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NECESSARY AND SUFFICIENT CONDITIONS FOR SAMPLE
CONTINUITY OF RANDOM FOURIER SERIES AND OF
HARMONIC INFINITELY DIVISIBLE PROCESSES!

By M. TALAGRAND

University of Paris VI and Ohio State University

For very general random Fourier series and infinitely divisible processes
on a locally compact Abelian group G, a necessary and sufficient condition
for sample continuity is given in terms of the convergence of a certain
series. This series expresses a control on the covering numbers of a
compact neighborhood of G by certain nonrandom sets naturally associ-
ated with the Fourier series (resp. the process). In the nonstationary case,
we give a necessary Sudakov-type condition for a probability measure in a
Banach space to be a Lévy measure.

1. Introduction. In order to put the results of this paper in proper
perspective, we will recall some history of the theory of stochastic processes.
For our purposes, a stochastic process is a collection of random variables
(X,),cr indexed by a set T. The aim is to find necessary conditions and
sufficient conditions for the sample boundedness of the process in terms of
simple parameters (usually T is a topological space, and one is also interested
in sample continuity; but understanding boundedness is the key to under-
standing continuity). Historically, a class of processes of special importance
has emerged: the case where T is a locally Abelian compact group, or a
suitable subset of such a group, and where the process has some ““stationarity’’
~ property. We will call this case the ‘““stationary case.” Its importance stems in
" part from the fact that it is distinctly easier than the general case, and that
consequently it has been the first to be understood. (A second reason for its
importance will be described later.) For example, in the Gaussian case, Dudley
produced in 1967 a sufficient condition for continuity, the so-called ‘‘metric
entropy condition.”” This condition is the finiteness of a certain integral that
expresses a control of the growth of the smallest number of balls (for a certain
metric associated to the process) needed to cover T, as the radius of these balls
goes to 0. This type of condition (that we will call a covering condition) is a
common feature of much of the subsequent work. In 1974, Fernique proved
that, in the stationary case, Dudley’s condition is necessary, thereby providing
a complete characterization for continuity of Gaussian processes in an impor-
tant special case. The complete characterization of sample boundedness and
continuity of Gaussian processes was obtained only in 1985 by this author (see
[7] which contains more historical information). The main extra difficulty is
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2 M. TALAGRAND

that the entropy condition is ill adapted to the case where the index set T
lacks homogeneity, and that a more delicate tool, the so-called majorizing
measure, has to be introduced. (This difficulty completely disappears in the
stationary case.)

After Fernique’s 1974 theorem, there was a desire to understand more than
the Gaussian case. This motivated the landmark paper [5] by Marcus and
Pisier. In this paper, the authors obtain, in the stationary case, necessary and
sufficient conditions for sample continuity of p-stable processes in terms of
covering conditions that completely parallel the Dudley—Fernique theorem. An
important aspect of this work is that, in contrast with the Gaussian case,
sufficient conditions for continuity are very difficult to find in the p-stable
case; this is due to the fact that p-stable random variables have a considerably
“fatter” tail than Gaussian r.v.’s. A very remarkable fact, which is certainly
the main discovery of [5], is that in the stationary case, surprisingly weak
conditions suffice for continuity (this is the second remarkable aspect of the
stationary case). Actually, the necessary condition of Marcus and Pisier for
boundedness of p-stable processes has been extended to the nonstationary case
[8], while the understanding of efficient sufficient conditions in that case is
certainly not completed. The work of Marcus and Pisier was extended by
Marcus [3] to more general processes. An interesting feature of the work of
Marcus is that he obtains necessary conditions and sufficient conditions for
sample continuity in terms of covering numbers by balls for various metrics.
These conditions, which seem to be optimal of their type, never coincide,
except in the p-stable case.

The results of [3], [4] and [8] all rely upon the fact that the processes un-
der study can be represented as mixtures of Gaussian processes. Recently,
. Rosinski [6] has proved the remarkable fact that all infinitely divisible pro-
cesses can be represented as a mixture of Bernoulli processes (in a sense to be
explained below). This gave to this author the feeling that the time was ripe
for a full-scale investigation of these processes. As explained above, the natural
first case to investigate is the stationary case. This is the object of the present
paper. The notion of ‘“harmonic infinitely divisible processes” that we will
introduce below seems to be the natural setting for this study. It is more
general than the setting of Marcus [3] and, of course, than the p-stable case of
[4]. The necessary and sufficient conditions we obtain contain the conditions of
Marcus and Pisier [4] and improve those of [3]. These conditions are the
convergence of a certain series, which express the rate of growth of covering
numbers by certain nonrandom sets. An important new feature is that these
sets do not arise naturally as balls for a metric, except in the p-stable case.
This is not an accident and we believe that the correct conditions to under-
stand stochastic processes beyond the p-stable case are of this nature. The
covering conditions we consider here can be considered as a new way to look at
entropy conditions. This new point of view, which was discovered while writing
the present paper, can be further extended to reformulate majorizing measure
conditions; this reformulation has met surprising success in subsequent work
of the author [11, 12]. In particular, the author has succeeded in extending the



CONTINUITY OF RANDOM FOURIER SERIES 3

necessary condition of Theorem 1.1 below to very general processes (thereby
also extending the result of [8]). This is, however, very much harder, and the
present work exemplifies the characteristics of the stationary case that were
explained above: the proof of necessary conditions is much easier than in the
nonstationary case and these conditions are also necessary (that is certainly
not the case in general).

