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A NOTE ON TRANSLATION CONTINUITY OF
PROBABILITY MEASURES

By S. L. ZABELL

Northwestern University

A probability measure on the sphere is absolutely continuous with
respect to the uniform measure on the sphere if and only if the probability
of any open set varies continuously as the sphere is rotated. In general, if a
topological group G acts transitively on a topological space S, and both are
Hausdorff, locally compact and second countable, then a probability mea-
sure v on the Borel sets of S is absolutely continuous with respect to the
unique invariant measure class on S if and only if the v-probability of an
open set in S varies continuously under the action of the group G. If S isa
Borel G-space, but the action is not assumed to be transitive, then v(gE) is
continuous in g for every Borel set E if and only if » is absolutely
continuous with respect to a quasi-invariant measure on S.

1. Introduction. Let v be a probability measure on R. It is well known
that v is continuous (i.e., has no point masses) if and only if

(1.1) limv(t + U) = »(U)

for every open set U of the form (a, ). (That is, if and only if the cumulative
distribution function of v has no discontinuities.) It is easy to see that if (1.1)
holds for such intervals, then it in fact holds more generally for an arbitrary
finite disjoint union of open intervals. Since every open set in R is a countable
union of disjoint open intervals [see, e.g., Royden (1988), page 42], one might
~ conjecture that (1.1) holds for every open set U when v is continuous, but a
simple counterexample shows that this need not be the case.

ExampLE 1.1. Let v be the Cantor singular measure on the unit interval
[see, e.g., Feller (1971), pages 35-36], let
A= (53)V(5:3)V(ss)Y
be the open set removed from the unit interval by excising ‘“middle thirds,”
and let C =:[0,1] — A be the resulting Cantor set. The set C is the set of

numbers x in [0, 1] possessing a triadic expansion x = .x;x,x5 ‘- with every
x; = 0 or 2; for each £ > 1, let
Ck = {x = .x1x2x3 R C: xk = 2}.

Then v(C,) = 1/2 and C, — (1/3)* c A, hence v(A) =0 but v(A + (1/3)%) >
1/2.
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TRANSLATION CONTINUITY OF MEASURES 411

Thus (1.1) can fail for some open sets if v is only assumed to be continuous.
Let us say that v is translation continuous if (1.1) in fact holds for all open
sets U. It is a remarkable fact that this property characterizes absolute
continuity with respect to Lebesgue measure.

THEOREM 1.1. A probability measure v on R is absolutely continuous with
respect to Lebesgue measure u on R if and only if it is translation continuous.

It is curious that this natural analog of the characterization of continuous
probability measures does not appear in the textbook literature [see, however,
Saks (1937), pages 90-93]. The result obviously depends on the algebraic and
topological structure of the underlying sample space (since these appear in its
statement), and thus is not purely measure-theoretic in nature. It does not
depend, however, on any special properties of the real line, and is valid for
measures on a locally compact topological group if Lebesgue measure is
replaced by Haar measure [Rudin (1959)]; for a simple proof in the case of R",
see Malament and Zabell (1980). Brown, Graham and Moran (1977), pages
374-380, discuss several closely related characterizations of absolute continu-
ity, and give a detailed account of their history.

In this note the extension of Theorem 1.1 to the more general setting of a
group acting on a topological space is discussed; see Theorems 2.1 and 4.1
below. Although straightforward, the extension seems of interest because of
several new examples that arise in this setting. Perhaps the simplest and most
attractive of these is that a probability measure on a sphere is absolutely
continuous with respect to the uniform measure on the sphere if and only if
the probability of every open set varies continuously under rotations of the
~ sphere (Example 2.1). Transitivity of the action, however, becomes a consider-
ation: Although every absolutely continuous measure is translation continu-
ous, translation continuity only suffices to establish absolute continuity when
the action is transitive (Example 2.2); even ergodicity of the action does not
suffice (Example 2.3). If the action does not possess an invariant measure [for
example, when SL(n,R) acts on projective space], translation continuity still
forces absolutely continuity with respect to the invariant measure class of the
action (Example 2.4), and one cannot in general avoid this phenomenon by
passing to a subgroup for which an invariant measure does exist (Example
2.5).

