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CONVERGENCE OF SCALED RANDOM SAMPLES IN R¢

By K. KinosHITA! AND SIDNEY I. RESNICK 2

Let {X;, 1 <j < n} be a sequence of iid random vectors in R¢ and
S, =1X;/b,, 1 <j <n}. When do there exist scaling constants b, — =
such that S, converges to some compact set S in R? almost surely (in
probability)? We show that a limit set S is star-shaped (i.e., x € S implies
tx €S, for 0 <t < 1) so that after a polar coordinate transformation the
limit set is the hypograph of an upper semicontinuous function. We specify
necessary and sufficient conditions for convergence to a particular limit set.
Some examples are also given.

1. Introduction. Let {X,, n > 1} be an independent and identically dis-
tributed (iid) sequence of random vectors in R?. For a (nonrandom) compact
set S in R?, when does there exist a sequence of real constants b, — © such
that, as n — o,

S, ={X,/b,,1<j<n}—>S as.

with respect to the Hausdorff metric? What is the class of possible limit sets
S? Note that, if {S,} has an almost sure limit, this limit by the Hewitt—Savage
0-1 law must be almost surely constant.

A related but more restricted problem was first considered by Fisher (1966,
1969), who assumed that d = 2 and that the components X,; and X,, of X,
are nonnegative, independent and identically distributed. In this setting, Fisher
showed that limit sets were of the form

S={(x,9)20:x*+y* <1} forsome0 <a <,

and that a necessary and sufficient condition for convergence to such a set was
regular variation of the function —log P{X,; > x}. This result is partially
generalized by Davis, Mulrow and Resnick (1988), whose result is stated in
Section 5. Eddy (1982) considers a related problem of limits in the sense of
convergence in probability for scaled unions of iid random sets and derives a
convergence criterion based on the inclusion functional.

In this paper, we give a complete solution to our problem. We characterize
the class of limit sets S as being transforms of hypographs of upper semicon-
tinuous functions and give necessary and sufficient conditions for convergence
to a particular limit set.
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CONVERGENCE OF SCALED RANDOM SAMPLES 1641

Section 2 discusses some preliminaries and Section 3 states some results on
relative stability which will be needed in Section 4.

In Section 4 we first show that limit sets are star-shaped (i.e., x € S implies
ex € S for 0 < ¢ < 1), which suggests that a polar coordinate transformation
is a natural transformation, and we give necessary and sufficient conditions for
almost sure convergence in the transformed coordinates. Our condition can be
modified to cover convergence in probability as well.

In Section 5 we give a construction which shows that the class of limit sets
in polar coordinates is the class of hypographs of upper semicontinuous
functions on the unit sphere. We give some additional examples and show that
the log-regular variation condition used in Davis, Mulrow and Resnick (1988)
can be checked to be sufficient by showing that it implies our sufficient
condition.

Based on our conditions, it is easy to construct examples of samples which
converge in probability but not almost surely, something not seen in the
literature until now.

2. Preliminaries. Let &, be the closed subsets of R? topologized by the
usual topology as discussed in Matheron (1975) or Vervaat (1988). Let %
denote the collection of nonempty compact subsets of R? and C(%,) the
collection of nonempty convex compact subsets of R¢. Suppose that d is a
metric on R? and, for S, T € %, define the Hausdorff metric [Matheron
(1975)] D:x; X *,; - R, by

D(S,T) =inf{6: ScT? T c S?%,
where
8% ={x:d(x,y) <& for some y € S}.

The following convergence criteria are useful [cf. Matheron (1975), page 6,
Theorem 1-2-2].

LemMa 2.1. For F,,Fe %, n>1, F, » F as n — » if and only if the
following two conditions hold.

For any y € F, there exists, for all large n,y, € F, such

(2.1) that d(y,,y) = 0 as n — .

For any subsequence {n,}, if y, €F, -converges, then

22 Yim, .y, F.

Furthermore, convergence of sets S,, — S in %, is equivalent to the analogues
of (2.1) and (2.2) holding as well as sup, . ,sup{lxl: x € S,} <~ for some
norm | - || on RE.

Note that if the sets S, are random elements of %; and S € %, is
nonrandom, then Lemma 2.1 can be used to characterize almost sure conver-
gence or convergence in probability.
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A measurable function U: R, — R, is called regularly varying at « with
index p € [—o, ] [written U € RV(p)] if, for x > 0,

D
im =

t—ooo U( t ) x
(Interpret x* by x*=0if x <1, x*=1if x=1and x> = if x> 1. A
similar interpretation applies to x~®.) We call p the exponent of variation. If
p =0, U is slowly varying. A frequently used property of regular varying

functions [cf. Resnick (1987), page 23, Proposition 0.8(v)] is that if U is
nondecreasing, U(®) = © and U € RV(p), 0 < p < », then

(2.3) U-eRV(p™),

where U “ (y) = inf{x: U(x) > y).

