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THE CONTACT PROCESS IN A RANDOM ENVIRONMENT

By Maury BramsoN,! Rick DURRETT? AND ROBERTO H. SCHONMANN 2

University of Wisconsin, Cornell University and
University of Sao Paulo

We show that in one dimension, the contact process in a random
environment has an “intermediate phase” in which it survives but does not
grow linearly. We conjecture that this does not occur in dimensions d > 1.

1. Introduction. We begin by describing the model. Each integer is
independently designated as bad with probability p and good with probability
1 — p, and these labels are fixed for all time. Into this random environment,
we introduce a process whose state at time ¢ is ¢, C Z. Points in ¢, are thought
of as occupied by particles and with this in mind the dynamics are formulated
as follows. (i) Particles are born at unoccupied sites x at a rate equal to the
number of occupied neighbors, £, N {x — 1, x + 1}|. (i) A particle at x dies at
rate A if the environment there is bad and at rate § if the environment there
is good.

The idea behind (i) and (ii) is that the reproduction rate of the particles is
not affected by the environment, but particles die more rapidly in a hostile
environment than in a friendly one. In this picture, an i.i.d. environment is not
very realistic and should be replaced by a stationary and ergodic one but, as
the reader will see, the i.i.d. model is already quite challenging to analyze.

To indicate what we would like to prove for the contact process, we begin by
describing results of Ferreira (1988) for the biased voter model in a random
environment (BVMRE). In this model ¢, is thought of as the set of people in
favor of an issue at time ¢ and the system evolves as follows:

If x ¢ ¢, then P(x €&, J¢,) ~Al§,n{x—1,x+1}ls ass— 0.
If x € £ then P(x & £, J¢,) ~ 8,06, n{x—1,x + 1}|s ass — 0.

Here 6,, x € Z, are i.i.d. random variables, and f(s) ~ g(s) means f(s)/
g(s) » 1. Two nice properties of the biased voter model that make it easy to
analyze are (i) if £ = {0} then for ¢ > 0 the set £? is either & or an interval
{l,,...,r}, and (ii) when r, — [, > 1 the boundaries are independent random
walks in (slightly different) random environments.
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When r, — I, > 1, r, (resp. /,) jumps one unit to the right (resp. left) at rate
A or one unit to the left (resp. right) at rate §,. Let e = {5,: x € Z} denote a
realization of the environment, let P denote the law of the process with
parameter A in the environment e and let

Q, = {¢( +Dforall ¢} = (I, <r, forall t}.
The results of Solomon (1975) imply:
If Elog(A/68,) < 0then Pf(,) =0 fora.e.environment e.
If E log(A/6,) > 0 then P?(Q,) > 0 fora.e. environment e.
So the critical value
(1) A, = inf{A > 0: P?(Q,) > Ofora.e. e} = exp(E logs,).

Here and throughout the paper = indicates a definition.

There is a second critical value for the BVMRE. Let £ denote the process
with £ = (—=,0] and let r,* = sup ;. A simple argument shows [see Durrett
(1988), Section 3a] that £* and ¢ can be constructed on the same space with
r} =r, on {¢2 # @). The results of Solomon (1975) imply that

r*/t - a(A) almost surely as ¢t — o,

where a()) is a constant that satisfies

>0 if e (Es,,),

a(A){ =0 ifre[1/Es;1, Es, ],

<0 ifre(-w,1/E8;.
From the last result we see that
(2) A, =inf{A > 0: a(A) > 0} = E§,.
Comparing (2) with (1), we see that if §, is random

A,=Eé, > exp(Elogé,) =A,.

In words, the BVMRE has two critical values: one threshold for survival and a
higher threshold for linear growth.

The point of this paper is to prove the last statement for the contact process
in a random environment (CPRE). To get conditions for sublinear growth, we
begin by considering what happens when & = 0, that is, particles in good
environments never die. To state our result in this case, we need some
preliminaries about the ordinary contact process (i.e., when all the death rates
equal 8). Let ¢° denote the process with ¢ = {0}, let P; be the law of the
process when the death rate is § and let

0, - {¢° + @ for all 1),
8, = sup{8: Py(Q,) > 0},
r? =sup¢l,

0 _ 0
R® = supr,’.
t=0
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By considering the state of the process the first time n € £2, it is easy to see
that
P(R°>n+mlR°>n) > P(R°>m).

If welet a, = —log P(R® > n)then a,,,, <a, + a,, and it follows [see, e.g.,
Durrett (1984), page 1017] that

a,/n— infa,/m=vy (5)
m>1

and

(3) P(R°>n) <exp(-v,(8)n).
It is known that

(4) v, (8) >0 foré >é,.

L, (8) =1/v,(8) is called the spatial correlation length for the subcritical
contact process. For more on this quantity and the proofs of the facts quoted
above, see Durrett, Schonmann and Tanaka (1989).

The next result shows that vy, (8) is important for the study of the CPRE.

Let
p, = inf{t: n € £},
Q, = {0 + @ for all t}.
THEOREM 1. Suppose A >34, 6 =0, and let p =y, (A)/log(1/p) where
p =P(5, = A).

(@) If u < 1 there is a constant ¢ > 0 so that p,/n — c a.s. on {},.
) If u = 1 then (log p,)/log n — u in probability on Q..

Here X, — a in probability on ), means that for all n > 0,
P(X,—al>7,0,) -0

and P is the probability law for the CPRE, that is, we do not fix the environ-
ment. In other words, on (), the right edge

t/c ifu <1,
0 _ 0
r, =supé, = {tl/” ifu>1.

The key to the proof of Theorem 1 is the following proposition.

ProposITION 1. Consider a modification of the ordinary contact process Z,
with death rate A > &, in which {, = {0} and the particle at 0 never dies. Let
o,=inf{t: n €{,}). Asn - o,

(log o,)/n — v, (A) in probability
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and
(log Ea,,)/n — v, (4).