In Section 2 the necessary definitions are given, Theorem 2.1 (covering the
case of a transitive action) is stated, and the examples mentioned above
illustrating its scope are discussed. A simple proof of Theorem 2.1 is then given
in Section 3. In Section 4 the case of a nontransitive action is discussed. If the
action of the group is not transitive, then more than one invariant measure
clags can exist on S, and a measure on S is translation continuous if and only
if it is absolutely continuous with respect to a quasi-invariant measure on S
(Theorem 4.1). Such a result was proven under restrictive topological condi-
tions by Kleppner (1967) and Liu and van Rooij (1968), but is in fact true in
considerable generality; Theorem 4.1 assumes only that S is a Borel G-space.
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2. Translation continuity for group actions. Let G be a topological
group with unit e. A topological G-space is a topological space S together with
a continuous mapping (g, s) = gs of G X S into S such that g,(g,s) = (g,85)s
and es = s for all g,, g, € G and s € S. The basic definitions and facts about
topological G-spaces needed for the statement and proof of Theorem 2.1 are
summarized below; useful general references include Bourbaki (1963), Chapter
7, Nachbin (1965), Chapter 3, Gaal (1973), Chapter 3, Mackey (1978), Fell and
Dorand (1988), Chapter 3, and Royden (1988), Chapter 14. For simplicity, it is
assumed throughout this section and the next that both G and S are Haus-
dorff, locally compact and second countable.

A measure u on the Borel sets of the G-space S is said to be invariant if
w(gE) = u(E) for every g € G and Borel set E, and quasi-invariant if
w(E) = 0 implies u(gE) = 0. Two measures u, and u, on S having the same
sets of measure 0 are said to belong to the same measure class; in this case we
write u; ~ u, and let [u] denote the measure class of wu. If u; is quasi-
invariant and p; ~ p,, then u, is quasi-invariant; thus either all members of
a measure class are quasi-invariant or none are. If u (E) = u(gE), then a
measure u is quasi-invariant if and only if [u,] = [u] for every g € G; in this
case the measure class [u] is said to be invariant under the action of the
group.

A topological G-space is said to be transitive if for every s;, s, € S, there
exists a g € G such that s, = gs;. Although in general a G-space S need not
have an invariant measure, if the action of the group is transitive, then S has
a unique nontrivial invariant measure class [Mackey (1952), pages 68-69]. If y
is left Haar measure on G and 7,(g) =t gs, then y(m; ') is quasi-invariant for
every s € S, and every quasi-invariant measure on S is contained in the same
measure class. If we denote this unique invariant measure class by [w], then,
employing an obvious notation, we have [y(7; })] < [u] for every s, and

[L](E) =0=y(m;'(E)) =0 foreveryseS.
Finally we will say that a probability measure v on S is translation

continuous if v(gU) - v(U) as g — e, for every open set U in S.

THEOREM 2.1. Let S be a transitive topological G-space and [u] its unique
invariant measure class. If v is a probability measure on the Borel sets of S,
then v < [u] if and only if

(2.1) lim »(gU) = (V)

for every open set U in S.
Specifically, we will show that:

* (@) If S is a G-space, u a measure on S such that p, < p for every g € G
and (dug/du)s) is continuous in g for every s € S (for example, if p is
invariant), and v < u is a probability measure, then (2.1) holds for every
measurable set U, uniformly in U.
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(ii) Conversely, if S is a transitive G-space with [u] the (necessarily unique)
invariant measure class induced on S by left Haar measure v on G, and if
(2.1) holds for every open set U, then v < [u].

Note that in (i) the action is not assumed to be transitive, while in (ii) the
translation continuity of »(gU) is assumed only for U open. If the action of G
is transitive, it can be shown that the condition on the measure u in (i) is
always satisfied for some quasi-invariant measure in the unique invariant
measure class [Loomis (1960)]; thus for transitive actions translation continu-
ity for open sets implies translation continuity uniformly over all Borel sets.
Theorem 2.1 is proved in Section 3 below. We conclude this section with
several examples illustrating the scope of the theorem.