Let {X,, n > 1} be iid random variables with common distribution function
F(), F(x) <1 for all x, and set M, = V7_,X,. The sequence {M,} is almost
surely relatively stable (relatively stable in probability) if there exist constants
b, such that -

P

b—" — 1 almost surely (in probability) as n — .

n

It is known that if {M,} is relatively stable in probability then
b,~F~(1-1/n)
[cf. Resnick and Tomkins (1973)]. Necessary and sufficient conditions for
relative stability are given as follows [cf. Barndorff-Nielson (1963), Resnick and
Tomkins (1973), Gnedenko (1943) and de Haan (1970)].
Lemma 2.2. {M,} is a.s. relatively stable if and only if
© dF
= .
1 1 - F(ex)
forall 0 <& < 1.{M,} is relatively stable in probability if and only if

. 1-F(tx)
(2.5) m—%e ~*

(2.4)

The normal and exponential distributions satisfy (2.4) and M, is as.
relatively stable. The Cauchy and Pareto distributions do not satisfy (2.5). An
interesting example is when F is given by

(2.6) —log(1l— F(x)) = (logl) ‘logxloglogx forx>e,I>1

[Resnick and Tomkins (1973)]. This F satisfies (2.5) but not (2.4) and hence
{M,} is relatively stable in probability but not a.s. relatively stable. (For this
example, in fact, limsup, ,, M, /b, =1 a.s.)
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Note that if {M,,} is relatively stable in probability, then it follows from (2.5)
that 1/(1 — F) € RV(x). Since b, ~F (1 —-1/n)=Q1/Q — F))“(n), we
have from (2.3) that

-

1
(2.7) (————1 — F) € RV(0)
and, furthermore [Resnick (1987), page 17, Proposition 0.5],

bin
(2.8) lim —24 — 1 locally uniformly on (0, ).

n—w» bn

For a nonnegative function f defined on a topological space E, we define
the hypograph of f by

hypo( ) = {(t,%) € E X (0,%): 0 <z < f(£)}.
[E X (0,©) has the relative topology inherited from E X [0,»).] We call f
upper semicontinuous (USC) if, for all ¢ € E,
f&= ANV f(u),
Ged, ueG
where &, is the collection of all open sets containing ¢. In practice, the

collection & can be thinned considerably. The following lemma provides
characterizations of USC functions and hypographs.

LEMMaA 2.3 [Vervaat (1988)]. The following are equivalent:

(i) fe USC;
(ii) hypo(f) is closed in E X (0, »);
Gii) f[0,x)={t€E, f&) <x}isopeninE forall 0 <x < 1.

If there exists some metric d on E, then fis USC iff limsup, _,, f(¢,) < ()
forall t,,t € E such that d(t,,t) > 0 as n > =,

3. Further results on relative stability. Throughout this section, we
assume that {X,, n > 1} and {X{’, n > 1} are sequences of iid random
variables from common d.f’s F and F,, i = 1,2, respectively, and that {X{",
n > 1} and {X®, n > 1} are independent. For convenience, we also assume
that all the d.f.’s have support R, . Set

n n
- Vx, MP=VXpP
Jj=1 Jj=1
Whether or not relative stability is assumed, we always define
=F-(1-1/n), b =F,< (1 - 1/n), i=1,2.

Finally, define F=1-F, F.=1 - F,.
We first show that relative stability in R is equivalent to the scaled sample
converging to the unit interval.
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ProposITION 3.1. M, is a.s. relatively stable if and only if
XJ .
S, = b—,lSJSn - [0,1] =S

a.s. with respect to the Hausdorff metric on %,

Proor. We first show that if {M,} is a.s. relatively stable, then for any
p € [0,1] there exists a sequence k, = k,(p) such that 1 <k, <n and

M,

(3.1) “~ —>p as.
b,

If p = 0, then (3.1) trivially holds with &, = 1, so assume p > 0. Since

M, M, b,

by by, b,
it suffices to show that there exists a sequence %, — « such that

by

(3.2) b”—»p as n — o,

n

This follows in a standard way from the fact that {b,} is a slowly varying
sequence [Loeve (1977), page 335].

Now we are ready to prove Proposition 3.1. The sufficiency is obvious, so
assume {M, } is a.s. relatively stable. To prove S, — S, it suffices to show (2.1)
and (2.2). Pick y € S and it follows from (3.1) that there exists k, —  such
that M, /b, — y as. as n — », Since M, S0, €8,,@21)is satlsﬁed

Now suppose there exists Yn, € S such that Yn; Yo as. and y, > 1.
Then

X;
b— =a.s. ynj as. Yo > 1 asn— o,

n J

=V
n; J =
which violates relative stability, so that (2.2) follows. O

We now discuss preservation of relative stability under asymptotic equiva-
lence. Recall b’ = F,~(1 —n~1Y),i=1,2.

PRrOPOSITION 3.2. Suppose {M} is a.s. relatively stable and b¥ ~ b®
for some | > 0. Then {M?} is also a.s. relatively stable.

Proor. We need to show, for any convenient A > 0,
© dx ds
f _2( ) _ fl _ — <
A Fy(ex)  ‘rya Fy(eF, (s))
for 0 <& < 1. Since by assumption F,”(s)/F;“ (s) > I, s — 1, it suffices to

,
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prove
1 ds _ o Fi(dx)
(3.3) '[Al Fz(b‘(l + EI)FI“‘(s)) - [Aziz(«‘i(l + 81)x) < oo,

for0 <A, <1,0 <A, <wand & > 0 arbitrarily small. From the integration
by parts formula

(3.4)

[dFl(y) =j'F1(y/k) dFy(y),

Fz(ky) Fzz(y)

a change of variable and a second use of F,” (s)/F,”(s) — I, we get that
finiteness of the integral on the right-hand side of (3.3) is equivalent to

— [ (I- o _[(l- dF(x
f1F1 ( €3) F (8)| ———; = [ F ( YE _21( ) <o,
0 8(l+8 ) (1 s)°? Jrro '\ e(l+e;) | Fi(x)
where £, > 0 can be chosen arbitrarily small. Since 0 < & < 1 and ¢,, ¢, can be
chosen arbitrarily small, we may assume C := (I —¢,)/(e(l +¢,)) > 1 and

from the integration by parts formula (3.4) the finiteness follows from the
assumed stability of F;. O

The next sequence of comparison results is needed in Section 4.

