71) + P,(0, U d0) = P(Q;71).
By setting Q, = U%_,Q7%, the assertion follows. D

3. The Skorohod reflection problem: some continuity properties of
solutions. The derivation of a diffusion approximation for the processes X N
which will be presented in Sections 4 and 5 relies on some results about
solutions of the Skorohod reflection problem, contained in Costantini (1990)
and Lions and Sznitman (1984). The consequences of these results which are
relevant to our present purposes are stated in this section.

Let D be as in Section 1 and T be defined by (1.15), where @ is defined by
(1.5) and satisfies (H,).
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DEFINITION 3.1. Let w be a function in 2(R*,R?) such that w(0) € D. A
solution to the Skorohod problem for (D, T, w) is a pair (x, ¢), x € 2(R*, D),
¢ € BYV(R*,R?), such that

x(t) = w(t) + ¢(2),
(3.1)

() = fotY(S) dA(s), v(s) €T(x(s)), ly(s)l =1, dxr-ae.,

dA({¢: x(t) € D}) =0,
where A denotes the total variation of ¢. A will be called the local time of the

solution. Equation (8.1) will sometimes be referred to as a Skorohod reflection
equation.

THEOREM 3.1. Let ¥ be a compact subset of 2(R*,R?) in the Skorohod
topology, such that w(0) €D for every w € ¥, and let .” be the set of
four-tuples (w, x, ¢, A\) € IR*, R%) x I(R*, D) x BV ([R™*, R%) X
BY[R*,R*) such that (x,¢) is a solution to the Skorohod problem for
(D,T,w) for some w € ¥, A is the total variation of ¢ and x is continuous.

Assume (Hgi) or (Hgii) holds. Then # is a relatively compact subset of
D([R*,R3@*1) in the Skorohod topology and, for every accumulation point
(w, x, ¢, A) of 7, (x, @) is a solution to the Skorohod problem for (D, T, w).

Proor. We are in a special case of the setup considered in the example of
Section 3 of Costantini (1990) [note the change of notation: a(x, p) and b(x, p)
in Costantini (1990) are denoted here by a(x, p) and B(x, p), respectively, and
conversely a(x, p) is denoted here by a(x, p)l. (Hgi) corresponds to (3.15) in
Costantini (1990), while (Hii) corresponds to (2.22) in Costantini (1990). For
every (w, x, ) € ., x is continuous. Therefore, by Proposition 2.5 in Costan-
tini (1990), Theorems 2.4 and 3.2 in Costantini (1990) apply, for any value of
the constant p,. O

THEOREM 3.2. Let # and ./ be as in Theorem 3.1. If (H,iii) is satisfied,
then the same assertion as in Theorem 3.1 holds.

Proor. The assertion follows by Theorem 4.2 in Lions and Sznitman
(1984). The original result is stated for # c €(R*, R?), but can be extended to
¥ < 2(R*,R?) by standard arguments. O

REMARK 3.1. A compactness result for the Skorohod problem of the type of
Theorems 3.1 and 3.2 was first proved by Tanaka (1979), in the case when I'(-)
is the normal cone N(-) and D is convex.

4. Diffusion approximation: Tightness. This section and the next one
are devoted to the study of the asymptotic behavior of the process XV as N
diverges.

This section contains all the estimates and the technical result which are
needed in the proof of the tightness of the family { X"}. The proofs refer to the
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realization of X" given by (1.6) and (1.7); however, the final result concerns
the distribution of the process and therefore holds independently of the choice
of the realization. The main idea is to represent X” as the first component of
a solution to a Skorohod problem for (D, T, BN + Z¥), where T is defined by
(1.15) and BY + Z¥ is the proper semimartingale. The family {BY + ZV}
turns out to be tight and this enables one to exploit the results recalled in
Section 3 to conclude that the family { X"} is tight as well.

Consider (1.6) and (1.7). Clearly we can always assume that there is a
unique underlying complete probability space (2, &, P). Let % denote the
sub-o-algebra of % of sets of P-measure 0 or 1 and let

FN =V o((X,,V,), Y (5), £yun(s), s < t).