While many of the ideas of the present paper could be traced back to [5],
there are also significant differences. In particular, in the proof of sufficient
conditions (that is the hard part of the paper), the very elegant method of [5]
(used again in [3]) does not appear to generalize well, and we use the new
approach that was invented in [10]. Actually, none of the lemmas of [3] or [4]
could be used as they are. Consequently, we have made our paper completely
self-contained, and the reader need not know anything about the works [3], [4]
and [10]. Indeed, one of the aims of the present paper is to supersede the work
of [3] and [5], in the sense that more general results are obtained with
comparable, or even smaller, effort. The other aim of the paper is to provide, in
a simple case, an introduction to the subsequent work [11, 12].

We now describe our results in a more specific manner. Consider a set 7. A
positive o-finite measure » on R equipped with the cylindrical o-algebra is
called a Lévy measure provided

(1.1) VieT, [B()*Aldv(B) <.

We will say that a process (X,),.r is a (symmetric; without Gaussian
component) infinitely divisible process if there exists a Lévy measure v (called
the Lévy measure of the process) on R” such that for each finitely supported
family (a,),c r of real numbers, we have

(1.2) Eexpi), a,X,=exp — f(l - cos( Y atB(t))) dv(B).
teT teT

To give examples, consider a Lévy measure 1 on R [i.e., [t2 A 1dn(t) < x].
Consider the measure n ® A on R X R (where A denotes Lebesgue measure)
and the image measure v of n ® A under the map (u, x) = B, , € R¥, where
B, () =u if x <t and B, ,(t) = 0 otherwise. Then the process (X,),cp+ is
the Lévy process modeled on 7.

A considerably different process is obtained if v is the image of » under the
map u — uf3, where B is a given element of R®. In that case, one can write (in
distribution) X, = B(¢)Y, where Y is an infinitely divisible random variable (of
Lévy measure n). Observe that, in that case, the process (X,), .y is sample
continuous whenever ¢ — B(¢) is continuous; but, of course, the process (X,), c
is very far from having independent increments. The processes considered in
this paper certainly resemble moré the second example than the first one.

Since we will deal with locally compact Abelian groups T' and characters are
definitely complex-valued, we need the notion of a complex-valued infinitely
divisible process (X,), c p. If we identify C with R X R this just means that the
real-valued process (indexed by two copies of T') that is canonically derived
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from (X,), c 7 is infinitely divisible. A concise way to express this is that there
is a Lévy measure v on C7, that is, a positive measure satisfying

(1.3) VieT, [IB®) A Lldv(B) <,

such that for each finitely supported family («,),. of complex numbers we
have

(1.4) Eexpi,@e( v atXt) — exp — [(1 - cos(g?e( Y a,B(t)))) dv(B).

teT teT

The celebrated Sudakov minoration for Gaussian processes was extended by
Marcus and Pisier to p-stable processes, p > 1 ([3], Theorem 2.6). Our first
result is an extension of their result to the infinitely divisible case. If » is a
Lévy measure on RT (or CT) for s,t € T, u € R, we set throughout the paper

(15)  o(s,t,u) =@,(s,t,u) = [(u2B(s) = B(2)I*) A Ldv(B).

THEOREM 1.1. There exists a numerical constant C with the following
property. Consider a (real or complex) infinitely divisible process indexed by T,
with Lévy measure v. Suppose that we have

P(supIXtI > M) <1/5.

teT

Then for u > C, T can be covered by at most e* sets of type

u
V,= {s S T;go,,(s,t,—@—) < u}.

It will be shown in Section 6 why this result contains the Sudakov minora-
tion of Marcus and Pisier for p-stable processes, p > 1. Unfortunately, this
does not contain the case p = 1 proved in [9].

We now turn to the case where the index set is a locally compact Abelian
group G and we denote its dual group by T'. For simplicity, we will consider
only complex-valued infinitely divisible processes (X,),co. We will say that
such a process is harmonic infinitely divisible if its Lévy measure is supported
by CI' = {ay: a € C, y € T']. These processes, which need not be stationary,
contain the strongly stationary ¢-radial processes of Marcus [3] that them-
selves contain the strongly stationary p-stable processes of Marcus and Pisier
[5]. We will give a necessary condition for sample continuity (of a separable
version of) a harmonic infinitely divisible process (X,),cs. Under a mild
assumption on the Lévy measure v, this condition is also sufficient.

We fix a given compact neighborhood of unity K in G. When G is compact,
we take K = G. We fix a Haar measure | : | of G. When G is compact, this
Haar measure is normalized so that |G| = 1.



CONTINUITY OF RANDOM FOURIER SERIES 5

Throughout the paper, we denote by 0 the unit of G and we set
Ull,i — {S e G; 90(8,0,21_”/2) < 21}

= {s € G, f(22l+i|ﬂ(s) - B(0)1*) A 1dv(B) < 2i}

and weset U, = U/, N K.

(1.6)

THEOREM 1.2. There exists e, > 0 with the following property. Consider a
harmonic infinitely divisible process (X,), . g. Suppose that for each countable
subset D C K we have P(sup, . plX,| < M) > 1 — ¢,. Suppose that there exists
an integer 1 € Z for which K # U, ,. Then there exists a smallest integer
ly € Z such that K + U, . Forl > 1, set i(1) = 0 if |U, , > 1/e. If U, ol <
1/e there exists a largest i(l) = 0 such that |U, ;| < e 2" and we have
21210271”(“/2 < CM, where C depends only on K. Moreover, when G is
compact, C is universal.