LEmma 3.3. M{P/MP - 0 a.s. as n > » if and only if, for any t > 0,
© dFy(x)

, — <o,
(3:8) o 1— Fy(tx)

Proor. For & >0, let E, = {X{"/M® > ¢}. Suppose MV/MP - 0 as.
Then P(E, i.0.) = 0 and, using the independence of { XV} and { X»}, we have,
for m < n,

Xo X(l)
P(EmEn) = {M(2) > &, M(2) }

XM X,(,l)
m
<P > ¢ > ¢
= 2 ’ 2
M® V;‘=m+1X} )

X X
=P{ T >elPl—2 >
{M,s? } Vi X

=P(E,)P(E

and, from an extension of the Borel-Cantelli lemma [Spitzer (1964)], we
deduce that

©>Y PE, =Y f;Fz"(s‘lx)dFl(x) —f 1=

and we have the desired result.

n—m)

_dF(x)
2(8 'x)
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Conversely, if (3.5) holds, then ¥ P(E,) < and it follows from the
Borel-Cantelli lemma that P(E, i.0.) = 0, which implies

xm

M®
Define L = inflk < n; X = V7_, X®}. Since LY — » a.s., it follows from
the preceding relation that

1 2 1
MO X[ ME X5

n

= <
2 2 2) — 2
MP M MP T M

-0 a.s.asn — .

-0 a.s. O

ProposiTiON 8.4. Suppose M(? is a.s. relatively stable. Then MV /6@ — 0
a.s. if and only if b /6P — 0 as n - .
Proor. If M{V/b® — 0 as., then, for § > 0, P(MP/b® < §} — 1, that is
F'(869) > 1 asn - =. ‘

Taking logarithms on both sides and using the relation log(1 — u) ~ —u as
u |0, we have

n(l - F1(8b§,2))) -0,
which is equivalent to
1 - Fy(869) 0
_—_— —> 00,
1 - F,(6®) s
This implies that, for any ¢ > 0,
1 €
<
1-Fy,(u) — 1-F,(du)

for u > uy(e).

Taking inverses we get

bP(t/¢)
(3.6) b(T(t)—— <8 fort> to(s).
Since b®(-) is slowly varying, b@(t) ~ b®(t/¢), and we get from (3.6) that
bD(¢t
lim sup () .

TP () =

Since 6 > 0 is arbitrary, the result follows.
Conversely, assume b{’/b — 0 as n - ». Then, for § > 0, we have

pw

(3.7 0< 3?2—) <8 for n > ny(8).
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For the desired result, by Lemma 3.3 it suffices to show that, for ¢ > 0,

« dFy(y) ds

1
)1 — Fy(ty) =f0 1 = Fy(tF," (s)) =

Because of (3.7), J; < » if
1 ds
= < .
J2 fo 1= Fy(t0F, (s))

However, J, < © because we assume {M®} is a.s. relatively stable. O

The following proposition translates asymptotic equivalence of inverse func-
tions into a more readily verified condition on distribution tails.

PROPOSITION 3.5. Suppose {M?} is relatively stable in probability. Then

D
# -1>0 asn—> ®
if and only if
(3.8) lim 1-F(&x) (0, ifx>1,
' tow 1 — Fy(t) w, ifx<l.

Proor. We concentrate on the case I > 0; the case when [ = 0 will be
clear. Suppose /6P — I > 0. Then, by the relative stability of M, we
have

1 2 1
Y p@ p®D

(3 np - upEp

Thus, for £ > 0,

21) bg)
P{W>l+e}=F2" T+ e >0 asn —> x,

Remembering that log(1 — x) ~ —x as x | 0, we have from the preceding that

p®
n(l_FZ(l-: ))—)oo as n > »,
€

but this is equivalent to
1 - F,(bP/(1 +¢))
1 - Fy(b°)
which gives one half of (3.8). The other half is similar.

—> 0 asn — o,
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To show the converse, we use the following lemma from Resnick (1971): For
0 < L < », we have

. 1 - Fy(t)
tw 1= Fy(t)
if and only if

(3.10) ’}l_I)I:o/(; Fy(x) dFf(x) = -
If (3.8) holds, then

1 -Fy(t/(l +¢))

lim = o,

whence, from (3.10),

© X

n— oo

Since MV and M® are independent, the preceding is the same as

MD
(3.11) lim P{M—'(‘z) > 1+ e} =0.

A reverse inequality follows in the same way, yielding MV/M® -, [. Noting
that

1 1 2
Ml(l ) Mn( ) b(n )
=

and M is relatively stable, we have that M’/6@ —, [. Thus M is
relatively stable in probability and therefore b ~ 6®[. O

4. Limit sets of scaled random samples. From now on, we assume
X,,X,,... is a sequence of iid random vectors in R?. When do there exist
scaling constants b, > 0 such that the sequence of random sets S, = {X /b
1 <j < n} converges to some nonempty compact set S in R?? Since S = {0} is
a degenerate case (the sequence {b,} grows too fast), we exclude this from
consideration. Thus S # {0} and, without loss of generality, we may assume
(4.1) sup x|l = 1,

xeS
where ||x|| is a norm on R¢; any convenient norm suffices for our purposes.
The relation between the scaling constants {,} used in the definition of S,
and those used to scale maxima in Section 3 will soon become apparent.

We say that a set S c R? is star-shaped if x = S implies ¢x € S, for any
0 < & < 1. We will show later that any possible limit set is always star-shaped.
This is an important property of limit sets and suggests that our problem is
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better understood in polar coordinates rather than in the usual Cartesian
coordinates. The relevance of star-shaped sets is noted in Eddy (1982) as well.