Then {#,"} is a complete right-continuous filtration, the stochastic processes
XN, VN, MV, AN defined by (1.6) and (1.7) are {%"}-progressive and MY is an
{Z,V}-square integrable martingale with

(4.1) (MVN)(t) = /otHN(XN(s),VN(s))ds.

Let ¢V and @ be defined by (1.5). Throughout this section it will be
assumed that @ satisfies (H,) and that (H,), (H,) and (H,) hold.
Let b and T be defined by (1.8) and (1.15), respectively.

PROPOSITION 4.1. For every N the pair of stochastic processes (XN, ®V),
where

(42) @N(t) = [ QXN (8))(XN(5)) dAV(s)

is, almost surely, a solution to the Skorohod problem for (D,T, BY + ZV),
where

QH(X,)V, — @ (XN(1))VN(2)
VN

+j0’b(XN(s),VN(s))ds

BY¥(t) =X, +

(4.3) +f0tQ‘1(XN(s))0U(XN(s))ds
+[O‘Q-1(XN(3))qN(XN(s),VN(s)) ds,

ZN(t) = [O“Q-I(XN(s))dMN(s).

Proor. Consider (1.6) and (1.7). By applying the change of variable for-
mula for semimartingales to the function f(x,v) = Q (x)v, substituting
VN (XP() - X,) for the term N/!V™(s)ds and solving for X™(¢), we obtain

XN(t) = BN(t) + ZN(¢) + oN(¢).
Then it can be easily checked that (X¥, ®¥) verifies Definition 3.1 with
probability 1. O
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The following inequality will be used several times in the next lemmas. Let
x and g belong to 2([0,T],R), T >0, g(0) =0, and let ¢ be a positive
constant. If

(44) x(t) <x(s) —c[x(r)dr+g(t) —g(s), O<s<¢<T,
then

(4.'5) x(t) < e[x(0) + g(1)] + ¢ e g() - g(r)] dr,

0<t<T.
If the opposite inequality holds in (4.4) then it also holds in (4.5).

LeEmMA 4.2. For every T > 0,

sup sup E[[VY(#)?] < .
N t<T

Proor. Consider (1.6) and (1.7). The change of variable formula for the
function f(x,v) = |v|? yields, for every pair of stopping times o and 7 such
that 0 < o0 < 7 < T almost surely,

V¥(r)I? = IVN(0)? + 2VN [[VN(r) - aU(XN(r)) dr

+ 2VN ['VN(r) - qN(XN(r),VN(r)) dr
(4.6) -
-~ 2Nj;(VN(r))tQ(XN(r))VN(r) dr

+ 2\/1V/:VN(r‘) - dMM(r) + N tr([MN](7) — [MN](o)).

Note that the local time A" does not appear in the right-hand side of (4.6)
because under physical reflection the speed does not change on the boundary.

By applying (4.6) to a localizing sequence of stopping times and making use
of (1.5), (H,), (H,), (H,) and Gronwall’s inequality, one can see that E[|VY(2)|?]
is finite for every ¢ and bounded over [0,T] for each N. Then by again
applying (4.6) to the deterministic times ¢ =s,7=¢0 <s <t < T, it follows
by (1.5), (H,), (H,), (H,) and (4.5) that, for N sufficiently large,

EﬂlvN ¢ |2]| < E|I|V |2]] + 2\/N(”3U” + co) + N||hN||
rep T ON = BT o g, = VN (0T + 26,))

LeEmmA 4.3.  For every T > 0,
Bsup [4V1(6) - (u™(0)F] 7= o
t<T

Proor. By the properties of the quadratic variation process we have

Eﬂlzj [[M™]s,5 - <MN>i,j](T)ﬂ =E|IZ | M (2) —MN(t‘)|4]l

t<T
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and, by (1.6) and (H,),

- —;—Ellfo v - VN(t-)I“dY”"(t)]l

- —IIVEH A TeN(XN(t), V(1)) dtﬂ

< % OT(1 + BIVN (1)) dt.