This might be the place to observe that |U] is closely related to the covering
number of K by translates of U (see Lemma 2.11 below; this is extensively
used in [4] and [5]); on the other hand, the sets U, ,,, do not arise as balls for a
natural metric. The definition of U/, and convergence of the series
L., 27'7D/% are not very intuitive. One of the reasons why it is not
apparent that this condition is related to the usual conditions is that a change
of variables has been made. It should be mentioned that the condition of
Theorem 1.2 can be formulated in many equivalent ways (by other changes of
variables, as will be apparent in Section 6). The present formulation is
somewhat canonical with respect to the use of the random distances that are
basic for its proof. An alternative attractive formulation would be to replace
the definition of U ; by

{s €G;0(s,0,2) <277}

and the series ¥, , 27 /"2 by T, _, 27110,
We now introduce a condition on v.
H(B,$): for all s,t € G, u > 0, we have

(1.7) ‘l;lﬁ(s)—ﬁ(t)lzlulﬁ(s) — B(?)I(log(eulB(s) — B(2)I))’ dv(B)

< Bo,(s,t,u).

Let us first comment on that condition. Obviously, if a family of measures v
satisfies condition H(B, §), so does any mixture of this family. In this case
where v is supported by a ray, that is, v is the image of a measure n on R* by
the map x - Byx from R* to C% condition H(B, ) means that for each
a> 0,

(1.8) /:aat(log eat)’ dn(t) < Bf:(a2t2 A1) dn(t).
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This condition is not intuitive either. But let us note that it is satisfied in
particular if n([2¢, [) < 27Bn((¢, <]) for some B > 1. Our argument, however,
does not require that much, and (1.8) is simply the formulation of a weaker
condition for which the same proof works. For p > 1, p-stable processes will
satisfy condition H(B,§) for some B > 0, § > 1. Condition H(B, §) is not
satisfied for 1-stable processes. While the case of 1-stable processes has been
settled in [8], there seem to be difficulties of a new nature in the extension of
that result to the present setting.

THEOREM 1.3. Suppose that condition H(B, §) holds where 6 > 1. If K =
U, foralll € 7, the process (X,),c x is continuous. Otherwise suppose that
there is a smallest integer | o € Z for which U, , # K. Forl > 1, set i(l) =
if |U ol > 1/e. Suppose that when U, ol <1 /e there exists a largest tnteger
i(1) > 0 such that |U, ;)| < e™*". Suppose that ¥, 1,27 D72 < w, Then the
process (X,),c g is a.s. continuous. If L is a compact netghborhood of 0 such
that L + L C K, for each ¢ > 0 there is a number C(¢), depending only on e,
B, 8, K and L such that

P( sup X, - X,| >C(e) Y 2~ ’“(’)/2) <e.

s,teL =1,

In Section 6, we will show how to recover from Theorems 1.2 and 1.3 the
results of Marcus and Pisier in the p-stable case 1 < p < 2; and we will briefly
indicate how one could recover many of the results of Marcus [3].

We now turn to random Fourier series. There is no direct connection
between the random Fourier series we consider and infinitely divisible pro-
cesses, although the results and the proofs have many similarities. We consider
random Fourier series of the type X, = ¥ _f,y(¢), where (f,), . are inde-
pendent symmetric random varlables The reader observes that there are no
coefficients in front of f,; the coefficients are absorbed by f,» as our formula-
tion does not require that the functions f, have the same dlstrlbutlon

We set

6(s,0) = L E(Rf2y(s) -1 A1),

'yer
andfor [ € Z,i > 0, we set
Vt,i — {S = K, 0(8’21+i/2) < 21}

THEOREM 1.4. There exists €, > 0 with the following property. Assume
that P(sup, . xIX,| > M) < &,. Suppose that there is an integer | € 7 such that
Vi,0 # K. Then there is a smallest integer l, such that V, ,# K. For 1 > 1,
we seti(1) = 0 if |V, o| > 1/e. If |V, o| < 1/ethereisa largest integer i(l) such
that Vol < e~ and

Y 2-i+i/2 < oM,

=1,

where C depends on K only (and C is universal if K = G).
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ReEMARK. Since the quantity 6(s, A) might be hard to compute, the reader
might feel that Theorem 1.4 is impractical. However, if one replaces in the
definition of V, ; the value of 6(s, A) by a lower bound, one sees easily that this
decreases the value of (1), and thus that one still gets a necessary condition.

Before we turn to sufficient conditions, we must mention one more (well
known [4]) necessary condition that is not captured by Theorem 1.4. For
y € I, we consider the largest number a,, such that P(If,| > a,) > 1/2.

PrOPOSITION 1.5. There exists £, > 0 with the following property Consider
the distance d on G given by d(s,t) = (L, .ra,ly(s) — ¥())*/% Denote by
N,(K) the smallest number of balls for d of radius 27* needed to cover K.
Then if P(sup, . ¢lX,| > M) < &, we have

Y. 27*(log N,(K))"* < CM,
k

where C depends on K only.

THEOREM 1.6. Assume that for some 6 > 1, B > 0, we have for all y €T,
ula,| <1= ]I‘fl g ulfyl(log(eulfyl))a dP < BE(uZIfYI2 A 1).

Then, if 1, and the sequence (i(1)) are defined as in Theorem 1.4 and if N,(K)
is deﬁned as in Proposition 1.5, the series X, = L. . f,,y(¢) is almost surely
continuous whenever L,.; 2~ 1HW/2 < o and Z 27*(log Ny(u)/? < o,
Moreover, for ¢ > 0 we have

(supIX,| > C(e)( Y -tz 4 2 2 *(log Nk(K))l/z)) <e,

teK 1>,

where C(e) depends only on ¢, B, 8 and K (and only on B, B and ¢ if G is
compact).

ReEMARK. If (s, A) is replaced by an upper bound, one sees easily that this
increases the value of i(J), and thus that one still obtains a sufficient condi-
tion.