ProposiTION 4.1.  Let {X;, j > 1} be iid in Re. If there exist b, » « and a
nonempty compact set S such that

X, |
Sn== b—,an - S

then

@ (M)} ={V2_IX;|} is a.s. relatively stable and
(ii) S is star-shaped.

Proor. (i) Since S, c S° for large n we get eventually

n Mn
\/ 6, Xl = — < supllxll + 8(¢) = 1 + 8(¢),
j = bn xGS N

where 8(¢) > 0 as ¢ > 0. A reverse inequality comes from the fact that
eventually S c S;.

(i) Pick s €S. Since S, — S, there exist I(n) <n with X, /b, — s.
From (3.2) there exists {k,} such that, for given ¢, 0 <& < 1, we have as
n— o

b
k
L,

b

n

and k, — « since ¢ > 0. Therefore,

Xik _ Xik, s
52 . T b, b

which by (2.2) shows ¢s € S. Hence S is star-shaped. O

In order to pass to more convenient representations of our sets, we need the
following result, which is a variant of Proposition 3.18 in Resnick (1987).

Consistent with previous notation, let F(E) be the closed subsets of a
topological space E and J#(E) be the compact subsets.

ProposITION 4.2. Let E,, E, be locally compact with countable bases and
suppose T: E, — E, is continuous. For S C E,, define T*S = {T(s), s € S} C
E,.

@ If
(42) T~ (X (Ey)) c X(Ey),

then T*: #(E,) » #(E,) is continuous: If S, € #(E,), 1 <n <, and
S, = S, in #(E,), then T*S, » T*S, in #(E,).
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(i) If T is a homeomorphism, then T*: #(E,) » F(E,) is continuous: If
S,€ F(E), 1<n<w, and S, S, in F(E,), then T*S, > T*S, in
F(E,).

REMARK. (4.2) holds if T is a homeomorphism. Variant formulations are
possible. For instance, if the domain D of T is compact, T is continuous and
S, c D, 1 <n < «, then the conclusion holds since (4.2) is automatic.

PrROOF OF PROPOSITION 4.2. We only check (i), as (ii) is almost the same.
One can proceed by Lemma 2.1 or alternatively by showing inverse images of
open sets are open. Basis sets in #(E,) are of the form (K, € ¥(E,), G,
open in E,)

{Foe #(E,): F,nKy, =0}, (F,e X% (E,): F,nG,+2).
Now
(T*) "YF, € #(E,): F, nK, = @)} = {F, € ¥(E,): T*F, n K, = o).

Since K, = T*(T~'K,) and, from (4.2), T"'K, € #(E,), we have this inverse
image equal to

{Fie ¥(E): T*(F,n T 'K,) = @) = {F, €« #(E,): F,n T"'K, = 2},
which is open in ¥(E,). Likewise,
(T*) " YFy € #(Ey): F, N Gy + @) = {F, € #(E,): F, N TG, # o},

which is open in #(E,) since T™'G, is open in E, as a consequence of the
continuity of T. O

Pick a convenient norm [|x|| on R? and let ® = {x € R?: ||x|| = 1} be the
unit sphere in R? with respect to this norm, and define a polar coordinate
transformation T: R? \ {0} > @ X (0, ») by

Tx=(0,r) = (8(x),r(x))
= (x/IIxIl, lIxIl)

for x # 0. Sometimes we write Tx = x*. If T is applied to the random vector
X; # 0 we write T(X;) = (0,, [X,|). Note that, for b > 0, x # 0,

X x/b x| x x|l
(4.3) T(—) =|l—,—=—,—
b lx/bll" & IxIl” &
and this suggests our problem is simpler if phrased in polar coordinates. The

fact that T is not defined at 0 necessitates working in R \ {0} with the
relative topology specified by

FRINA{0}) = {F* n {0}°: F* € F(RY)}.
T: R? \ {0} - O X (0,%) is a homeomorphism provided we specify ® X (0, »)
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has the product topology and
F(0,») = {F* N (0,»): F* € 7([0,=))}.

LEmMA 4.3. Suppose {X;, j = 1} are iid in Re. If S € %, is star-shaped
and S, € %, then
S,—»S in %
if and only if
S, N {0} >SN {0} inF(R?\ {0})
and
supsup{llsl: s € S,,} < .

n

Proor. Let S, — S. If s € S N {0}, then there exist s, €S,, s, — s.
Eventually s, # 0, so s, € S, N {0}° and (2.1) holds. If s, € S,, N {0} and
lim,_.s, =s, exists in R% \ {0}, then s, # 0, s, €S, s0 s, €S N{0)° as

required for (2.2). .

Conversely, suppose S, N {0} = S N {0}°. If s # O thereexist s, # 0, s, €
S,, s, — s as required by (2.1). If s = 0, pick s* € S. Since S is star-shaped,
for every positive integer % there exist s’ € S, N {0}° such that s’ — s* /k. -
There exists a function f(j) - ©as j — o with

We have s{/U” € S; and
d(s§9, s* /£ (1)) < 1/f(J).-
d(s92,0) < d(s{92,s* /f(j)) + d(s*/f(j),0)
< 1/f(j) + d(s*/f(j),0) - 0.

So (2.1) is satisfied in this case as well.