ExampLE 2.1. Let G be the orthogonal group O(n), S = S"~! (the unit
sphere in R") and u the uniform measure on S™~ 1. Then G acts transitively
on S; thus Theorem 2.1 states that a probability measure on the sphere is
absolutely continuous with respect to the uniform measure on that sphere if
and only if the probability of every open subset of the sphere varies continu-
ously under rotations.

ExampLE 2.2. Let G =8, S =382 and let S! act on S? in the obvious
way by rotating it around an axis. If u is taken to be the uniform probability
measure on the equator of S2 (relative to this axis), then any measure v < u
is translation continuous (this follows from Theorem 2.1 applied to the action
S! x 8! - S1), but not every S!-translation continuous measure on S?2 is
absolutely continuous with respect to u: Just take a point mass concentrated
on either pole, or the uniform probability measure concentrated on any
latitude other than the equator.

The group action in Example 2.2 is very far from transitive. The next
example shows that even when the orbits are dense, the action ergodic and the
measure translation continuous in any reasonable sense, no matter how
strong, the measure need not be absolutely continuous with respect to the
invariant measure.

ExampLE 2.3. Let G act ergodically but not transitively on (S, u). Then, as
is well known, there can exist probability measures » on S which are
invariant with respect to the action of G (and hence trivially translation
continuous), but which are not absolutely continuous with respect to u [see
generally Sinai (1972)]. Thus transitivity is essential for the validity of Theo-
rem 2.1.
~ Can one weaken the assumption of transitivity by strengthening the trans-
Jation continuity condition in some way [for example, by assuming uniformity
of convergence, as in part (i) of the theorem]? Since v is an invariant measure
(and hence would satisfy any reasonable continuity condition), the answer is
clearly no.
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An interesting application of Theorem 2.1 in statistical mechanics relates to
the existence of measures which are not absolutely continuous when G = R
represents time, S is a constant energy hypersurface, u is Liouville measure
and the action of G on S is the flow induced by the Hamiltonian of the
system. In this case the theorem suggests that stationary measures which are
not absolutely continuous with respect to u should be disregarded as physi-
cally unrealistic, and in turn this uniquely identifies u as the equilibrium
measure; see Malament and Zabell (1980) for further details.

A transitive G-space can be identified in a natural way with a coset space of
G: If s is any point in S, H the subgroup of G which leaves s fixed (the
isotropy subgroup or stabilizer of s) and G/H is the quotient space of G and
H endowed with the quotient topology, then H is closed (because S is
Hausdorff) and the map of G/H — S which sends the coset gH to the
element gs is a homeomorphism of the two spaces [because G and S are
locally compact and G is second countable; see Helgason (1962), page 111,
Theorem 3.2]. Conversely, given any closed subgroup H of G, the action of G
on the coset space G/H gives rise to a transitive G-space.

This construction provides a simple way of generating transitive G-spaces
without an invariant measure: If G is unimodular (in the sense that its left
and right Haar measures coincide), but H is a closed subgroup of G which is
not unimodular, then no measure exists on G/H invariant under the action of
G [see, e.g., Gaal (1973), page 267, and Fell and Dorand (1988), page 245].

ExaMPLE 2.4. Thus, if G = GL(n,R) and S is projective space (or more
generally the Grassmann manifold P, ,, of m-dimensional subspaces of R"),
then G is unimodular, and S is the quotient of G by a nonunimodular closed
subgroup, hence no measure exists on S that is invariant under the action of
G [see, e.g., Nachbin (1965), page 143, and Fell and Dorand (1988), pages 181
and 245). Nevertheless, if a probability measure v on S varies continuously
under the action of G, then v is absolutely continuous with respect to the
invariant measure class of the action.