The proof of Theorems 1.2-1.4 relies upon the fact that both strongly
stationary infinitely divisible processes and random Fourier series can be
represented as a mixture of random Fourier series ):y e m@,€,Y(t) (e, being a
Bernoulli sequence) for which necessary and sufficient conditions for continu-
ity are known. In the case of infinitely divisible processes, this representation
is made possible by some remarkable recent results of Rosinski [6] that are also
essential in proving Theorem 1.1. Suitable inequalities are required to control
the random distances involved in these representations. The inequalities we
prove are simple, yet they are somewhat different from those used in previous
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work ([3, 5]). Section 2 is devoted to these and other tools. In Section 3 we
prove Theorem 1.1. In Section 4 we prove Theorems 1.2 and 1.4. In Section 5
we prove Theorems 1.3 and 1.6. Section 6 is devoted to recovering the p-stable
case.

2. Tools. Our result will rely on recent representation results of Rosinski
[6] that allow the representation of an infinitely divisible process as a mixture
of Bernoulli series. Our first task is to explain the special case of these results
that is suitable for our needs. Consider a (real) infinitely divisible process
(X,),cp with Lévy measure v. Since v is o-finite, there is a probability
measure m on RT such that v < m. Consider a Radon-Nikodym derivative
h = dv/dm. For x € RT, u € R*, we set

R(u,x) = 1[0,h(x)](u)'

Observe the trivial but essential fact that R(-, x) is nonincreasing. Denote
Lebesgue measure on R* by A. Obviously, v is the image of A ® m by the map
(u,x) » R(u, x)x.

Consider a r.v. Z > 0 with P(Z > t) = e”%, and i.i.d. copies Z; of Z. Set
I=X,_,Z,. Consider a Bernoulli sequence (g;) li.e., (g) is 1ndependent and
P({s = 1}) =172 = P({; = —1))] and an i.i.d. sequence Y; valued in R” and
dlstrlbuted like m. We assume that each of the sequences (I}),(¢,),(Y}) is
independent of the others.

THEOREM 2.1 (Rosinski [6]). The process

¥ & R(T, Y)Y(1))

i>1 teT

(2.1) (
is distributed like (X,), 1.

It will be convenient to assume that the basic probability space is a product
E X Q, and the basic probability Pr is a product @ ® P. We will assume that
g,(¢, w) depends on ¢ only, while I}, Y; depend on  only.

Conditionally on w, the process (X ), cp is thus represented as a Bernoulli
series; in the strongly stationary case, the series will be a random Fourier
series.

Previous work ([3, 5]) makes heavy use (in the more restricted context of
p-stable or ¢-radial processes) of the random distance

1/2
£ R(L, Y)1v(s) - Y0

i>1

d,(s,t) = (

A key ingredient in these arguments was sharp bounds for P(d (s,?) < a),
a > 0. However, in those works, the process (X,) conditioned on w was a
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Gaussian process, and thus
2

A
Jexpid(X, - X,) dQ(€) = exp — —di(s,1).

Combined with our knowledge of E expiA(X, — X,) and an exponential
Chebyshev inequality, this yields a bound for P(d (s,t) < a), of the right
order (see, e.g., [5], Lemma 2.2). This argument does not work any longer, and
we will have to proceed directly (which is fortunately easy). The following
deserves no proof.

LeEmMA 2.2. Consider a nondecreasing function h on R*. Then for a > 0,

aglh(ai) s]:oh(x)d)t(x) < a|h(0) + ~gh(m) .

LeEmMA 2.3. Consider s,t € T. Let
(2.2) W, = (u?R*(ai, Y,)I%(s) - Yi(t)*) A 1.
Then
alo(s,t,u) —1< Y, EW, <a Yp(s,t,u).

i>1

Proor. For B € RT we have, by Lemma 2.2, that

« & 'R (ai, B)B(3) ~ B A 1
< [:(u2R2(x,B)|B(s) — B(1)® A 1) dA(x)

<«

1+ i u?R?%(ai, B)IB(s) — B(t)I*> A 1).
i=1

We now apply this for B = Y;, and we take expectations. Since the sequence
(Y}) is equidistributed of law m, we get

« X BW, s [ (w?R(x, BB(s) - BOF A1) dA(x) dm(B)
i=1

< a(l + Y EVVl)
i=1
Since v is the image of A ® m under the map (x, 8) —» R(x, )8, the middle
quantity is (s, ¢, u). O

Several of our inequalities are based on the amazingly simple following
lemma.
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LemMA 2.4. Consider independent random variables 0 < W, < 1. Then:

(i) Eexp— LW, <exp — ;L EW,,
(ii) Eexp LW, < exp 2L EW,.

Proor. To prove (i), we observe that exp —x <1 —-x/2 for 0 <x <1, so
that

W, 1 1
Eexp—W,-sE(l——-— =1—-—-EW,<exp - —EW,.
2 2 2
Now Eexp — LW, =[1Eexp — W,
To prove (ii), we proceed similarly, noting now that for 0 < x < 1 we have

expx <1+ 2x. 0O

ProposiTION 2.5. (i) Suppose that ¢(¢, s, u) > 2a. Then

1 (s, t,u) (s, t,u)
. N2
P(EIR(al,Yi) Yi(s) = Yi(2)I* A S W) Sexp - ———.
(ii) For A > 4a™'¢(s,t, u) we have
1 A A
P( ¥ R(ai, ¥)1%(s) - YO A =3 > —2) <o .
is1 u u 2

Proor. Define W, by (2.2). Thus, by Lemma 2.3, we have
alo(s,t,u) = Y, EW, > a o(s,t,u) — 1> o(s,t,u)/2a.

i>1
(i) This follows from Lemma 2.4(i) and the inequality P(Z < A) < exp A -
Eexp — Z,used for Z =L W, A =¢(s,t,u)/8a.
(ii) This follows from Lemma 2.4(ii) and the inequality P(Z > A) < exp —
A-EexpZ,used for Z=Y W, O

To prove convergence of a series Ye,y;, ¥; € R?, we will, following the
method of [4], decompose it in ‘“‘small” and “large” terms. The small terms
will be handled by Proposition 2.5. We now build the tools to control the large
terms. These will be based on the following elementary fact.