Suppose s,, € S,, and lim , _, . s,;, = s, exist. If s, = 0, then (2.2) is satisfied
since 0 is in the closed, star-shaped set S. If s, # 0, then, since we assume
S, N {0}° - S N {0}, we get from (2.2) that s, € S N {0}° C S as required. O

As before, let T be the polar coordinate transformation. Define
T*: (RN {0}) » F(0 X (0,))
by
T*S ={Ts,s €S,s # 0} =S*.
We now show S is a limit set for a scaled random sample if and only if after a

polar coordinate transformation S* = hypo [/, where ! € USC. This character-
izes the class of limit sets.

THEOREM 4.4. There exists b, — » such that in %
S, =1{X;/b,,1<i<n}—>S,
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with S compact and V, . glIX|l = 1, if and only if there exists I: ® — (0, ©) with
1 USC and V4.l(0) = 1 and in F(0O X (0, »)),

Sy = {(8;,IX;ll/8,): 1 <i < n, Xl # 0}
= hypo(l) = §* = {(8(x),r(x)): x € S, x # 0}.

Furthermore, for any S € %, such that T*S = hypo!l for some | € USC,
there exists an iid sequence {X;, j > 1} such that, for appropriate scaling
constants b, — «,

X;b,,1<j<n}->8

a.s.in J4 .

Proor. Since S} = T*(S, N {0}°)and S* = T*(S N {0}°) and since T is a
homeomorphism, we conclude S, — S if and only if S} - S* from Proposi-
tions 4.1, 4.2 and Lemma 4.3. The star-shaped property of S means, for x € S
and0 <t <1,

(0,¢r) € S* if(0,r) € S*.
Let @ = {6(x), x € S, x # 0}. Define /: ® — [0, ) by

1(0) = {sup{r: (6,7r) e S*}, ifoe@,
0, ifees®\0O.
Then
S* = hypo(1).

Since S* is closed, ! is USC from Lemma 2.3.

Given any USC function [, we explain how to construct a scaled sample S}*
converging to hypo(l). This will show that the class of limit sets in polar
coordinates is indeed {hypo(l), [ € USC}.

Given 1(8), 6 € O, where O is the unit sphere in R® with respect to the
norm ||x|. Then hypo(l) is closed in ® X (0, ). Assume sup,.q /(@) = 1. We
first construct a distribution x on 0 X (0, «) whose support is hypo(?).

Fix £ > 0 and let (hypo(l))* be the s-swelling of hypo(l), and define =:
(hypo(2))® = hypo(l) by

(0, r) = closest point of hypo(l) to (0, r).

So 7 is the identity on hypo(l). On (hypo())* \ hypo(l), = maps points to the
closest element of hypo(l). If there is more than one closest element, choose
one arbitrarily (but measurably). Let L be Lebesgue measure on (hypo(l))®
and define u by u = Lo7™ 1,

We now verify that the support of u is hypo(l). Let (8,, ry,) € hypo(l) and
suppose G C @ X (0,) is open and (8,,7r,) € G. We must show u(G) > 0.
From the definition of u, it suffices to show 7 (G) has positive Lebesgue
measure; for this it is enough if we prove 7~ !G contains an open set. We seek
an open U c (hypo(1))° such that m(U) c G N (hypo(1)). We may set

U = (hypo(1)) N {(8,7) € G: d((0,7), (89, 70)) < (1/2)d((85, 7o), G)}.
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If (0, r) € U, then because 7 maps (0, r‘) to the closest point of hypo(l),
d(m(8,7),(8,70)) < d(m(0,r),(0,1)) +d((8,r),(8,7,))

o= 2d((0,7),(8,,7)) <d((8y,7,),G°)
from the definition of U. Thus (0, r) € G, whence w(U) C G. Since U is
open and nonempty, the verification that support u = hypo(l) is complete.

Now let {(0,, R,), i > 1} be iid with distribution u. A sample from any

distribution will converge to the support of the distribution so

{(6;, R;), i < n} - hypo(l)
in #(O X (0,)). [If G is open and G N hypo(l) # &, then u(G) > 0 and

P[liminf(G n{(8;,R,),i <n}# @)] = 1.

If K is compact in ® X (0, ) and K N hypo(l) = &, then P[{(0,, R;), i <n}N
K=gVnl=1l] .

Finally, let {E;, i > 1} be iid unit exponential random variables independent
of {(8,, R,), i > 1}. Then we claim

0, —,i — hypo(l

o <

”logn’l_n o(l)

as n — «. To check this suppose K is compact and K c ((hypo(1))°)°. Since

P[{(0;,R;),i <n} nKio] =0

and
n Ei
V l )
]; ogn

we get, for all large n,
RE;
0,,—|,i<n)NK=0.
log n
Also let G be open with G N hypo(l) * &. We may suppose G is of the form
G=1IX1I,,

where I, € O is open and I, = (r;,ry), 0 < r; < r,. We need to show

0,,—|,i<n}NG=*0a.
logn

for all large n. Pick § small so that I = (r; + 8;,r, — 8) CI,. Then G' = I; X
I3 N hypo(l) # &. There exist indices K(n) such that (8x,), Rk, € G' and
K(n) ~n/w(G). [Let K(1) =inf{j > 1: (8;, R)) € G'}, K(2) = inf{j > K(1):
(8, R;) € G'}, etc.] Then {K,} is independent of {E;} and {Ek,,,} = {E,} is iid
unit exponential. Let L(n) be the record value times of the sequence {E}} so
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that Ej ,, ~ n and log L(n) ~ n [Resnick (1987)]. Then
log K(L(n)) ~log L(n) ~n.