In Example 2.4, no invariant measure exists on S because G is “too large”:
If we restrict our attention to the (maximal) compact subgroup G, = O(n),
then G, acts transitively on P, ,, and, since every compact group is unimodu-
lar, there exists a measure p on P, , invariant under the action of G,. Ifv is
translation continuous with respect to G, then it is translation continuous
with respect to G, hence v < p. If it were in similar fashion always possible,
in a transitive G-space S not having an invariant measure, to pass to a
transitive subgroup G, for which an invariant measure did exist, it might be
argued that the appearance of the invariant measure class in the statement of
Theorem 2.1 was unnecessary. It is not hard to show, however, that there are
G-spaces for which the absence of an invariant measure is “intrinsic.”
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ExampLE 2.5. Let G = SL(n,R), n > 4, and let H be a closed two-dimen-
sional subgroup of G that is not unimodular, so that G/H has no G-invariant
measure. Suppose there exist proper subgroups H, and G, such that G 2
G,2H, and G,/H, = G/H. Then the codimension of G, would have to be
less than or equal to 2. On the other hand, it can be shown that any proper
subgroup of SL(n,R) must have codimension at least 3. (This observation is
due to Robert Zimmer.)

3. Proof of Theorem 2.1. Let v be a finite signed measure on S, |[v|l. =
sup{|v(E)|: E Borel} the sup norm of v viewed as a function on the Borel sets
of S, and

vl = sup{ Y lv(E;)l: E; disjoint

i=1

the total variation norm of v. If v = v™— v~ is the Jordan decomposition of »
into its positive and negative parts, then it follows from the Hahn decomposi-
tion theorem that |[v|l. = max{r*(S),»"(S)} and |lv]l=v*(S)+ »7(S). In
particular, if v = v; — v, is the difference of two positive finite measures such
that v,(S) = v,(S), and A U B is a Hahn decomposition of S (with » positive
on A and negative on B), then v*(S) =v7(S) = v,(A) — v,(A) = vo(B) —
v,(B), and hence |lv; — v,ll = 2|lv; — vyllo. Thus the two norms are equivalent,
and in order to show that v, > v in the sup norm, it suffices to show
convergence in total variation.

Lemma 3.1. If v < [u], then limg_,ellvg —v||=0.

Proor. There exists a quasi-invariant Radon measure p in the unique
invariant measure class on S such that (du,/du)(s) is jointly continuous in g
and s [Loomis (1960), page 579, Theorem 3]. Suppose v < [u]. Because u is
quasi-invariant, v, < [u], and thus

1
vl ==

dvg dv
Iy = vl = 5 s

du dp

)

1

DN =

sup{lv,(E) — v(E)|: E Borel} =

the second equality follows because the map which identifies an element of
L(w) with a finite signed measure on S is an isometric embedding of Banach
spaces [see, e.g., Rudin (1986), page 134, Theorem 6.13].

Let f(s) = (dv/duXs). Then (dv,/du Xs) = f(gs) =t f,(s), hence

dv, dv, dp, du,
du _d/.Lg du '2du

and it suffices to show that the right-hand side converges in L, to f as g = e.
If f(s) is continuous, then this immediately follows from Scheffé’s theorem
[see, e.g., Billingsley (1979), page 184, Theorem 16.11]. If f(s) is not continu-
ous, then for every & > 0 there exists a continuous probability density f*(s)
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such that || f — f*|l; < ¢, and a neighborhood G, of e such that

du
* 8 _ rx
¢ dn f 1<e
for every g € G. Since
dﬂ’g *d,ug * *
fegy i gn|, = = )sldug = = £,

it follows that for g € G,

p du, B *du,g
8du £ du

This completes the proof of Lemma 3.1.

*dp“g _f*
gd#

<
1

+ I f* = flli < 3e.
1 1

For any compact set K, v(gK) is upper semicontinuous, hence for every
Borel set E, v(gE) is measurable. In order to show that translation continuity
implies that v << [u], we need to show that the g-translates of p-null sets are
v-null for y-almost all g.

LEmMA 3.2. IfE is a measurable subset of S such that u(E) = 0, and vy is
left Haar measure, then y{g: v(gE) > 0} = 0.