ProposiTION 2.6. Consider an independent sequence H; > 0 of r.v.’s and
& > 0. Suppose that
Y EH]1y . (logeH,)’ <A,

i>1

where A > 2. Then

d

where C is universal.

Y Hlg.y > 4A) < C(log A) ™,

i1
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Proor. Observe that, since log eu > 1 for u > 1, we have
Y EHly .y < A.

i>1

Set a; = A(log A)™?, a, = A, ‘

Hil = Hil(lsH,-<a1)’ Hi2 = Hi]'(alsH,-<a2)’ Hi3 = Hil(Hizaz)'
Thus

P(E Higey>44) < T P( X [H/ - EHY] = 4|
i>1 j<8 Vix1
=: (I) + (II) + (III).
For simplicity set A(z) = t(log et)® for ¢ > 1, A(t) = 0 for ¢ < 1. We have
Y. P(H;>a;5)A(a,) <A,

i>1

which yields (IIT) < C(log A)~°. To evaluate (I) and (II), we use
2
P [H-EH]] > A) <A7E( T [H] - a)
i>1 i>1

<A™ Y E(H/ - EH})’
i1

<A2Y E(H))
i1

<A %;) EH/.

i>1

For j=1weuse X, ,EH! <T,,,EH1y ., < A to get () < C(log A)~°.
For j = 2 we observe that

(log ea2)8Hi1(H,~za2) < A(H;)
so that
Y EH? < (logea,) ° ¥ EA(H;) < A(logea;) °

i>1 i>1
and thus (IT) < C(log A)~%. O
ProposiTION 2.7. Consider s,t €T and u>1, 0 <a < 1. Assume that
condition H(B, 8) in (1.5) holds. Set
»~ H, = uR(ai, Y,)IY(s) - Y(t)\.
Then
Y. EH1y, . (logeH,)’ < a™'Bo(s, ¢, u).

i>1
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Proor. For convenience, set A(t) = t(log et)® for ¢ > 1 and A(¢) = 0 for

t <1
We recall that R(x,y) = 1j ;(,)(%), where h = dv/dm. Thus we have

A(H)) = 1[0,h(Y,)](ai)1(u|Y,-(s)—Y,(t)|zl}A(uIYi(s) - Yz(h)l)
Thus
EA(H;) = E(l[o, h(Yl)]( at) 1(u|Y1(s)—Y1(t)| > 1)A( ulY (s) — Y;(2)l ))
Since T ;1 pvpf@i) < a”th(Y)), we get
Z_ EA(H;) < a_IE(h(Yl)1(u|Y1(s)—Y1(t)|zl)A(ulYl(s) - Y1(t)|))-
Since h = dv/dm and Y, is distributed like m, we have
LEAH) <o [ A(ulB(s) - B(2)]) dv(B).
i {ulB(s)—B®I=1}
The conclusion follows from the definition of condition H(B, §). O
We have proved inequalities that will handle the case of infinitely divisible
processes. We now prove similar (but easier) inequalities that will handle
random Fourier series. The following is a consequence of Lemma 2.4 and of

the inequalities P(Z < A) <expA-Eexp —Z, P(Z>A) <exp—A-
EexpZ.

ProposITION 2.8. Consider independent r.v. (h.), cr. Then

Sexp(—% Y E(R2 A1)

yerl

() p(z (A1) s T E(RAD)

yerl yerl

(i) For A > 4% . E(h% A 1), we have

P(Z hzy/\le) <exp—A/2.

yel'
The following is an immediate consequence of Proposition 2.6.

ProposITION 2.9. Consider independent r.v. (h,), <y, b, = 0 and § > 0.
Then for some universal constant C we have

Y E(uhyl(uhyzl)(log euhy)a) < 2k
y

= P(Z uh, Lo, o1 2 2’”2) < CEk™°.
Y

Finally, let us recall some general facts.
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ProposiTiON 2.10. Consider vectors (x;);,; in a Banach space. Suppose
that P(|IZ ;. 1&;x;/l < M) > 3/4. Then

E

Y 8ixi“ <CM.

i>1

Proor. This has been known for a long time. It can, for example, be
obtained by combining the result of [7] with the inequality

P|Z eon|= (20 2 5

i>1
for (x;) real ([1], page 31). O

Consider two sets K, A of agroup G. Let K'=K+ K={x +y;x,y € K}
and K” = K’ + K. We denote by N(K, A) the smallest number of translates of
A by elements of K that can cover A.

LeEmMA 2.11 ([4], page 16)

(i N(E, 4) >
) ( ’ )_IK'ﬁAI’
(ii) N(K, A - A) < K

’ T |IK'n Al

3. Sudakov minoration. The major difference with previous work is
that the process is represented conditionally as a series Y ¢;x;, not as a
Gaussian process. Thus it is not possible to apply Sudakov minoration for
Gaussian r.v.’s directly. Instead we will use the version of Sudakov minoration
for Bernoulli processes that was recently established by the author. Since
there was hope at the time that the structure of Bernoulli processes was soon
going to be elucidated, this result was not published. There is no point to
giving the proof now, as this result has been included in the book [2] where it
is discussed in detail. We set

B, = {(xi) eRY; Y Il < 1}, B, = {(xi) RV Y x2 < 1}.

i>1 i>1

THEOREM 3.1 (Sudakov minoration for Bernoulli processes). There exists a
universal constant C,, with the following property. Consider a subset X of RN.
Set r(X) = E sup, c xIZ ;. 18;%;l. Given & > 0, consider the set

B=¢B, + Cyr(X)B; ={x +«'; x € eBy, x' € Cor(X)B}.