Once this easy result is established, the derivation of Theorem 1 is straight-
forward. We view the environment as a sequence of bad stretches (maximal
intervals of bad sites) with good stretches in between, and look at the time it
takes to reach the good sites 0 < x,, x,,... that are at the left edges of good
stretches in [0, ©). Once a good site becomes occupied it never becomes vacant,
so if T, is the time to reach x, then T, —T,_,, k> 2, are iid. (on
{T, < o} = Q,). Proposition 1 implies that if u < 1, E(T), — T},_,) <  and (a)
follows from the strong law of large numbers.

If u > i, standard results about coin tossing imply that the largest bad
stretch in [0, n] is ~ log n/log(1/p), and Proposition 1 implies that the time
to cross this bad stretch is = n*. This provides a lower bound on the time to
reach n. The upper bound is proved by computing expected values and by
using Chebyshev’s inequality.

Theorem 1 provides upper bounds on the rate of growth when § > 0. To
prove that the contact process has two phase transitions, it is enough to show
the following theorem.

THEOREM 2. Supposep = P(8, = A) < 1. There is a §,(A, p) > 0 so that if
8 < 84(A, p) then the CPRE suruvives, that is, for a.e. environment e:

Pe(&) + @ forallt) > 0.

Here e = {5,; x € Z} and P°¢ is the probability law of the contact process in the
fixed environment e.

We will now describe the intuition that leads to the proof of Theorem 2,
ignoring technicalities. If a single bad site is surrounded by two good stretches
of length greater than N, (the first of a rapidly increasing sequence of
constants to be chosen later), it is harmless and can be ignored. Conversely,
good stretches of length less than or equal to N; are bad news and are called
1 gaps.” Moving to the next level of the construction, we can ignore a “1 gap”
that is surrounded on both sides by N, consecutive good stretches of length
greater than N, but two 1 gaps” that are separated by less than N, such
intervals are bad news and become a ‘2 gap,” etc.

In Section 3 we show that if the N, are chosen appropriately and the
density of bad sites is small (a simple argument reduces the general case to
this one), then the fraction of sites in gaps goes to 0 very rapidly as k& — o.
This sets the stage for a multiscale renormalized site construction in Section 4.
We prove by induction that the contact process survives long enough in the
good region between “k gaps” to tunnel through them.

Combining Theorems 1 and 2 gives information about the * phase diagram”
for CPRE that is drawn in Figure 1. The regions A, B, C and D there are
open and have boundaries that are solid lines. The process survives in A U B
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Fic. 1.

and dies in C. It grows linearly in A and has sublinear growth in B U C. We
do not discuss D because there A < §, that is, the good environment is worse
than the bad.

We know that B is not empty because Theorem 1 implies B U C contains
the region to the right of the dotted line and Theorem 2 tells us that for any
A < « the system survives for small . It is known that the regions A and C
meet at the diagonal since § = A corresponds to the ordinary contact process.
We have drawn the diagram in such a way that A and C do not meet below
the diagonal but this is just a guess.

Quantitative information about the boundaries of A, B and C is, as usual,
rather sketchy, but one thing is simple to prove. By comparing the CPRE with
the BVMRE, one can conclude that if E(log §,) > 0 then the CPRE dies out,
and if E(5,) > 1 then CPRE has sublinear growth. This observation has been
made independently by Liggett (1989) who considered a version of CPRE in
which the birth rates are also random and has proved results about the
survival and extinction of the contact process in general nonhomogeneous
environments that give results for CPRE as special cases.

All of the above discussion has concerned the one-dimensional case. Since
random walk in random environment is poorly understood in d > 1, we do not
expect to make much progress in d > 1. However, one thing is easy to show
and it seems worthwhile to spell out some conjectures about CPRE in d = 2.
We begin with the case A = «, that is, bad sites are never occupied. If the
density of good sites (1 — p) < p(site), the critical value for oriented site
percolation, then the CPRE dies out for all § > 0 since all the good sites lie in
finite clusters. Conversely, we have the following theorem.

THEOREM 3. Suppose A =, 1 —p > p(site) and & < 8.2), the critical
value for the contact process on Z. Then the CPRE grows linearly, that is,
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there is a constant b > 0 so that on Q. = {¢2 # O for all t):

liminf diameter(£0)/t2b a.s.

n—ow

Much more than the last conclusion should be true.

CONJECTURE 1. Suppose A = », (1 — p) > p(site) and let 5,(CPRE) =
sup{é: P(Q,) > 0}). If 6 < 8 (CPRE) there is a nonrandom convex set D so that
if Cy = {x that can be reached from 0 by a path of good sites} and n > 0 then
a.s.on (.

t(l—m)DNCyc &l ct(l +n)D forlarget.

In words, £ grows linearly and has an asymptotic shape. The C, is needed
for the lower bound since ¢° c C,. For a discussion of similar results in
nonrandom environments see Chapters 1, 3 and 11 of Durrett (1988). It
should not be too hard to prove the last result for § < §,(2). The challenge is
to prove it for § < § (CPRE).

In the case A < », we believe that the following is true.

CONJECTURE 2. The conclusion of Theorem 3 holds in d > 1 when A <
and & < 8 (CPRE).

Intuitively, in d > 1 the process is not forced to go through large regions of
bad sites but instead can go around them. Proving Conjecture 2 is likely to be
difficult. Only recently have Bezuidenhout and Grimmett (1989) shown that
the ordinary contact process grows linearly whenever it survives.

The remainder of the paper is organized as follows: Theorem 1 is proved in
Section 2, Theorem 2 is proved in Sections 3 and 4, and Theorem 3 is proved
in Section 5. The three proofs are independent of each other and can be read
in any order.