Therefore the assertion follows by Doob’s inequality and Lemma 4.2. O

LEmMMA 4.4. For every T > 0,

[VN(t)?
E| sup N ~o2 0

t<T

Proor. Consider (4.6) for the deterministic times 0 =s,7=#0<s <t <
T. Making use of (4.5) and then dividing by N, one finds, by (1.5), (H,) and
(Hy),

IVN(t)I2H
E
ﬂ?‘:ﬁ N
E[IV,*1 2 T
+ W(||aU|| + co)j; E[IVN(¢t)l] dt

ﬂ

+ E||sup {e'z(N"O“/ﬁco)‘ tr[MN](t)}]]
t<T

<

N
+2E
N sup

t<T

j;)t+VN(r_) -dM™(r)

2 t
+ = (Ul + C, E[[su {2 Ng, - ‘/]—V-co e—2(Nqa—1/IVCO)(t-s)
77 (01 + )| 2N, = e,

Xj;t|VN(r) | drds}ﬂ

2(Nqo - Wco)fote‘zmqa-x/ﬁca)(t-s)

J]

xtr([MN](¢) - [MN](s))dsu.

2
+ —EFE| sup
‘/lv [[tsT

x [CVN(rT) - dMN(r) ds

+ 2(Nqo - \/I—V-CO)E[[sup fte—2(Nqo—\/IVco)(t—s)
t<T "0



REFLECTING TRANSPORT PROCESSES 1089

The first three summands on the right-hand side converge to 0 by (Hy),
Lemma 4.2, Doob’s inequality and (H,). The fourth summand is bounded by

| sup er([2Y)(e) — (Y30 ]
t<T

+ E'[[sup {e—2(Nqo_\/1vca)t tr(MN)(t)}]],

t<T

which converges to 0 by Lemma 4.3 and (H,). By exchanging the order of
integration the fifth summand can be immediately seen to be bounded by

2
(U1 + c,) fo TENVN(r)dr.

The sixth one is dominated by

2
——E|sup [1 — e~ %N~ VNet| » 2up ﬂ,
‘/1v [[tsT[ ] t<T

which goes to 0 by Doob’s inequality, Lemma 4.2 again, and (H,). Finally, the
last summand tends to 0 by Lemma 4.8 and (H,). O

v ano

LemmA 4.5. For every T > 0,

supEl[fTWN(t)l4 dtII < o,
N 0 .

Proor. Let
7 =inf{t > 0: [VN(¢)| > n}.
By applying the change of variable formula to the function f(x) = u? and to

the semimartingale |[V¥|?> with stochastic differential given by (4.6), taking
into account (1.5), (H,) and the fact that

AV = VNI - 2V )PV - v )R]

t<TATN

= X N{2WVN(V) H(MT(2) - MN(ET))

+N tr([MY](2) - [MV]())),
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one obtains, for N sufficiently large,
VYT Al ) < V14 + VN (10U + ¢,) [T VN8 P
0

~ 4(Ng, - 2VNe, - VNIUI) jo TAmDT N ()| de
+ /N [T VN ) PYN () - dMN(2)

0
+ 10N [TV V) [P d ([ MY ()

0

+2[TA |y - v [t ar (o),
0
which implies, by (H,),

E|l ST N dt]]
0
- E[IV,/*]
= 4(Ng, - 2VNec, — \/IVHBU”)
[4/N (10Ul + ¢,) + 10N&N|| + 2Ng,| [FELIVN(#)1*] dt
+
4(Ng, — 2V/N¢c, — VNUl)
2Ng,T
+ )
., 4(Nq,—2VNc, — VN |oU]l)
where the right-hand side is bounded uniformly in N by Lemma 4.2. O

THEOREM 4.6. Under hypotheses (H,) to (H,) and (Hy), the family of
stochastic processes {(XN, ®N, AN, BN, ZN)} is relatively compact in

_@(R +, R4d+ 1).