Then the smallest number of translates of B by points of X needed to cover X is
less than or equal to exp(Cyr(X)?/e?).
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While the sets ¢ B, + Cyr(X)B; turn out to be the correct choice, they are
not so easy to manipulate. In the present case, to handle them, we will use the
following simple fact.

LemMma 3.2. Consider ¢,a,b > 0. If x € ¢ B, + aB;, then
1/2
(zngbz) <&+ vba.
i>1
Proor. By definition x; = y; + z;,, where L, 12 < ¢% ¥ ,.lz;| <a. Now
lel AD <yl + 12,1 Ab.
By the triangle inequality,
1/2 1/2
(inz/\bz) SE+(Zzi2/\b2) <&+ vba,
i>1 i1
since z2 A b% < z,b. O

LeEmMA 3.3 (See, e.g., [2]). Consider symmetric independent r.v.’s (X,), .,
taking values in a Banach space and numbers (a;); ., la;| < 1. Then

p( Y a,X, T X, Zu).

i>1 i>1
We now prove Theorem 1.1. We consider a number A > 0 to be determined
later, and we assume that T cannot be covered by <e* sets V,={s € T;
¢,(s,t,u/AM) < u}. Thus we can find N > e* and points (s;); _ y such that
@,(s;,85,u/AM) > u for i, j <N, i #j.
We now fix once and for all @ such that if we set

H,={Vi,T,<ai} cQ, then P(H,) >9/10.

It follows from Proposition 2.5(i) that if ¥ > 2« we have

>u) <27

\ AM\®  AM2
2 .
P(kZZZIR(ak,Yk) 1Y,(5:) = Yi(s,)l /\(—u ) < 8au)
u
< - —.
< exp 8a

Consider n < N. Set

AZM?
8au }

AM \2

G = {V i,j<n, Y R(ak,Yk)ZIYk(si) - Y,;c(sj)l2 A ( ” ) >
= k>1 .

Then

u
P(G) = 1—n2exp—8—.
@
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Taking
u u

exp—3—2: <n< 2exp—3—2—a

gives P(G) > 9/10if u > C.
Set now x, , = R(I}, Y,)Y(s,). Since R(-,y) decreases, we have shown that
P(W) > 4/5, where

>

W= {Vk,l <n, ) (%5 _xi,l)2 A

i>1

AM\?  AZM?
( ) 8au }

On the other hand, since Pr(sup, ¢, . 5,/X) = M) <1/5,wecan find w € W
such that, setting x3(n) = L, 1&,(n)x; ,(w),

Q(suplx,@"(n)l < M) > 3/4.
k<n
By Lemma 2.10 we have E(sup, _,lxy|) < C;M. Now take ¢ = AM/2V8au,
b=AM/u, a < AM/32a.

Set B’ = ¢B, + aB,. By Lemma 3.2 and the definition of W, we see that
x,€x,+B if k,l <n, k#1, where x, = (x; ;);.,. Set B = 3;B’. Then the
set Z = {x,; k < n} cannot be covered by n translates of B’, since no two of
these points can belong to the same translate of B. If we take A > 64aC,C,
(universal), we can assume a > 2C,C; M, so that by Theorem 3.1,

u 4C,C2M? 2'C,Ciau
eXpo— <N <exp— 5 — =exp— 5 —,

that is,

1 2'C\C2a
< .
32a A?
This is a contradiction if A% > 2!2CC2a?. This concludes the proof. O

4. Proof of Theorems 1.2 and 1.4. First, we prove Theorem 1.2.

For convenience, we denote by C a constant that depends on K only and
that can vary at each occurrence. (The reader will check that when G = K is
compact, C is universal.)

Consider a compact neighborhood L of the unit 0 of G suchthat L — L c K
(if K = G, take L = G). Our first task is to prove that 27!0 < CM. This is a
consequence of the following elementary lemma.

LEmMA 4.1. There exist two constants €y, C > 0 such that if a random
variable X satisfies:

() VteR, EexpitX = exp — [5(1 — cos tx) dv(x),
(i) P(Xl < M) >1 — g,

then [§(x/CM)? A 1dv(x) < 1.
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Proor. Consider ¢, > 0 such that ¢, M < , so that cos X > cost,M for
IX| <M, 0 <t <t, Thus, since P(IX| <M)=>1- ¢, we have

EcostX > —¢gy+ (1 — gg)costyM

and hence for ¢ < ¢, we have

J (1 = costx) dv(x) < B = ~log(—s, + (1 - go)cos toM).

0
Integrating over ¢ for 0 < ¢ < ¢,, we get
S
0
Observe that for some a >0 we have 1 — sinu/u > a(1 A u?). Now we

choose ¢, small enough and C large enough that —log(—¢, + (1 —
gg)cos 1/C) < a, and we take t, = 1/MC. O

sin ¢,x
tox

) dv(x) < B.

We wish to avoid giving a separate argument to show that i(l) is well
defined. Let us agree to set i({) = « when i(]) is not well defined. Observe that
|U, | is a decreasing function of , so that i(l) increases. We define /, as the
smallest integer such that i(I,) > 1 and |L|e2™” > 1. If i(}) <  for each I, we
set h(l) = i(l). Otherwise there is a smallest [, such that i(l,) = . We set
R(1) = i(l) for I < 1,. Since i(l,) = «, the inequality |U, ;| <e™* occurs for
arbitrarily large values of i, and thus we can find N > i({, — 1) such that
U, nl < e 2" We set k(1) = N for I > I,. Thus the sequence (k(1)) increases.