2. Results for 8 = 0. In this section we will prove Proposition 1 and
Theorem 1. Our first step is to construct the process from a graphical
representation. For each x,y € Z with |[x —y| =1, let {T*": n > 1) be a
Poisson process with rate 1, and let {U*: n > 1} be a Poisson process with rate
8, (= the death rate at x). At times T7\*»>) we draw an arrow from x to y to
indicate that if x is occupied then y will become occupied (if it is not already).
At times UZ, we put a § at x. The effect of a § is to kill the particle at x (if one
is present).

We say there is a path from (x, s) to (y, t) and write (x, s) — (y, ¢) if there is

a sequence of times s, =s <s; <s§,< '+ <s§, <s,,.; =t and spatial loca-
tions x, = x,x,...,x, = y so that:
(@) for i = 1,2,...,n there is an arrow from x;_, to x; at time s;;

(ii) the vertical segments {x;} X [s;,s;,,], i=0,1,...,n, do not contain
any é8’s.
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It is sometimes convenient [e.g., in (1) below] to think of the path as being the
continuous curve that is the union of the segments in (ii) and the arrows in (i).
To define the process starting from an initial configuration A, we let

¢ ={y:forsome x € A, (x,0) > (y,¢)}.

Since the arrows in a path indicate births, and the absence of &’s indicate that
the particles in the path did not die before they gave birth, it is easy to see that
the above recipe constructs the contact process. For more details see Section
4a of Durrett (1988) or Chapter 6 of Liggett (1985). In Section 4 we make
constant use of the following property.

(1) CrossiNG LEMMA. If paths from (x,s) = (y,t) and (x',s') = (y',¢t)
intersect (i.e., the corresponding curves do), then the union contains paths
from (x,s) = (y',¢) and (x', ') = (y,).

Our first result concerns the case §, = A. Let

o, = inf{t: {0} X [0,) = (n,t)},
where {0} X [0, %) — (n,t) is short for “there is a path from some (0, s) with
s>0to(n,t).”

ProrosiTiON 1. If A > 8, then as n — =,

(a) (log o,)/n — v, (A) in probability,

(b) (log Ea,)/n = v, (A).

Here and below, y, (A) and R° are the quantities defined in the Introduc-
tion.

Proor. Let T,,T,,... be the times at which there are arrows from 0 to 1
and let N(¢) = sup{k: T}, < ¢}. If there is a path from {0} X [0, ¢] to {n} X [0, ¢],
then there is a path from {1} X {T),..., Ty} to {n} X [0,¢] that lies in
[1,7] X [0, ¢]. If N(¢) < 2¢, this probability is smaller than 2¢ - P(R® > n — 1).
Since P(N(¢) > 2¢) - 0 as ¢t —» « by the weak law of large numbers, taking
t = n" ! exp(y, (A)n) and using (1.3), we can conclude

(2a) P(o, <n 'exp(y, (A)n)) -0,
(2b) lim inf (log Ec,) /n > v, (A).

To get bounds in the other direction, let 7% = inf{¢: ¢ = @). It is known
[see Durrett (1984), page 1017] that if A > §, then there is a constant y, > 0
so that

1
- log P(r°2n) = —v,(4)
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and
P(t°2n) <exp(—v,(A)n).
The subscripts on our two gammas indicate that they concern the behavior
parallel (||) and perpendicular (L) to the flow of time.
Consider the events A" = {(0,(j — Dn?) — {n} X [(j — Dn?, jn®)}.If n > 0
then for large n,
P(A?) = P(A}) 2 P(R°zn) — P(7° 2 n?) > exp(—(1 + n)y. (A)n).

Since the A7 are independent and (1 —x~Y** < e * for x > 1, it follows that

(3a) P(o, > kn?exp((1 + n)y, (A)n)) <e”*
for large n. Summing over k gives
(3b) Eo, < (1 —e ) lp2 exp((1 + n)y. (A)n).

Part (a) now follows from (2a) and (3a), (b) follows from (2b) and (3b), and the
proof of Proposition 1 is complete. O

Suppose now that the §, are i.i.d. and = A > §, or = 0 with probabilities p
and 1 — p. Let

p, = inf{t: n € £},
Q, = (£ + @ for all ¢},
r=v.(4A)/log(1/p).

THEOREM 1. (a) If u < 1 there is a constant ¢ so that p,/n — c a.s. on ().
() If u > 1, then (log p,,)/log n = p in probability on Q..

Proor. If we fix A and vary p, u increases continuously from 0 to o, so
the result for u = 1 follows from the ones for u < 1 and p > 1. Our second
reduction is to argue that it is enough to prove the result when the origin is
good. If 6, = A, let I = sup{x < 0: 5, = 0}, r = inf{x > 0: 5, = 0} and 7 = inf{z:
r € £0). It is easy to see that Q, = {7 < =}, since if the process lives forever, it
must occupy / or r and once [ is occupied, r will eventually become occupied,
since the particle at ! will never die. Once r bécomes occupied, it will never
become vacant. The definition of r assures us that the environment to the
right of r is i.i.d. with the original distribution. This shows that the time to
reach n > r has the same distribution as r + (the time to reach n — r when
the origin is good), so we can without loss of generality suppose §, = 0.