Proor. Consider (4.3). Since ZV is an % "-square integrable martingale

with
(ZM)(8) = [@N(XN($))H(XM(5),VN(5))(@ (X (s)))" ds,

by (H,) and (H,) the family {Z"} is relatively compact [see, e.g., Ethier and
Kurtz (1986), Theorem 8.6, Chapter 3]. Moreover, by Lemma 4.3 all the
accumulation points of {Z"} are continuous [see, e.g., Ethier and Kurtz (1986),
Theorem 10.2, Chapter 3. As far as { BV} is concerned, we have, by (H,), (1.5),

(1.8) and Lemma 4.4, for every T > 0,
Im E[[sup|BN(t)|]]

N-oo t<T

< {b,, + QYU + 21Q e,

+(b, + 1Q~llc,) sup supE[[IVN(t)Izll}T
N <T
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and

lim E[[ sup |BN(t) —BN(s)|H
N-ow |t—s|<&
0<s<t<T

< (b, + QMU + 21Q~lle,)d

+(b, + ||Q"1||co){5 sngHfoﬂVN(t) * dt“}1/2,

so that, by Lemmas 4.2 and 4.5, {B"} is relatively compact and all its
accumulation points are continuous.

Therefore {BY + Z"} is relatively compact and the assertion follows by
Theorem 3.1 [if (Hgi) or (Hgii) holds] or by Theorem 3.2 [if (Hgiii) holds]. O

5. Diffusion approximation: Identification of the limit. This section
is devoted to the identification of a stochastic differential equation with
reflection which describes the behavior of X% in the limit as N — «. The
starting point is Proposition 4.1: It is first shown that the “explicit” depen-
dence of BY and Z" on V¥ averages out, as N diverges (Lemmas 5.1, 5.2, and
5.3); then the “implicit”’ dependence of ®¥ on V¥ is taken care of (Theorem
5.5) by exploiting the results of Section 3, the martingale central limit theorem
and a result by Jakubowski, Memin and Pages [(1989), Theorem 5.4].

Throughout this section all the hypotheses made in Section 1, in particular
(Hjy) to (Hyg), will be assumed to hold.

LEmMA 5.1. For f€ €(0,R), a <4, T > 0 and for every ¢ > 0:

Ze}=0.

Proor. Consider first a function f € g,}(a, R). By the change of variable
formula, we have

F(XN(),VN(2))

+ AN
[ = F(XN(s),VN(s)) ds

N— oo t<T |70 M

lim P{ sup

= F(X,,V,) + VN [, f(XN(5),V¥(5)) - V¥(s) ds
+VN [3,f(XN(s),V™(s)) - 9U(X™(s)) ds
0

+ ['ANF(XN(s),VN(s)) ds + V¥ MF (1)
0

o [F(XN(s5), VN(s)) — F(XN(s),VN(s7))]
+N [ V(s) — V(s

dAN(s),
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1 tt N
MP() = = [ [F(XN(8),V¥(8)) = F(X¥(5), VN(s7))] dY*"(s)

1
_WfoANf(XN(s),VN(s))ds.

By solving for [{(AN /uN) f(XN(s), VN(s)) ds, we obtain

> <)

N
< Tm Tm —{ ,”Lf” NTIIa f||E|[ v (t)']l

e AY
f o F(X(9), V() ds

lim P{ sup
N-oow t<T

K—>® Now € t<T VN

Lt Eﬂ | M (2) |I|
——— S
VN tzg !

=

+ F”auf"(K + T10U )

+ lim lim P{AN(T) > K},
K-> N->wx
where the right-hand side vanishes by (4.2), (H,), Theorem 4.6, (H;), Lemma
4.4 and Doob’s inequality.
Then the assertion follows by (H,) and Remark 14. D

REMARK 5.1. Note that, by (1.5), if N and uV are of the same order of
magnitude, Lemma 5.1 implies

1 lim P N =0,
(5.1) Aim, {fl:];'fV (s)ds>e}

which gives a precise meaning to the intuitive idea that in the limit VV
oscillates averaging to 0.