It follows from Lemma 2.11 that N(L, U] ,,) > ILle?"". This implies that
we can find a subset @, of L such that card @, > |Lle"” and s — ¢ & U/ ray
for s,t € Q,, s # t. We recall the crucial fact that |8(s) — B(#)| = |B(s — ) — 1]
for B € CT'. Thus we have for s,t € Q,, s # ¢,

(4.1) fcrz-‘%“h(l)m(s) — B()* A 1dw(B) = 2",

We now appeal to Theorem 2.1 to represent the process (X,) as a mixture of
random Fourier series. Since, by the law of large numbers, we have
lim;_,T,/i =1 as., there exists a number a such that P(A) > 7/8, where

A = {sup,.I;/i < a}. Moreover, A is independent of the sequence (Y;). Since
the functions R(u, y) are nonincreasing in u, we have for w € A that

d(s,t) = ¥ (R(ai, V)I%(s) - Y(0)))"
i1
If we use Proposition 2.5(i), we see that
k() 9k

k(1) 2 L —— -
2" > 2a = P|d.(s,t) < BagflThd) | < €XP — o
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We thus get
9h(D)
(4.2) 2rD > 24 = P(dw(s,t) < 2_1_3a_1/2) < exp — S
For £ > 1 we set
B, ={l>1;; h(l) =k}
Thus h(l) =k for L€ B,. Weset D={k>1, B, # &}, and for k € D we

denote by /(%) the smallest element of B,.
Consider the smallest integer k, such that 2*° > 2« and

Y. exp(—2*/16a) < 1/8.
k=k,
We set D, ={k € D; k > ky}. For k € D, consider a subset S, of @, such
that card S, < exp(2*/32a) and
(4.3) card S;, > min(exp(2*/32a) — 1; |L| exp 2*).
It follows from (4.2) that, for £ € D,, we have
2k
P(Vs,t€8,,s+#t,d,(s,t) 227" "3"1/2) > 1 — exp — Toa’
a

since we have assumed card S, < exp(2*/32a). Thus we can find B c A such
that

P(B) > P(A) — Y e 2/t 3/4
k=k,

and for w € B,
VkeD,Vs,teS,,s+t, d,st)=2103g"1/2
Since we have Pr(sup,. x|X,| < M) > 3/4, we can, by Fubini’s theorem,
find w € B such that
Q(suplX;"I sM) > 1/2.
teX
We now combine Lemma 2.10 with the results of [4] to see that for a
constant C depending on K only we have
Y 27UWg~(logcard S,)"? < CM.
keD,
From (4.3), since I(k) > [, and since 2~‘ < CM, we get that

Z 2—l(k)+k/2 < CM.
o keD
Since again I(k) > 1, 27' < CM, it follows that

Y 2-ik*k/2 < COM.
keD
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On the other hand, we have
Y g-lth()/2 o Y g-lvk/2 < 9-l)k/2+1
leB, leB,

Thus we have shown that

Z 2—l+h(l)/2 < CM.
1>l

Since obviously
Y, 27ithd/2 < 027 < CM,
l,<l<l,
we have shown that T,., 27/"*®/2 < CM. In particular, ~(l) is bounded
independently of N. Lettlng N — « shows that each i(l) is finite and that
2,272 <CM. O

The proof of Theorem 1.4 is very similar; we observe that, since each r.v.
(f,) is assumed to be symmetric, the process X, = ¥, o f,y(?) is distributed
hke ¥, erée, f,7(t), where ¢, is a Bernoulli sequence independent of f,; thus
we can represent X, asa mlxture of random Fourier series X;” = X ¢, f, (w)y(t)
The only change in the proof from that of Theorem 1.2 is to replace the use of
Proposition 2.5(i), by the use of Proposition 2.8().

Let us mention that Proposition 1.5 follows from the result of [4], since the
random Fourier series ¢, a.y(¢) has to converge by standard arguments.

5. Proof of Theorems 1.3 and 1.5. We first prove Theorem 1.3. We first
dispose of the case where U, , = K for all / € Z. In that case, we have

V,se€K,VilezZ, [zzlm(s) —B(O)2 A 1dy(B) <1

so that B(s) = B(0) v-a.e. Going back to (1.4), one sees that the process
(X)), c g is (in distribution) such that X, = X, so is certainly continuous.

For convenience, we assume now that () is a product Q; X Q, and P =
P, ® P,, and that for w € Q, Y,(w) depends only on »; and Ij(w) on w,. It is
clear by definition that the sequence i(l) increases. We define a sequence m,
by induction as follows:

=max{l;i(l) =i(ly)},
My =max{l>my; VU, m, <l <l,i(l') =i(l)}.

This means that the function i() jumps between m, and m, + 1, and that
these are the only jumps. Note that i(m,) > &, and that the sequence i(m,)
increases strictly. By definition of i(l), we have

(5.1) UL, iy 41l > €7
and for s € U; ;,y.; we have
(p(8,0,21+i(l)/2) < qD(S,O, 2l+i(l)/2+1/2) < 2i(l)+1’

2i(l)+1
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We set A, =2™:+ /2 U, =U, .. ., Thus for s €U, we have
¢(s,0,A,) < 2/m0*1 Consider now a < 1, which will be fixed until further
notice. Consider s € U,. Set

Si,s = R(ai, Y)IY(s) — Y;(0)°.
We apply Proposition 2.5(ii) with A = @~ 127%™»*3 Since i(m,) > k, we get
1
(5.2) P| Y S2, A — =>a 1272m*3) < exp — 2k+2,
i>1 ' /\k