Let b, =0 and for i > 1 let

a; =inf{m > b,_,:6,, = A},
b, = inf{m > a;: 6,, = 0},
L,=b;,-a,,

N(n) =inf{i: b; > n}.
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Notice that 8,, = A on[a;, b;) and §,, = 0 on [b;,a,,,), so L; is the length of
the ith “bad stretch ” and N (n)is the number of bad stretches that touch the
interval [0, n]. For i > 1 let

U, =inf{t:a, - 1 € &},
V; = inf{t: b, € £/},
W-Vi-U,
tr = (Pr+1 — Pr)Ls,=5,,,=0)
W, is the waiting time to cross the ith bad stretch. The ¢, are defined so that

n—1 N(n)-1 n—1 N(n)
(4) Ltt X VViSPnSZtk"'ZVVi'
£=0 i=1 E=0 i=1

The t,, k > 1, are a one-dependent stationary sequence with P(tk 0=1-
(1 -p)? and
P(ty > t) = (1 -p)’e™,

so it follows from the ergodic theorem that
1n-1 2
(5) — Yt~ (1-p)
=0
To attack the other term in (4), we begin by observing that as n — o,

(6) N(n)/n - p(l—-p) as,

since there is one interval for each & with §, = 0 and §,,; = A. At this point
the argument divides into the two cases.

Cast 1. p < 1. In this case EW, < . To prove this, pick n > 0 so that
w1 + 1) < 1 and observe that part (b) of Proposition 1 implies that there is a
constant C so that

(7 Eo, < Cexp((1 +m)y, (A)k).

Observing that P(L; = k) = (1 — p)p*~! and conditioning on the length of
the interval gives

(8) EW,< ¥ (1 -p)p* 'Cexp((1+m)y. (A)k) <=

k=1
by the choice of 7. With (8) established the rest is routine. The strong iaw of
large numbers implies

m

1
(9) — L Wy~ EW, as,
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and combining this with (6) yields

1 N
(10) — Z W, = p(1 - p)EW,.
L

Since the W, are ii.d. with EW, < o, an application of the Borel-Cantelli
lemma implies W,,/m — 0 a.s. as m — =, and it follows from (6) that

(11) Wyny/n = 0 as.
Using (5), (10) and (11) in (4) now gives

p./n = (1 —p){(1 - p) + pEW,} as,
proving part (a).
CasE 2. u > 1. When EW, = «, the situation changes drastically and the

largest W, with 1 <i < N(n) dlctates the size of the sum. We begin by
observing that an easy argument left to the reader shows

(12) (log k)" lmakaj - 1/log(1/p) a.s.
<J=<

[For a much more general result see Barndorff-Nielsen (1961).] Let

M,= max L;.
1<j<N(n)

Letting £ = N, — 1 and using (6), which implies log(N, — 1)/logn — 1 as.,
we get

(13) M,/(logn) — 1/log(1/p) as.

To get a lower bound on p,, we look at the time to cross the longest
interval. If that interval has length greater than or equal to L then (2a)
implies that

(14) pn =L "exp(y, (A)L)
with high probability. Letting n > 0 and
L = (1 - m)log n/log(1/p)
in (14), we have shown
(15) pn = n "™ log(1/p)/(1 — n)log n

with high probability which proves half of (b).

To get an upper bound on p,, we observe that the first term on the right in
(4) is of order n by (5) and hence can be ignored in proving (b). To estimate the
second, we observe that N, < n and if n > 0 then by (13) we can assume that
all of the first n bad intervals have length at most

K, = (1 + n)logn/log(1/p).
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Now from part (b) of Proposition 1 there is a constant C so that
J
(16) E(W;L;<J) < Y, (1-p)p’Cexp((1 +n)y.(4)j)-
j=1

The assumption u > 1 implies p exp((1 + 1)y, (A)) > 1, so
A7) E(W;L,<J) < Clexp((1 +m)v, (A) ~ log(1/p)))’.

Here and in what follows, C is a constant whose value is unimportant and will
change from line to line. Setting J = K, and throwing away a term less than
1, we see

(18) E(W; L, <K,) < Cpr+m* -1,
Summing and recalling that © > 1 and 1 > 0,
n
(19) E|Y W; max L, <K, | < Cnr+m?,
i=1 1<i<n

As remarked above P(max,_;_, L; < K,) — 1, so the described upper bound
follows from Chebyshev’s inequality. O

3. Blocks and gaps. In this section we will define the terms “k block”
and “k gap”’ used in the Introduction and give the argument sketched in the
Introduction. The first step is to reduce the problem to the case in which the
bad sites have small density. Let ¢ > 0 and pick « so that p* <e. Divide
[0,1,2,...} into intervals I; = {(j — Dx,..., jx — 1}, j = 1, with length «. If
8, =08 for some n €1I;, we set e) = G but if §, = A for all n €I, we set
¢? = B. The superscript 0 indicates we are in the Oth step of the construction.
All the definitions we will give and the computations we will do are valid (with
some minor modifications) for « > 1 if one replaces ‘“site’’ in the arguments
below “by interval of length «.” For simplicity, we will only give the proof for
the case k = 1. In this case e = G if §, = 6 and el = B if §, = A.

Let T =0, Yy = 0 and for n > 1 let

T? = inf{m > T2 ;: el = B},
X1 =T -T%, -1,
Yl =1.

For example, if the sequence e? is

78 12 20
GGGGGGBBGGGBGGGGGGG B

then ’
T =1, T =8, T =12, T = 20,...,
X! =6, Xl=0, X;=3, X/=8,....
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It follows from the definition that {X}: n > 1} and {Y}: n > 1} are i.i.d.
sequences. Notice that X, = 0 if there are two consecutive B’s. So X! is the
length of the nth block of G’s and Y,! is the length of the nth block of B’s,
with the understanding that two consecutive B’s are separated by a block of
G’s of length 0.