REMARK 5.2. In the setup of Remark 1.5, if (1.10) or (1.11) holds, Lemma
5.1 yields the following law of large numbers:

Vfe€(0,R), a<min(e,4), VeT>0,

(5.2) Al,iian{ sup fot[ F(XN(s),VN(s))

—Mf(XN(s))] ds|= ¢
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LEMMA 5.2. Let b, q and H be the functions in (Hg). Then, for every T > 0,
for every ¢ > 0:

Al’i_IPwP{gI; fot[b(XN(s),VN(s)) - b(XM(s))| ds| = s} =0,
Al’i_rzlmP{fzg Lt[qN(XN(s),VN(s)) - q(X"(s))] ds| = e} =0,

lim P{ sup
t<T

Jim P sup | ["[HY(X%(s),V¥(s)) - H(X"(s))] ds

28}=0.

Proor. The assertion follows imimediately by Lemma 5.1, (Hy), Lemma 4.5
and Theorem 4.6. O

Lemma 5.3. Let H be the R**%valued function in (Hy) and let 3(x),
x €D, be the symmetric positive definite matrix such that 3(x)? = H(x),
x € D. Define

(5.3) WN(t) = [S7Y(XM(s))dMN(s), teR*.
0

Then {W™} converges in distribution as N — » to a standard Brownian
motion.

Proor. By (H), 3~ '(x) is bounded, uniformly for x € D; hence, for every
N, W¥ is an {#"}-square integrable martingale, and

(WN)(t) = jO‘E-I(XN(s))HN(XN(s),VN(s))z-l(XN(s))ds.

Therefore the assertion follows from Lemma 5.2 and 4.3 by the martingale
central limit theorem [see, e.g., Ethier and Kurtz (1986), Chapter 7, Theorem
14]. O

In order to complete the proof of the convergence of {( X", ®V)}, we need a
lemma on the convergence of stochastic integrals, due to Jakubowski, Memin
and Pages (1989) which, for convenience, is stated next, in a form suitable for
our purposes.

THEOREM 5.4 [Jakubowski, Memin and Pages (1989)]. Let ((K",W™)} be a
sequence of stochastic processes on a probability space (Q, &, P), with paths in
2(0,®), R??) and such that, for every n € N, W" is a local martingale with
respect to the filtration I;": 9" = N, ,0(K™(r), W™(r)), r < s) and, for
every T > 0,

supE|sup|W"(t) — W*(t7)|| < +w.
n t<T

Assume {(K", W™)} converges almost surely to (K, W).
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Then W is a semimartingale with respect to the filtration {7,}:
Ti= No((K(r),W(r)),r<s)
s>t

and
A+
{j K"(s™) dW”(s)}
0
converges in probability to [ K(s™) dW(s).

Proor. Cf. the proofs of Proposition 3.2 and Theorems 2.1 and 2.6 in
Jakubowski, Memin and Pages (1989). O

THEOREM 5.5. Let {( XV, ®V)} be defined by (1.6), (1.7) and (4.2).

Then, under hypotheses (H,) to (Hgi) [or (Hgii), (Hgiidl, the family
{(XN, ®N)} is relatively compact in 2(R*, R??) and every accumulation point
is a solution to the stochastic differential equation with reflection

X(8) = X + [{B(X(s)) + QH(X())[U(X(5)) +T(X(s))]} ds
+[[QTHX()2(X(5)) dW(s) + 2(2),

5.4) cp(t)=j0’y(s)d|q>|(s), y(s) € T(X(s)), ly(s) =1, didl-a.e.

d|®o|({t: X(t) € D}) =0,

where T is defined by (1.15), § and b are the functions in (Hg) and 3 is
defined in Lemma 5.3.

If (5.4) has a unique solution (X, ®) [see, for instance, Theorem 5.7 in
Stroock and Varadhan (1971), Theorem 4.1 in Tanaka (1979), Theorem 4.4 in
Lions and Sznitman (1984), Theorems 3.4 and 3.10 in Varadhan and Williams
(1985), Theorem 5.1 in Costantini (1987), etc.], (XN, ®N)} converges in
distribution to (X, ®).