Proor. Let Iy be the indicator function of E. Then

[ I=(85) d¥(g) = ¥(m{(E)) = w(E) =0,

hence by Tonelli’s theorem,

va(g-lE)dy(g) = ijSIE(gs) dv(s) dy(g)

- [| [ 1:e5) ar(e) | avs) - o,
sl’a
which implies that v(gE) = 0 y-almost everywhere, proving Lemma 3.2. O

Now suppose that v is not absolutely continuous with respect to . Then
there exists a measurable set E such that u(E) = 0 but »(E) > 0. Because S
is locally compact and second countable, v is regular, hence there exists a
closed set B contained in E such that »(B) > 0. Let A = B¢. Then v(A) <1
but it follows from Lemma 3.2 (applied to B) that »(gA) = 1 for y-almost all
g. Since any neighborhood of e has positive y-measure, it follows that »(gA)
cannot be continuous at g = e, and the theorem is proved. O

Thus v < [u] & lim,_ [lv, — v[=0. In fact, one can prove more. Let
v = a + o denote the Lebesgue decomposition of » into measures « and o
such that « < [u] and o L [u].
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CoroLLaRY 3.1. limsup, . llv, — vl = 2llo]l

Proor. If v; L v, then [vy + vyl = llv |l + llvyll. Since v, =a, + 0, it
follows that

vy = vl = li(ay + 0,) = (a + o)l = ey — all +lloy — oll.

By Lemma 3.2, there exists a y-null set A such that o, L o for g &€ A. By
Theorem 2.1, lim, _, lla, — all = 0, while |lo, — oll < 2llg,]| for all g € G, and
llo, — oll = 2|lo,ll for g & A. It follows that lim, v, — vl = 2llo|l for g & A,
and limsup, _, v, — vll = 2lloll. O

In the special case G = S = R, Corollary 3.1 is due to Wiener and Young
(1935); see also Plessner (1929).

4. Nontransitive actions. In this section we consider the case of a
nontransitive action on S. In such examples S can have more than one
quasi-invariant measure, and the appropriate generalization of Theorem 2.1 is
that a measure on S is translation continuous if and only if it is absolutely
continuous with respect to some quasi-invariant measure on S.

It is in fact possible to prove such a result under conditions of considerable
generality. Thus let G be a locally compact Hausdorff topological group and
suppose only that S is a Borel G-space: That is, the set S is only assumed to
be a standard Borel space (i.e., Borel isomorphic to a Borel subset of a
complete separable metric space), and the action G X S — S is only assumed
to be measurable (rather than continuous). Since every second countable
locally compact Hausdorff space X is homeomorphic to a complete separable
metric space, every topological G-space is a Borel G-space. (The one-point
compactification X* of X is separable, metrizable and complete, and X is an
open subset of X*, hence a G; of X*.) Basic information about standard Borel
spaces and Borel G-spaces may be found in Arveson (1976), Chapter 3, Mackey
(1978) and Zimmer (1984).

Rather than confine our attention to probability measures, v will be permit-
ted to be a finite positive measure on S; and because S is not endowed with a
topology, v will be said to be “translation continuous” if the map g — v(gE)
is continuous in g for every Borel set E c S. [If S has in addition the
structure of a topological space and v is regular, then this condition may be
replaced in Theorem 4.1 by the weaker condition that v(gK) is continuous in
g for every compact set K; see Remark 4.1 below.]

THEOREM 4.1. Let G be o-compact and S a Borel G-space. If v is a finite
pgsitive Borel measure on S, then v is translation continuous if and only if v
is absolutely continuous with respect to a o-finite quasi-invariant measure
on S. :

Theorem 4.1 will follow from Lemmas 4.1-4.3 and Remark 4.2.
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LemMA 4.1. If p is a o-finite quasi-invariant measure on S and v < u,
then limg_,ellvg —v||=0.

Proor. Let M(S) denote the space of complex measures on S, and let
®, = {v € M(S): v < u} denote the Banach space of complex measures abso-
lutely continuous with respect to u, endowed with the total variation norm.
Because p is quasi-invariant, v € ®, = v, € ®,; and it is immediate that for
each g € G the map T(g): @, > ®, given by [T(gIw) =v, is a linear
isometry of ®,. Let L(®,) denote the topological group of linear isometries of
®,, endowed with the operator topology; because ®, is isomorphic to L'(S, u)
and S is a standard Borel space, 1(®,) is separable. Since the group homeo-
morphism T: G - L(®,) is measurable, it follows from a theorem of Mackey
[see, e.g., Zimmer (1984), page 198] that T is continuous; and thus that the
map from G to ®, given by g — v, is continuous in g for every v € ®,. O

To show that a translation-continuous measure v is absolutely continuous
with respect to some quasi-invariant measure on S, we construct a quasi-
invariant measure v* by ‘“‘smoothing” v, and then show that v < v*. Thus let
vy denote a quasi-invariant measure on G, and let

v (E) = [v(g"'E)dy(g);

the measurability of (g~ 'E) follows from Tonelli’s theorem. Clearly,
v*(E) = 0 & v(gE) = 0 y-a.e.; thus the measure class of v* only depends on
the (unique) measure class of y.