The intervals (T'°_,, T'°) are our “1 blocks.”” The single bad sites in between

n—1*%n
are thought of as gaps between the blocks and so are called “1 gaps.” If
X > N (the first of a rapidly increasing sequence of constants N, that will be
specified later) we call the nth “1 block” good and set e} = G, otherwise we
call it bad and set e} = B. The next step is to combine the good ““1 blocks” to
make “2 blocks.” In order to make the proof work, we need to give our ““2
blocks” two tries to get started. Let 7y = 0 and for n > 1 let

T, ,+2 ife (T} ,+1)=B,
SI — n n
" T, ,+1 ife!(T) ,+1)=G,
where we have written e'(m) for el (with m = T!_ | + 1) to avoid double
subscripts. Let

T) = inf{m > S}: e}, = B}
and
ul=1T!- S}

For example, if the sequence e} is

45 13 14 15 19 22
GGGBBGGGGGGGB BBGGGBGGHEH

then
Si=1, S; =6, Si =15, Si =16, 83 = 20,...,
T! =4, T) = 13, Tl =15, T} =19, Td=22,...,
U} =3, Uy =1, Ul =0, Ul =3, Ul=2,....

Sl and T! — 1 are the indices of the first and last ‘“1 blocks” in the nth “2
block.” U} is the number of ““1 blocks” it contains. For n > 1, we let

X2=X"(S))+Y(S)) + X' (Sp+1)+ - +YY(T,) - 2) + X(T,} - 1),
YNT,_,) + XY T} _,) + Y (T}, +1) ifS:=T} +1,
Y2={YY T} ,) + XY T} )+ Y} T\, + 1)
+XY (T, + 1)+ Y (T}, +2) ifSl=T! +2.
It follows immediately from the definition that {X2: n > 1} and {Y,%: n > 1} are
i.id. To understand the last two definitions, recall that “1 blocks” are inter-

vals of G’s that are separated by ‘1 gaps” of length Y,!. X2 then gives the
number of sites in the nth “2 block” and Y,2 the number of sites in the “2
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gaps’’ between the “2 blocks.” Notice that
(1) Y2 <3+ 2N,

since XX(T}) [and XX(T! + 1) if present] are less than or equal to N;. The
careful reader will have noticed that we neglected to define Y7 = the number
of sites in the 2 gap” to the left of the first “2 block.” Let

. Ys if S} =1,

O \Yr+xi4yr ifSl=2.
The distribution of Y is different from that of Y,2, n > 1. Indeed one of the
goals of this section is to show that with probability 1, Y¢ stops growing.

The rest of the construction is the same as the last step. Let £ > 2. If

X* > N, we set e* = G and call the nth “k block” good, otherwise e} = B
and we call it bad. We set T} = 0 and for n > 1 define S}, T and U} by
replacing the superscript 1 by k in the earlier definitions. Then X*+1 and

Y**! are defined by replacing superscripts 2 by & + 1 and 1 by k. The only
thing that changes is that if v, is the largest possible “k gap” then

(2) Vyi1 < 2N, + 3v,,

where v, = 1, since a “k + 1 gap” is made up of at most three “%k gaps” and
two bad “k blocks.”

(2) gives upper bounds on the sizes of the gaps. Our next goal is to show
that the blocks grow quickly. To do this, we let A € (0, 1), let

N, =A-@D
and define B,(k) for i = 1,2 by
P(X} < N,) = A\P®,
P(XE < Nyiy) = 2P0,
Our goal is to show that if ¢ is chosen so that
(*) By(k) = 30(1.3)%,  B,(k) = 20(1.3)"

holds for k& = 0, then (*) will hold for all £ > 1. The next inequality explains
why we gave our “k + 1 blocks” two tries to get started.

Bi(k + 1) > 2B,(k) and hence if (*) holds then
(3)

k+1

By(k + 1) > 40(1.3)* > 30(1.3)**".

Proor. (3) follows from the observation that

P(X}*' < N,,,) < P(max(X}, X£) < N,,,) = P(X} < N,\y)*.
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The equality comes from the fact that the X! are i.i.d. To prove the
inequality, we consider three cases:

(1) Xt > Niyrs
(ii) N, <X} <Ny, X3 > Nyio,
(i) X* <N, XE>N,, ..

In the first two cases it is clear that X**! > N, ., since X (resp. X}) is
included in the sum of X!*!. In the third case it is true thanks to our
convention for starting “k + 1 blocks.” S = 2, so X} is included in the sum
for Xk*1. O

(4) Suppose () holds. Then B,(k + 1) > 20(1.3)¥*1,
Proor. We begin by observing the X f are identically distributed and
N,=1s0
P(X}*' < N,,,) < P(X} < N, for some j < N, ,)
< N, ,AP® < A-@LDF+2430(1.3)%
This implies
Ba(k + 1) > 30(1.3)* — (1.1)**?
> 20(1.3)" " + (1.3)*{4 - (1.1)%)
> 20(1.3)**". O

(3) and (4) together show that if (*) holds for 2 = 0 it holds for all 2. Now

(5) Y P(Xf<N,)= ) A<y A0 < o
k=1 k=1 k=1

So by the Borel-Cantelli lemma X} > N, for £ > K(w) where K(w) < © a.s.
This implies that S¢ = 1, and Y} = YX“ for k > K(w). That is, the initial “%&
gap” stops growing after a while. Set y* = 1 + YX©). Note that y* is the first
site in the first % block for £ > K(w). It is also the first site in some ‘“‘k block”
for k < K(w). In the next section we will show that if § is small the CPRE has
probability greater than or equal to 1/2 of surviving starting with y* occu-
pied.

4. Renormalization argument. In this section we will complete the
proof of Theorem 2. Recall
(1) N, = A~
Throughout the section we will suppose
(2) A < 1000710,
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This ridiculously small value of A is needed for (14) below. To help the reader
find his or her way through the forest of details, the section is divided into five
subsections.