ProoF. Consider the five-tuple (XY, ®Y, BN, ZN W¥)), where BN, ZV
and WY are defined by (4.3) and (5.3) respectively. Since each component of
the five-tuple is relatively compact in 2(R*, R¢) and admits only continuous
accumulation points, the family {(X7V, ®Y, BN, ZN, WV))} is relatively
compact in 2(R*,R5¢). Let N, be a diverging nondecreasing sequence of
values of N such that {(X%¥», ®Ne, BN» ZN» WNn)} converges in distribu-
tion to a stochastic process (X, ®, B, Z, W). By the Skorohod representation
theorem, there exists a probability space (), 7, P) and realizations
(XNn, ®Nu BNn ZNn WPn) and (X, @, B, Z, W) of (XN», @V, BNn ZNe Wn)
and (X, ®, B, Z, W) such that {( XN», ®Nn, BNa ZNn W¥»)} converges P-almost
surely to (X, ®, B, Z, W). Therefore, by Theorem 3.1 [if (Hgi) or (Hii) holds]
or Theorem 3.2 [if (Hiii) holds], (X, ®) is a solution to the Skorohod problem
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for (D, T, B + Z), P-almost surely (note that B + Z has continuous paths by
Lemmas 4.3 and 4.4). ,

On the other hand, by Lemma 5.2 and the convergence of {X™-} to X, B
must be given by

B(t) = [o‘[B(X(s)) +QY(X(5))(0U(X(s)) + 3(X(s)))] ds,  P-as.
Moreover,
ZNa(2) = [0 ‘Q(XMN+(5))3(XN(s5)) dWNn(s), Peas,,

where W7= is a martingale with respect to the filtration
I = No(XN(r), Whe(r), r < 3),

s>t

because W™ is a martingale with respect to the filtration {#N=} and
F N2 N o (XNe(r), Wh(r), r <s).

s>t

Therefore, by Lemma 5.4,
Z(t) = [O‘Q-I(X(s))z()z(s))dw(s). D

REMARK 5.3. In particular, if PN(x,v; ) is independent of x, and U is
linear, any accumulation point of the family {(X7, ®¥)} is an obliquely reflect-
ing Brownian motion, with covariance matrix ¢ - @ H(Q ')’ and constant
drift @ U + ).

6. An application to a mechanical model of Brownian motion and
other examples. The results of Sections 2 to 5 can be used to derive
diffusion approximations for a variety of transport process models with physi-
cal reflection. Two applications are presented here: to a model of physical
Brownian motion proposed by Diirr, Goldstein and Lebowitz (1981) [(A)] and
to a “random billiard” [(B)].

The diffusion approximation of model (A) is of independent interest. Model
(A) also shows how in some cases localization arguments can be employed to
extend the results of Sections 2 to 5 to processes which satisfy the assumptions
of Section 1 only locally.

The most interesting characteristic of model (B1) is that the limit is an
obliquely reflecting Brownian motion. Model (B2) is an example of how a
nontrivial drift term can appear in the limit. Models (B2) and (A) are instances
of models which are not classical central limit theorem space-time rescalings
of a given stochastic process.

(A). Dirr, Goldstein and Lebowitz (1981) presented a mechanical model
for the motion in R? of a heavy particle in an ideal gas of point particles of
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much smaller mass: A spherical particle of radius r and mass M is immersed
in a Poisson bath of point particles (atoms) of mass m, with position dis-
tributed with density u/ Vm and velocity distributed according to the proba-
bility density m3/2¢(/m - ), where ¢ is a rotationally invariant probability
density having at least five moments (for instance, the density of the Maxwell
distribution); the particle moves with constant velocity V except that it
undergoes collisions with the atoms; each collision changes its velocity accord-
ing to the laws of elastic reflection; namely,

2m
— 7 (V=v) v(2)v(2),

where v is the velocity of the atom, z is the point on the surface of the particle
where the collision occurs and v(z) is the unit inward normal at z. The
stochastic process of the position and velocity of the particle, (X'™,V'™) is
then non-Markovian, since the particle can collide with atoms which it has
previously met and which hence carry information of the past. However, Diirr,
Goldstein and Lebowitz construct a Markov process (X™, V™) and show that
there exists a probability space (Q, &, P™), on which both (X™,V™) and
(X'™,V'™) can be realized, such that, for every T > 0, ¢ > 0,

V=v-

limOP'”{sup|V""(t) BOIE s} -0,

t<T
lim Pm{sup|x""(t) —xm(t)| = e} - 0.
m—0 t<T

The velocity process V™ is itself a Markov process with infinitesimal generator
A™ of the form