LEMMA 4.2. The measure v* is quasi-invariant.

Proor. Let g, € G. If v*(E) =0, then v(gE) = 0 for y-almost all g,
hence v(gg,E) = 0 for y-almost all g, hence v*(g,E) = 0. O

Lemma 4.3.  If v is translation continuous, then v < v*.

Proor. If v*(E) = 0, then v(gE) = 0 y-a.e. Since every neighborhood of
G has positive y-measure, v(gE) = 0 for every g € G, hence v(E) = 0. O

Remark 4.1. If S is a topological space, v is regular and v(gK) is continu-
ous in g for every compact set K, then v(gE) is continuous in g for every
Borel set E, hence v < v*. [Argue as immediately after Lemma 3.2; the analog
of that lemma here is that v*(E) = 0 = v(gE) = 0 y-a.e.]

We note in passing two simple aspects of the smoothing v*: If v is
translation continuous, then »* is the minimal quasi-invariant measure such
that v < v* (Lemma 4.4); and if v is already quasi-invariant, then smoothing
v does not change its measure class (Lemma 4.5). (Note that in the statement
of both lemmas v is not assumed to be translation continuous.)
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LEmMMmA 4.4. If v < u and w is quasi-invariant, then v* < pu.

Proor. If uw(E) = 0, then u(gE) = 0 for all g € G, hence v(gE) = 0 for
all g € G, hence v*(E) = 0. O

LEMMA 4.5. The measure v is equivalent to v* if and only if v is quasi-
tnvariant.

Proor. If v is not quasi-invariant, then it is immediate that » and v* are
not equivalent; while if v is quasi-invariant, then v* < v by Lemma 4.4. Thus
it suffices to show that if » is quasi-invariant, then v < v*. But if v*(E) = 0,
then v(gE) = 0 y-a.e., hence there exists a g, such that v(g,E) = 0; since v
is quasi-invariant, it follows that »(E) = 0. O

REMARK 4.2. If G is o-compact, then y may be chosen to be finite. Then »*
is finite, and Theorem 4.1 follows. The assumption that G be o-compact
involves no essential restriction: Every locally compact group G contains an
open, o-compact subgroup G, C G, and a measure v is G-translation continu-
ous if and only if it is G -translation continuous.

Let v* be finite and let v = @ + o denote the Lebesgue decomposition of v
into measures a and o such that a < [v*] and o L [v*]. Arguing as in
Corollary 3.1, we deduce the following.

CorOLLARY 4.1. limsup,,llv, — vl = 2lle|l.

The conditions on G and S in Theorem 4.1 would appear to be close to, if
not the minimal ones necessary to ensure the validity of Theorem 4.1: G is
assumed locally compact to guarantee the existence of a quasi-invariant mea-
sure giving open sets positive measure; S is assumed standard Borel to
guarantee that L'(S, u) is separable. Theorem 4.1 was proved by Kleppner
(1967) for a topological G-space S with G and S locally compact and second
countable; Liu and van Rooij (1968) showed that the requirement that G and
S be second countable in Kleppner’s theorem could be removed if G were
assumed to be o-compact. Theorem 2.3 of Graham, Lau and Leinert (1988) is
closely related to Mackey’s theorem (employed in the proof of Lemma 4.1
above) and is a generalization of an earlier result due to Larsen (1968) and
Tam (1969); see also Larsen (1969) and Liu, van Rooij and Wang (1970).

Acknowledgments. My thanks to Colin Graham, C. Ionescu-Tulcea and
Robert Zimmer for helpful comments and references.
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