4.1. Preliminaries on the sizes of blocks and gaps. Before getting involved
in probabilistic details, we will do some arithmetic. By (3.2) all the “k gaps”
are smaller than v, where v; = 1 and

Vy < 2Nk—l + 3Vk_1 for k > 2.
(3) LEMMA. For all k > 1, Vy < 3Nk—l and Nk—l < Nk/97 SO v, < Nk/3‘

Proor. The third inequality is a consequence of the first two. Iterating the
bound above and using v; = 1 < 2 < 2N, to neaten things up gives

k
Vg < Z 2 ° 3j_1Nk_j.
=1

To estimate the sum, we observe N, = (n,_)"?, so for & > 1,
Ny 1/Np = (Nyop) ' <40 < 1/9
when A < 971°, Consequently,

Vg < Nk—l Z 2 ° 3j_1 ° 9_(j_1) = 3Nk—l‘ O
Jj=1

In the last section we described a procedure that started with ‘1 blocks” =
intervals of good sites and then inductively combined “% blocks” to get “& + 1
blocks.” For the argument below it is inconvenient if the blocks are too long so
our next step is to show:

(4) LEMMA. By breaking the “k blocks” into pieces that begin and end with
“(k — 1) blocks” we can without loss of generality suppose that the length of
each “‘k bleck” is in [N,, 3N,].

Proor. We proceed by induction. The conclusion is clearly true when
k = 1 since any string of G’s with length in [jN,(j + 1)N;) can be broken
into j — 1 strings of length N; and 1 with length in [N,2N;). When & > 1
and we have a “k block’ of length greater than 3N,, we make our first cut at
the first right endpoint of a “¢ — 1 block” that we encounter after N,. In the
worst possible case the point N, lies in a “(k — 1) gap” (marked by X X X X’s
in the diagram below).

X X X X X xXXX

N, cut
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Even in this case, the piece to the left of the cut is
< Nk + Vk—l + 3Nk—1 < Nk + Nk—1/3 + 3Nk—1 < Nk(37/27)

by (3). The “(k — 1) gap” after the cut becomes a “k gap,” and we are left
with a “k block” of length at least (3 — 38/27)N, > N,. O

4.2. The three inequalities that are the key to the proof of Theorem 2. Let
(5) Mk — a—6N(k—l)’

where N(k — 1) is an alternate way of writing N,_; to avoid subscripted
superscripts and a > 0 satisfies

(6) a<e (1l-e1), a<e®? and a<a,,
where «, is a constant we will introduce at the end of this subsection. Let
[a, b] and [c, d] be “k blocks” separated by a “k gap” (b, c¢). Let

Cy, = {{a} x {0} - {b} X [0,8N, M, _,]in[a,b] X R},

D, = {[a,b] x {0} - [a,b] X {2M,} in[a,b] X R},

Ey.y = {{a} X [0, M,] - {d} x [0, M,]in[a,d] X R},

where S — T in [a, b] X R means there is a path in the graphical representa-
tion (described in Section 2) from some point in S to some point in T that
stays in [a, b] X R. We will explain the rationale behind the choice of these
events later. To see the relative sizes of the boxes involved, note
(7) Mk/Mk—l = a—G(N(k—l)—N(k—Z)) > a—sN(k—l)

by (8), and N, = N}, by (1), so 3N, M, _, is much smaller than M,.
Let 7, = 1/4 and m; = 36a™V~?/7 for j > 2. We will prove by induction
that

k
pr=P(C) = [1(1-m),
Jj=1

g, =1-P(D,) <alN*-D,
r,=1-P(E,) <aM® D,

The = must not be taken too literally. The exact probability of the events in
question depends on the lengths of the “% blocks” and ‘“k gaps’ involved and
on the lengths of the “j blocks” and “j gaps” they contain. What we are
proving, of course, are bounds that hold whenever all ““; blocks” have length
in [N;,3N;].

Before proving (*), we will indicate why it implies Theorem 2. We begin by
noting that the assumptions that A < 100071 and & < 1/27 are more than
enough to conclude:

(*)

(8) LEMMA. LT5_,m; <1/8 and hence I1}_,(1 - m)>1-L% m;>5/8
for all k.
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Proor. NG + 1) = N > A~%IN() for all i > 0, so our choice of A
implies N(i + 1)/72 > N(i)/72 + 1. Using this and the definition of ;,
Y m < 362N/ Y alU=2 < 79 - 271000%
ji=2 j=2

since @ < 1/2, N(0) = A~! and 72 < 100. The right-hand side is much smaller
than 1/8 so the proof of (8) is complete. O

Applying P(C,) > 5/8 to the “k block” [a, b] containing the point y*
identified at the end of the last section, we conclude that with probability
greater than or equal to 5/8 there is a path from {y*} X {0} to {b} X
[0,3N, M, _,]. (Recall @ = y*.) Now @ < 1/27 and N(0) = A~" > 1000'® are
more than enough [with (*)] to imply P(D§) < 1/8. As we observed after (7),
3N, M, _, is much smaller than M, for all &, so the crossing lemma implies
that on C, N D,, the contact process starting with y* occupied survives up to
M,. P(C, N D,) = 1/2, so (*) implies the conclusion of Theorem 2.

To prove (*), we will use C, and D, to produce E,,; and then we use D,
and E, , , to produce D, , and C, . To get the induction started, we observe
that if 8 = 0 and «, is chosen small enough then P(C,) > 7/8 for a < a, and
P(D,) = 1. So if 8 is small then the inequalities for P(C,) and P(D,) hold.
This is the only place where & appears in the proof.

4.3. Estimating P(E,,,). To cross the “k gap” (b, c), we observe that if
I =c — b then:

(9) LEmma. P((b,0) = {c} X [I — 1,1D = a".
Proor. The event in question occurs if for 0 < m <[ we have

A, = {there is birth from m to m + 1during [k, & + 1)

and no death at m during [(m - 1)+, m + 1)}.

[The (m — 1)*= max{m — 1,0} is to take care of m = 0.] The bound follows
by noting that the A, are independent and have P(A,) = a by (6). O

Note: For ease of later reference we will call the event used to get the lower
bound in (9) “drilling through (b, ¢).” Observe that ! < v, by (3.2).