Since Ej,, ~ n, for all n large

("K(L(n»’ RK(L(n»E%(n—)) €G.
If
K(L(n)) <m <K(L(n + 1)),
then
log K(L(n)) <logm <log K(L(n + 1))
so that

log K(L(n)) ~n ~logm
as n — . Thus for all large m,
RE;
0, —|,i<m}NG+J
log m
since if K(L(n)) <m < K(L(n + 1)),
Ei(n) n

) = (OK(L(,,», Braon=% Togm

Ei(n)

eq.
log m

("K(L(n»’ Rgwmny
This proves the claim and completes the construction. O

Having identified the class of limits, we turn our attention to criteria for
convergence to a specified limit. We continue to work in polar coordinates.
Define open and closed balls in © as follows: For 8 € ®, ¢ > 0 and d(-, - ), the
metric on R?, set

B(08,¢) = {m € 0:d(0,0) <&},
B(0,c+) = {w€0:d(0,w) <e&}.
For B c ® and S c RY, the restriction of S to B is defined by
S(B) = {x € SN {0}°: 0(x) € B}
and in polar coordinates we have
S*(B) =T*S(B).

Finally, for B € ® and a function /: ® —» R,, we define the sup measure V:
2° > R, by
1V(B) = supl(9)
0B
and

1Y(¢) = 0.
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The next result reduces our set convergence problem to convergence of
compact subsets of R,.

PROPOSITION 4.5 [cf. Vervaat (1988), Section 10]. Letl: ® - R, be an USC
function with 1V(®) = 1. Set S* = hypo(l), S = (T*)"Y(S*) U {0}. If

Sy = {(en,j’rn,j)’ 1<y Sjn}

is a set of points in © X (0, ), j, — =, then
S, =(T*)7(8¥) - 8
in %, if and only if
K, = K,(B(8,1)) = (Ixl: x = S,(B(6,1)))
- K =K(B(8,1)) = [0,1" (B(8,1))]

in %10,) for any 0 € ® and t > 0 such that
(4.5) 1V(B(0,t)) =1V (B(0,t+)).

(4.4)

One might expect that S, — S implies S,(B) - S(B) as n — » provided
(4.5) holds. However, this is not true in general.

ExampLE. In RZ let © be the unit circle, which we parametrize by ® = {6:
0 <6 < 27). Let

ln(o) = 1{11'/2,1r+1/n)(0)’ l(0) = 1(11/2,17)(9)’

and S = hypo(l,), and S* = hypo(l). Then (4.5) is satisfied with § = ¢ = 7/2
and one checks readily that S¥ — S* as n - «. But S}(B(w/2,(7/2)+))
does not converge to S*(B(w/2,(mw/2)+ )) since

m T
S,”:(B(E,§+)) ={(r,0):0<r<1,,(6),0<86<mn)

and
S*(B(— —+)) = {(r 6):0<r<1 (9) 0<0<7T}
2’2 o tm/2,mR = '

Combining Proposition 4.5 and the results in the previous section, we have
the following criterion for the convergence of scaled random samples to a
limiting compact set. Recall that {X,} are i.i.d. in R%. Set ¢(B) = P[6(X,) € B].

THEOREM 4.6. Let I: ® — [0,1] be a USC function with 1V(0®) =1, S* =
hypo(1), S = (T*)~%(S*) U {0}. Then there exists a sequence b, — » such that

Xj
S, = b—,lsjsn -8 a.s.asn > »

n
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in %, if and only if the following two conditions hold:

@ {M,} = {V7_|lIXl} is a.s. relatively stable.
(ii) For any B(ﬂ t) satisfying (4.5), if q(B(8,t)) = 0, then 1V(B(0,t)) =
and if q(B(0,1)) > 0, then
46) tim LUKl > % 0Xy) €BO.0) _ [0, ifx> 1" (B(O,0)),
s P{IX,ll > s} w, ifx <1V(B(8,t)).

Proor (Necessity). Condition (i) follows from Proposition 4.1. Assume that
B(9, t) satisfies (4.5). If q(B(0,t)) = 0, then clearly I Y (B(®, t)) = 0, so assume
q(B(0,1)) > 0. Observing Proposition 3.5, we have that (4.6) is equivalent to

b#
(4.7) lim b—" =1V(B(9,t)),

— 00
n n

where b* =G (1 — 1/n) and
(4.8) G(x) = P(IX,ll < I6(X,) € B(8, 1)).

Thus it suffices to show that (4.7) holds. Since S, » S a.s. we have from
Lemma 4.3 and Proposition 4.5 that

1
—IIX:l: 0(X.) € B(0,t),1 stn}
o (31 0,) < B0, 0
- [0,1V(B(0,t))] as.asn — .
Define random indices as follows:
KO = 0,
K; =inf{j > K, ;:0(X;) € B(0,¢)},
L, = sup{j: K; < n},
n
Nn = Z l[o(Xj)eB(o,t)]
j=1
and
X XK ,X XK’ . ,Xﬁn=XL".

The “découpage de Lévy” [see, e.g., Resnick (1987)] says {X?#, i > 1} are iid
with distribution P[X; € -|6(X,) € B(0, #)] and (4.9) is equivalent to

1
(4.10) {b—-IIXfII, 1<j<N,} - [O,ZV(B(O,t))] a.s.,
implying
M{; 1M
(4.11) 5. b \_/ IX#| > 1V (B(8,t)) as.asn — .



CONVERGENCE OF SCALED RANDOM SAMPLES 1657

Since N,/n — q(B(0,t)) > 0 a.s. as n = » and b, € RV(0), it follows from
(4.11) that
M} M3
Mo o Zfn %, V(B(8,t))1 as.asn— x,
an b” b["Nn/n]

implying

#
n

(4.12) - 1V(B(0,t)) as.asn — .