ATF(V)
(6.1) - L fsl@

2m
m+M

f(V—

(V-v(z) - vn)v(z)) - f(V)]
Xpm(V;z’ vn) dzdvn,
p"(Vi2,v,) = ur?l(V-v(2) = v,) A Olyy(Vm v, ) Iy o s,

where ¢, is the one-dimensional marginal density of ¥ and 0 <pB < %;
p™(+; -, ) determines the jump rate u™ of V™ via

+ o0
(6.2) pr(V)y=[ [ p™(Viz,v,) dzdu,.
— Sl(o)

Suppose now that the motion of the particle takes place in a piecewise €}
domain D, satisfying the uniform exterior sphere condition and (1.1), and that
the particle reflects (physically) on the boundary. Then it is shown below that
the results of Sections 2 to 5 allow one to say that the process (X™, V™) is still
well defined for all time and to study the asymptotic behavior of X™ as m



REFLECTING TRANSPORT PROCESSES 1097

goes to 0, in the case when
(6.3) M =m*, 0<a<Bp.

First of all note that A™ is invariant under rotations and is independent of the
position x, so that |[V™| is itself a Markov process and has the same law
whether X™ is unrestrained or reflects in D. Therefore a standard localization
argument allows one to extend the results of Section 2 to (X™, V™), even
though the jump rate of V™ is not bounded.

Next observe that, for |[V| < m 2, we have

[+w'/:31(0)[ m + m® =(V-v(2) - vn)]v(z)pm(V z,v,) dzdv,

(6.4) =(m™%,+q™)V,
167r3u .+ .
c, = 3 f v,¥1(v,) du,, 'll_l?oq’" =0, *

fo (0)(m ¥ m® ) (V- ¥(2) = v,)"%(2)v(2)'p™(v; 2,v,) dzdv,

(6.5) = m—ZaHm(V)’ = m—2aHm(V)’
167r2u +o
lim sup [H™(V)-o%|=0, o?= """ u8y,(0,)do,
m=0 |y < b 3

and

+o 2m 4 4 1—4
/ ]:g(o)(m n m") (V-v(2) —v,) p™(V;2,0,) dzdv, < g,m*~*,
Y

I m 0
vml—l?o sup (V)

[Vism™—F
Then if we set '
Vm(t) = m*2V™(t), N=m"",
and if we assume that V"(0) is of the form m~*/2V, with V, having a finite

fourth moment, the family of processes {V™} satlsﬁes (H,) through (Hg) for
|V| < m~*, and it holds that

X™(8) = X, + m~/2 ['V"(s) ds.
0
Therefore, defining
= inf{t > 0: [V™(¢)| > m*/2-F},

it can be easily verified that Lemmas 4.2 through 4.5 and Lemmas 5.1 and 5.2
hold for {V™(- A 7™)}, replacing T by T A 7™. On the other hand, Lemma 4.4
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and (6.3) ensure that, for every T > 0,
lim P{r™ < T} =0,

m—0
which enables one to conclude, by the same arguments as in Theorem 4.6,
Lemma 5.3 and Theorem 5.5, that {X™} converges in distribution to a
Brownian motion X with covariance matrix (02/c2)1, and normal reflection
on the boundary.

(B1). Letd=2,D=(0,1)x(0,1),U=0, O={(x,v) € DX R% E(x,v) =
1/2} = D x Sy(0) and

(6.6) N =N, F¥(x,v;¢)=R(&)v, R=E[R(&],

where R(¢) is a SO(2)-valued random variable, that is a random rotation,
with probability distribution Py not concentrated on {I}. _

The operator AN corresponding to (6.6) is continuous on €3(0, R).in the u.c.
topology, by Remark 1.2. Moreover we have

(6.7 [ (v =v)P¥(x,v,d) = E[FN(x,v;¢) —v] = =(I - R)v,
A, ,

so that (1.5) holds with ¢%¥ = 0 and

(6.8) Q=(I—I_3)=F[°°Sg ‘Sin‘i],

for some angle 0, 10| < /2, and 7 = y/det(I — R) .