The probability in (2) is small but we compensate for that by giving
ourselves lots of opportunities. See Figure 2. We look for crossings
(a, TiN M, _,) = {b} X [TiN,M,_,,(7j + 8) N, M, _,]

for 0 <j <M,/TN,M,_,. (j is an integer.) These events are C,’s and by
induction and (8) have probability greater than or equal to 1/2. At the end of
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each successful crossing we try to drill through (b, ¢). If the drilling succeeds,
we reach c at a time

<(T+3)NM,_, +v,<(7j+4)N,M,_,

by (3). At the end of a successful drilling there is a probability greater than or
equal to 1/2 of a crossing from ¢ to d before time (7j + 7)N, M, _,. Combin-
ing the three estimates we have a success probability of at least

al/4 > a'r/4

on each attempt.
We have arranged things so that the successive attempts are independent.
To count the number of attempts, u(k), we observe

(10) u(k) = M,/IN,M,_, > a5¥*~D /1N,

by (7). [Here and in what follows we write N(k — 1) for N,_; to avoid
subscripted superscripts.] The successive attempts are independent so

Fos1 =1 = P(Ey, ;) < (1 — a/4)**® < exp(—n(k)a"/4),

since 1 — x < e *. The width of the “k gap” v, < 3N,_,; by (3), so using (10)
now gives

Tpi1 < exp(—a 2NED/28N,).



978 M. BRAMSON, R. DURRETT AND R. H. SCHONMANN

To neaten things up, observe that exp(y) >y3/3! for y >0, and N, =
(N,_D'V1, s0

rysr < exp(—8N(k — 1) log(1/a)’/(28 - 6))

< exp - N(k)log(1/a){log(1/a)?/(7 - 3))) < a™®),
since our choice of a in (6) implies log(1/a)® > 21. This proves the third

inequality in (*).

4.4. Estimation of P(C,,,) and P(D,,,) by a renormalized site construc-
tion. To begin, we observe that a ‘“(k + 1) block’ by assumption has length
in[N,,,3N,, ] so it is composed of L “k blocks,” where

N,41/(8Ny + ) <L < 3N, 1/N,.
Nk+1 = (Nk)l‘l and v, < Nk/3 by (3)) S0
(11) (0.3) N < L < 3N

Suppose that the “k blocks’’ that make up our “(k + 1) block’ are (listed from
left to right) [a,, b,],...,la;,b.). (a; =a,a;, =0b.) Let

L, ={(,j):1<i<L,j=>1,i+jiseven}.
We say that (i, j) € £, is open if
[a:, 0,1 X {(j — DM} - [a,, 5] X {(J + 1) My},
{6} X [iM;, (j + DM,] = {a,_1} X [iM,, (J + D M,],
{a;} X [JMy, (G + D M,] = {b;11} X [iM,, (J + 1) M,].

When i = 1 (resp. i = L) we do not require the second (resp. third) path to
exist since these events involve boxes that are undefined. See Figure 3 where
the paths for (i, j) = (1, 1) and (2, 2) are drawn as solid lines.

The events are defined in such a way that

the probability that a site is closed, p, satisfies p < q, +

(122) 2ry .1 < 3a™M*~D by induction;

(12b) if i — | +|j —Jj'| > 2 then the events “(i, j) is open”
and “(i’, j') is open’’ are independent;
if there is a path from (i,1) to (j,n) on 7}, that is, a
sequence of open sites (i;,1),...,(i,,n) in £ with

(12¢) i,=i,i,=j,and li,, —i,_4/ =1 for 2 <m <n, then

there is path in the contact process from [a;, b;] X {0} to
la;, b1 X {(n + DM,)} in [a, b] X R.

In the terminology of Section 9 of Durrett (1984), we have just demon-
strated that the CPRE dominates one dependent oriented percolation on .#}.
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The desired bound on P(D;,, ;) now follows from:

(13) LEMMA. If p < 6738 then the probability that there is no path from
{1,...,L} x {1} to {1,..., L} X Kon £, is at most 2K(3p"/3¢)~.

The proof of (13) is a standard ‘‘contour argument.” To avoid interrupting
the flow of ideas, it is postponed to the end of the section. (12a) tells us that
p < 3aN*-D < 3(2—1000100) < 6736,

Taking K = M, , (> 2M,,.,/M,) in (13) gives
Aoy <2 337L/36(aN(k—1))L/36Mk+1 <92 34N(k)°‘1(aN(k—1)N(k)°~1/120)a—6N(k)’
since (0.3)N2! < L < 3N2! by (11). Now

N(k - 1)N(k)°'1 _ N(k)l/l.lN(k)O.l _ N(k)l'u/l'l
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and
(14) N(E)*O1 > 27001 > 1000 > 8 - 120
by our assumption on A. So N(k — 1)N(£)%!/120 — 6 N(k) = 2N(k) and we
get
Qa1 <2° 81N(k)°~1a21v(k) < aN(k)’

since a < 1/81. We have thus proved the second inequality in (*).
To estimate p,,, = P(C,,,), we let

Z,={(i,j):i,j = 1and i +j is even}

and use a second result about oriented percolation:

(15) LEmMA. If p <6 " and L < K/2 then
P((1,1) > {L} x [0, K] on £,) = 1 — 12pV/™.

Again the proof is postponed to the end of the section. Now if
{a} x {0} - {b)} X [0,8N,M,,_,]in[a;,b,] X R

(i.e., C, occurs in the first “k block” [a,, b,]; see the dotted line in Figure 3)
and we have

F,,, = {there is a path from (1,1) to [ L,) X {3N,,} on £},
then the crossing lemma implies C,,; occurs in the “(k + 1) block” [a, b]. To
check this, recall that C, ., is the event
{a} x {0} = {b} x[0,3N,,,M,]in[a,b] XR

and the site (i, j) in ., corresponds to the space time box [a;,b;] X
[(j — DM,,(j + 1)M,] in the graphical representation of the contact process.