If 1V(B(e,t)) > 0, then (4.12) implies that {M*} is a.s. relatively stable with
normalizing constant b,!Y(B(0,¢)). However, since [|X#| has the distri-
bution given by (4.8), it follows that b* ~ b,1V(B(8,)), which is (4.7). If
1V(B(0,t)) = 0, then (4.7) immediately follows from (4.12) and Proposi-
tion 3.4.

(Sufficiency.) It again follows from Proposition 4.5 that it suffices to show
that (4.10) holds for B(0, ¢) satisfying (4.5). We consider two cases.

(a) 1V(B(9,t)) > 0. Note that /¥ (B(0, ¢)) > 0 clearly implies q(B(8, ¢)) > 0.
Then we have from (4.7) and Proposition 3.2 that {M*} is a.s. relatively stable,
which is equivalent to

#
n

- 1V(B(0,t)) as.asn — .

n

From Proposition 3.1,

{ IX#]

m,l San} d [0,1],

whence

X2
b

n

,1<j< n} - [0,1V(B(8,1))].
Therefore, since b, is slowly varying,
IXZ]] by, \ [ IX%Il
1<j<N,}=|-—" L 1<j<N,
{ bn ’ <J < n bn bN" <J S n

- 1[0,1V(B(8,t))] as.

and we get (4.10) as required.
(b) 1V(B(0,)) = 0. If q(B(8,t)) = 0, then S,(B(8,%)) = T a.s. and hence
S(B(0,#) =, so I =0 on B(0,t). Assume ¢g(B(0,2)) > 0. Then it follows
from (4.7) and Proposition 3.4 that
M}
b

-0 as.asn — x,
n
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implying
L, ]
_b:"Xj lLl1<j<N,} - {0} as.,
which is (4.8). O
As a special case of the previous proposition, we have the following.

CorOLLARY 4.7. Suppose X, is spherically symmetric so that 61, IX,l are
independent and 0, is uniformly distributed on ©. Then

S,—-S={(,r):r<1} a.s.
iff (M} ={V 31 IX,l} is a.s. relatively stable.

5. Complements and examples. We first show in this section that the
condition of Theorem 4.6 is implied by the log-regular variation condition in
Davis, Mulrow and Resnick (1988).

ProposiTION 5.1 [Davis, Mulrow and Resnick (1988)]. Let X,,X,,... bean
iid sequence of random vectors in R® having a common joint distribution
which has support in {x > 0}. Assume that the components are identically
distributed.

Suppose for x € [0,%)¢ \ {0} =: C, as t - o,

—log P{X, > tx}
"~ —log P{X, > t1}

(5.1) f(2,x) - AMx),

where M) satisfies fort > 0, x € C, and some a > 0,
(5.2) A(Ex) = tA(X).
Assume A(X) is strictly increasing on C, that is,

AMx) <A(y) whenx<yandx+y.
Then in J,, as n — «, for some b, > 0,

X.
S, = {b—’,lngn} -»>8={x>0:A(x) <1} a.s.

n

We now verify that the assumptions in Proposition 5.1 are sufficient to
guarantee that the limit set is [A < 1] by showing that (4.6) holds. We restrict
attention to the case d = 2 and show that (4.6) holds with the norm |(x, y)|| =
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x V y. Assume, for example, that B(9, ¢) is of the form

(5.3) B(a,b) ={(1,y):a<y<b} for0<a<b<l.

From (5.2),

S={(xy):x2y20,A(x,9) <1} U{(x,5):5>x20,A((x,7)) <1}

= {(x,y): x2y=0, x"‘/\((l,%)) < 1}

x
U{(x,y):y >x > O,y")t((;,l)) < 1},
which is expressed in polar coordinates as
S* ={(0,r):0 € {1} x[0,1] U [0,1] X {1}, r*A(0) < 1}.
This identifies 1(0) as

A((1,0)) |\
(5.4) l(e)=(%) .

Since A is strictly increasing, it follows from (5.3) and (5.4) that

A((1,0)) \V*
(a0 = (i)
We also have that
(x,5)
(xVy)

- fevy>a, (12) < Bee, b))

{ICx, )l > tu,0((x,5)) € B(a,b)} = {x Vy>tu, S B(a,b)}

= {x>tu,a<%<bx}.
Because (5.1) implies
. P{XVY>t}
ow P(X>1t)

it suffices to show

y P{X > ut,aX <Y < bX} 0, ifu>A,,
foom P(X > 1) e, ifu<hi,
where
_ [ M@,0) )7
M) )

This is a fairly straightforward consequence of the assumptions.
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For the rest of the section, we examine some examples of Theorem 4.6 for
the case d = 2. We denote again by S, and S the set of sample points and a
limit set in the Cartesian coordinates and by S} and S* those in the polar
coordinates. Note that Proposition 5.1 does not apply to the following example
since A is not strictly increasing [cf. Davis, Mulrow and Resnick (1988),
Example 3.6].

ExampLE 5.2. Suppose the distribution is given by P{X >x, Y >y} =
(e* + e” — 1)~ . Then we shall show that with b, = log n, S, —» S a.s., where

x+1}

S={(x,y):0$x,ysl,2x—lsys

As in Proposition 5.1, choosing [|(x,y)ll = x V y as the norm and using the
symmetry, we need to show that

(5.5) Tk —>T* as.asn — o,

where
T ={(8(x,5),r(%,%)): (x,y) €8, x >y}

AR .
= I,Z ,Z:ijYj,ls,]sn

T* = {(0(x,y),r(x,)): (x,y) €8, x >y}

_ {((1,%),x):05ysxsy;1}.