Let mj denote the normalized Hahr measure on SO(2) (i.e., the unique
probability measure invariant under multiplication).

Assume that

(i) P, is absolutely continuous with respect to the Lebesgue measure m;
(ii) Py is nonsingular with respect to my and, denoting by Pj; its abso-
lutely continuous component with respect to my,

P

dmy

>A>0;

.o Ial T
< —=.

(iii) 8
The various hypotheses made in Section 1 can be easily verified. In particu-
lar, as far as (Hg) is concerned, we are in the situation considered in Remark
1.5. In fact in this case P¥ is actually equal to P and independent of x, and
q" is identically 0. Moreover, by (ii) the family of transition probabilities
{P(-; - )} is aperiodic and uniformly Harris recurrent, with invariant probabil-
ity distribution the uniform distribution on S;(0), P,(-), so that (1.14) holds.
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The limit stochastic differential equation with reflection (5.4)—(1.15) in this
case reduces to

X(t) =X, + Vrcosd (I - B) 'W(t) + o(¢),
(1) = [(4(s) dI0l(s), ¥(s) €T(X(s)), v(s) =1, didlae.,

(6.9) dI®o|({t: X(t) € D}) = o,
_| cosb® siné
I = [—sin5 cos 5]N(x)’

which has a unique solution, by (ii) and by Corollary 4.4 and Theorem 5.1,
Chapter 1 in Costantini (1987). X is the reflecting Brownian motion with
covariance matrix ¢(cos 8,/7)I and direction of reflection given by a rotation by
an angle — 6 of the normal cone.

(B2). Let d=2, D=(0,1)x(0,1), U= —x,, O={(x,v) €D X R
E(x,v) =9/2}, A, = S‘/S,_—ZJC;(O) and )

1 ’ ’
Mo + ‘/—]—V—‘M(U)]fo[f(x,U) = f(x,v)] P,(x,dv'),

where P, (x,-) denotes the uniform distribution on A,. Assume pu is a
continuous function on B3(0). By Remark 1.1, (6.10) can be written as

ANf(x) = ”NfA [£(x,v') = f(x,0)] PV(x,v;dv),

(6.10) AMf(x) =N

1
Ko+ —-ul], my= sup u(v),
‘/N V7 <lvl<3

N _
611) K =N

PN(x,v; )= Al +#{VN—#(U) P,(x,) + [1 B

Ny, + ‘/yu(v) 5.0).

The operator AV defined by (6.11) is continuous on %,(0,R) in the u.c.
topology by Remark 1.2. Moreover (1.5) holds with

Q=u,I, g"(x,v)=—p(v).
It can be easily checked that the assumptions of Section 1 are satisfied. In
particular for (H,) we only need to observe that, for every p € L'(m(x, - )) and
for any Borel set B c A,, we have

fA PYN(x,v; B)p(v)m(x,dv)

o + VN p(v)
P

N
- P (x, 13)[A a p(v)m(x, dv)

Nu, + VN
+f|1- s +#N #(v) p(v)m(x,dv),

which vanishes whenever m(x, B) = 0.
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As far as (Hy) is concerned, we are in the setup of Remark 1.5 with
Af(x) = [ [£(x,0) = F(x,0)] P, dv'),
2

(1.9) holds because u is bounded by ;. Moreover (1.12) is trivially satisfied
with d(x) = 1 and w(x, - ) = P,(x, - ).
The limiting stochastic differential equation with reflection (5.4) in this case

q(x,v) = —pu(v)v and H(x,v) = p,|vv’+

I], vVEA,.

is
X(t) = X, + Miojot{a(X(s)) - [‘1)]} ds

3 1/2
+ft{9__2@} dW(s) + ['v(s) dIl(s),
0 Mo 0 N

(6.12) v(s) € N(X(s)), Iv(s) =1, dl®|ae.,

d|®|({t: X(t) € D}) =0, g(x) ='[A}L(v)qu(xr, dv), |

which has a unique solution by Theorem 4.1 in Tanaka (1979), if we assume
that w is Lipschitz.
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