C, and E,,, are increasing events on the graphical representation, so it
follows from Harris’s inequality [see Durrett (1988), page 129, and use the
construction in Section 5c¢ to extend the result to continuous time] that

Pr+1 2 PpP(Ey, ).
(12a) tells us
p< 3aNE-D < 3(2—1009100) <62,
Now L <3N,,,/N, <N, ,,/2 by (4) and the definition of N,, so using (15)
we have
P(E,,;) =1 — 12(3aN¢-1)"™

Since 3772 < 3 this proves the first inequality in (*) and completes the
induction step.

4.5. Estimates for one-dependent percolation. To complete the proof, we
need to establish (13) and (15). We use the notation of Section 10 of Durrett
(1984) which the reader can consult for more details.
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Proor oF (13). Let € be the set of points that can be reached by a path
from {1,..., L} X {1}. Let D = {(a, b): la] + |b] < 1} and

W= U (i,j)+D.
G,j)e€

D is for diamond and W is for wet region. The boundary of the unbounded
component of [1, L] X [0,) — W is denoted by I' and called the contour
associated with €. We orient the boundary of D in a counterclockwise fashion
and use the orientation this induces on T'. If there is no path from {1,..., L} X
{1} to {1,..., L} X {K} then there is a contour starting on {L} X {1,2,..., K}
and going to {1} X {1,2, ..., K}. The number of starting points for the contour
is less than or equal to K, and once the starting point is chosen there are less
than or equal to 3" contours of length n.

The next thing to argue is that each contour has probability less than or
equal to p"/36, To do this, we call segments of T' that decrease (resp. increase)
the x coordinate segments of type 1 (resp. type 2), and let n; be the number of
segments of type i. It is easy to see that

n,+ny,=n and n, —n,=1L,

so n; > n/2. For reasons indicated in Section 10 of Durrett (1984), there must
be greater than or equal to n,/2 closed sites for the contour to exist and there
is a subset of size greater than or equal to n,/18 that are independent, so a
contour of length n has probability less than or equal to p”/3¢. The shortest
possible contour has length L, so if p < 6 3¢ the event in (12) has probability
at most

K3mpn/3 = K(3p1/36)L/(1 _ 3p1/36) < 2K(3p1/36)L' O

s

L

ProoF oF (15). Let € be the set of points on -#; that can be reached from
(1,1). Define D, W and T, and orient I" as in the last proof. If F,,, does not
occur then there is either

(A) a contour from (2, 1) to {1} X [2, ») or
(B) a contour from (2, 1) to some point (m, K) with m < L.

In case (A) there is no percolation starting from (1,1) in £,. If we let n; and
n, be the number of segments of types 1 and 2 as in the last proof, then

n,+ny,=n and n, —n,=1,
so n, > n/2. Repeating the proof of (13) shows that if p < 6 3¢ then
P(A) < ¥ 37p"/3% < 2(3p1/%).
n=1

In case (B) the shortest contour has length K and the number of segments of
types 1 and 2 satisfies

n,+ny,=n and ny,-—n,;<L.
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Subtracting the last two relations
2n,>n—-L>(K/2) +n-K,
and summing the by now familiar series shows that if p < 672,

P(B) < i 3rplK/D+n-K}/36 o 2(3p1/72)K,
n=K

Using the fact that K > 1 and adding the bounds gives (15). O

5. Proof of Theorem 3. Very few new ideas are needed for the proof and
the result is not exciting so we just sketch the proof, assuming the reader is
familiar with the techniques of percolation in two dimensions. All the facts we
use can be found in Section 6b of Durrett (1988). Let ¢ > 0. If L is large the
probability of a horizontal crossing of

B=(-3L,3L) X (—-L,L)

[i.e., from {8L} X (=L, L) to {3L} X (=L, L)] by good sites is greater than
1 — £.Call (m, n) € 72 open if there is a horizontal crossing of (2Lm,2Ln) + B
by open sites and also a vertical crossing of (2Lm,2Ln) + B’ where B’ is a 90°
rotation of B. If ¢ is small then with probability 1 there is a sequence of open
sites (mg, ny), (my, ny), (mg, ny) ... with (my,,n,,) — (m,, n,) €
{(1,1X -1, 1)}, for k£ > 0. By using alternatively the vertical and horizontal
crossings of the translates of B’ and B associated with these sites, we can
construct an infinite self-avoiding path IT through the good sites and a
one-to-one mapping ¢ from {0,1,2, ...} into IT so that ¢(0) € (my,n,) + B
and for each k there is a j, < 12L%(k + 1) so that ¢(j,) € (m,,n,) + B. If
some point in II becomes occupied and the resulting contact processes on II
does not die out, then comparison with the contact process on {0,1,2, ...}
(which has the same critical value as the contact process on 7) and use of the
linear growth of that process shows that the conclusion of Theorem 3 holds.
For the necessary facts about the contact process on {0, 1, ...}, see Durrett
and Griffeath (1983).

To complete the proof, we use a “restart argument.” We wait until a site on
IT becomes occupied and then look at the contact process on II it generates;
that is, we ignore infections to or from II°. If the contact process on II does
not die out we are done. If it dies out at time o, we wait until a site on II
becomes occupied and try again. To see that IT will be occupied infinitely many
times on {¢? + @ for all ¢} we observe that in supercritical site percolation [see,
e.g., Section 6b of Durrett (1988)] the origin is surrounded by infinitely many
circuits of good sites and each time a circuit is crossed there is positive
probability that the contact process will spread along the circuit and occupy II.
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