Since (5.5) is equivalent to
(5.6) Uf > U* as.asn > o,

where

and

ol

U* = ﬁ‘X Y,1<j
n - D : jZ o <J=<n
i 9n

and

1
U*={(0,r):0$0$1,0<r$ 2 0},

we apply Theorem 4.6 to (5.6). Observe that since
PIXVY>t]=P[X>¢t]+P[Y>¢t]-P[X>tY>t]

=2t — (2 —1) '~ 2,

we have that {V ?_,I(X;, Y;)ll, n > 1} is relatively stable and hence the first

i

condition in Theorem 4.6 is satisfied. Thus, since (X, Y) has support R2, we
only need to show that (4.8) holds. Now the corresponding USC function

(5.7)
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1(6) = 1/(2 — 0) is strictly increasing, and therefore (4.8) is equivalent to
O0O<a<bs<)

y ab " P{X>tx,a <Y/X < b}
fim f(t,@,6,%) = lim P(XVY>t)

1
(5'8) i > ——
0, ifx 25’

if x < .
RS

Since the Jacobian of the transformation (x,y) > (r=x, 0 =y/x)is J =r,
we have

Y o b 2re’(1+")
5.9 PiX>ix,a<=<b} = — = dbdr.
(59) { g X } '/;=tx/;=a (e"+e™ — 1)3

For x > 1/(2 — b), it follows from (5.7) and (5.8) that, as ¢ —>‘00,

2 5
t,a,b,x) < e’ 2e %2 dr| re™de
f( ) 3 ";=tx '/(;=a

IA

4 o
ot —2r( br _ _ar d
3e/;xe (e e®")dr

4 I
< _etf e~ 2=br g
3

4
32-0b)°

—(2-b)x—1x

-0,

which is one half of (5.8). For x < 1/(2 — b), similar calculations show
f(t7a’ b’ x) - ™,

which is the other half of (5.8). O

For the following examples, we make the usual polar coordinate transforma-
tion [IX|l = (X2 + Y?)'/2, 6(X) = arctan(Y/X).

ExampLE 5.3. Suppose the distribution of (6(X), || X)) is
de
P(6(X) < do, IIXll € dr} = F(dr) o,

where F is specified by (2.6). Then since {M,,} is not a.s. relatively stable, S,
does not converge a.s. However, since {M,} is relatively stable in probability,



1662 K. KINOSHITA AND S. I. RESNICK

we have that

S,—=pS={(x,9):22+y><1} asn - . O

ExampLE 5.4. Let B, be a random variable and Y} = (6(Y,), |Y,ID and
Z* = (6(Z,),|1Z,|) be random vectors. Suppose P(B, =0)=P(B,=1) = 1,
6(Y,) and 6(Z,) are uniformly distributed on [0, 7) and [, 27), respectively,
P(IY,l|>r)=P(IZ,ll > r/2) = e", and these are all independent. Then de-
fine X* as X} = (0X)), X, D == B, Y* + (1 — B,)Z%. The distribution of X%
clearly satisfies the conditions of Theorem 4.6 with b, = log n» and the limit
set is the union of two rectangles. It can be written

S* = hypo [,
where
1 0<f0<m
10(e)={> =0 =
(9) {2"1, 7 <6< 2.

For this example, the d.f. of (X)) is continuous since 6(X,) is uniformly
distributed in [0, 277), but the corresponding USC function is discontinuous at
6=0,m.

ExampLE 5.5. As in the previous example, set
X% =B,Y; +(1-B,)Z;,
where B, is the same as before, 6(Y,) is uniformly distributed in [0, 27),

P(|Y,ll > r) = e™" and Z,, is degenerate at (1, 0), that is, P(6(Z,,) = =, ||IZ || =
0) = 1. Then we see that with b, = logn, as n - =,

Sy —> 8% = {(0”'): 1[0,27)(0) ) 1(0,1](")}-

Now the d.f. of 8(X,,) is discontinuous at 6 = 7 even though the USC /(6) = 1
is continuous.

From the last two examples, we see that the continuity of the d.f. of 6(X,,)
has nothing to do with that of the corresponding USC function.

ExampLE 5.6. Let C be the Cantor set and F,(-) be the Cantor distribu-
tion. For the constructions of C and F, see, for example, Billingsley (1979).
F, can also be defined as the d.f. corresponding to the random variable
Z=1Y>_,B,/3" where B, areiid and P(B, =0) = P(B, = 2) = 3.

Now suppose P(||X, |l >r)=e"", 6(X,) has the distribution F, and they
are independent. Then it follows that with b, = log n, as n — o,

S¥ us 85 = {(8,7):050 1,0 <r < 15(6)}.

Note that since C is closed, 1,(8) is USC and hence by Lemma 2.3, hypo(1,) is
closed. Since {M,} is clearly a.s. relatively stable, we only need to check the
second condition in Theorem 4.6. For 0 <a <b < 1,let B(a,b) ={0:a <0 <
b} and Bla,b] ={6: a <6 <b}. It is seen that P{6(X,) € B(a, b)} > 0 and
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1V(B(a, b)) = 1 whenever (4.5) is satisfied. Thus we must show that (4.6)
holds. However, since [|X, || and 6(X,,) are independent, we have as ¢ — o,

P(IX,Il > tx, 6(X,) € B(a, b)) P{IX,,I| > tx)
P{IX, > ) P{IX, 1> ¢}

- P(9(X,) € B(a, b))

5 {0, if x> 1,
o, ifx<1,
as desired.
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