We now use Proposition 2.7 to see that if we set H; = A, S, ,, we have

EH],, . (logeH,)’ < a 1B2i{mn+1,
i (Hz—l) 12

i>1

We can assume B > 1. We apply Proposition 2.6; since log(a~'B2/™»*1) >
C~!log(k + 1) and since 2:™»*+1 /), = 27 mr+imp)/2+1 e have

C
5.3 P( Sislis, a1/ a_lB2_m"+i(m")/2+3) S+
(5-3) 1 El csl(s: 2 1/20) (B +1)°

Given w; € (),, we define U, , , as the set of points s € U, that satisfy

1
(54) Z Siz,s A /\_2_ < a_12_2’"k+3,
i>1 k
(5.5) )» S, sls, 2100 < a”'CB2 s *imw/2+43,
i=1 ’

It follows from (5.2), (5.3) and Fubini’s theorem that
PI(IUk,a,wll > IUkl/Z) 2 1 - bk?

where b, < C(k + 1)7% (for a new C) is the term of a summable series.
Consider the event

B, .= {Vk=p,IU,,.l=IUl/2}c,.

Thus P(B, )=1-X,. b,
By definition of /,, we have

VseK, ¢(s,0,27%0)<1.

By Lemma 2.3 and Proposition 2.7, we have

E( Y 2282 A 1) <al,

i>1

E( Y. 2908, Lo, sz\l,) <a 'CB.

i>1



20 M. TALAGRAND

Consider the set

4plK]|
K, ={s€K; ) 2282 Alc< p a
! i>1 ' |L|
K]
E Zlosi’sl(zloshszl) < 4p‘|'IT|'a_ICB .

i>1
It then follows from Fubini’s theorem that if we set
B" = {wy; K, | > K| - LI /2},

we have P(B")>1-1/p. We set B, ,=B"NB, ,. We set H, = {w,
Vix>1, I(wy) > ail.

First basic observation. Consider w, € B", w, € H,, o = (0, w,). Con-
sider s,t € G such that s € t + U, , ,,.. Then for some constant C(a) depend-
ing on « only,

(5.6) Q(Xy —Xpl > C(a)(B2 ™+ im/2+1 4 3y 2-mt 1)) < 4exp — u®.

Proor. Theorem 2.1 shows that conditionally on w, X, — X, is distributed
like Y ¢;a;, where a; = R(T};, Y, )X(Y/(s) — Y/(2)). Since T; > ai and R(-,y) de-
creases, we have

la;l < R(ai, Y))IY,(s) — Yi(£)l.
Observe now the crucial fact that, since Y, is the multiple of a character, we
have
IY;(s) = Yi(¢)l = IYi(s = t) — Y, (0)I.
Set J ={i > 1; la,| = 1/A,}. Since s —t € U, , ,,, we have by (5.4) [resp.
(5.5)] that
Z Iai|2 Sa_12_2’"’¢+3,
ied
Z Iail < a_ICBz_mk+i(mk)/2+3.
ied
Thus we have
Y &a,
i>1

We now apply the standard sub-Gaussian inequality to both the real and
imaginary parts of a,; we thus see that this latter event has a probability less
than or equal to 4 exp(—u%(X; . sla,>) ™). This completes the proof. O

>u + a—ICBz—mk+i(mk)/2+3 =

Z £;a;

i&J

>Uu.

Second basic observation. While the proof of Theorem 1.3 relies, in the
end, on a standard chaining argument, there is a difficulty starting the
chaining. The next few lines address this difficulty. The same argument as
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above shows that for 0, € B”, s — ¢t € K, , we have
Q(Xy — Xp| = 275C(a, p)(1 + u)) < exp — u?,

where C(a, p) depends on a, p only. We claim that L c K, — K, . Indeed,
take s € L. Since L — L c K, we have L cs + K. Since IK\K,, | < |L|/2,
we have |[(s + K)\ (s + le)l < |L|/2. Thus we have |[L N (s + le)l > |L| /2.
Since [K\NK, | < |L|/2, we have LN K, | > |L|/2. Thus K, Ns + K, + O,
that is, s € K, — K|, . It follows that for s — ¢ € L, we have

(5.7) Q(Xy — X2 > 27%C(a, p)(1 + u)) < 2exp — u?.

Note that U, , ,= U, , ., sothat V,=U, ., , - U, ,,=U,,,+ U ..
It follows from (5.6) that whenever s — ¢ € V, we have

(5.8) Q(IX¢ - X2l = C(a)(B2 ™ *m/2 4+ y27™27 ™)) < Bexp — u’.

_ zt(mk)+1

For k > p, wehave |U, , , | 2 |U,l/2 > ge . From (the proof of) Lemma
2.11 we ():aln find a set R, cL such that Lc R, +V,, and card R, <
2|K”| ilmp)+
For K > p + 1, we consider amap ¢,: R,,,; = R, such that ¢t — ¢,(¢) € V.
Consider N > p. For t € R, we define by decreasing induction #(k¥) € R, by
t(N) = ¢, t(k) = ¢,(t(k + 1)). Thus
N-1
X = Xipy = Z Xiwrn ~ Xitwy:
k=p

’

Observe that there are at most card R, ,; variables of the type Xy, 1, — X/,
and that #(k + 1) — ¢t(k) € V,. Thus from (5.8) we see that

Q( sup 1X72, 1) — Xjol = C(a)(2_’"”+i<’"”)/2 + uk2""k))

teRy

(5.9)
< 8card(R,,)exp — u?

We now take u, = y/logcard(R,,,) + & + 1. We have

Y 27y, < Y 27k + C + 2i0maen/2e 1y
k=p k=p

We now observe that by definition of m,,; we have i(m,,. ) =i(m, + 1), so
that

9~ mrQilmr+1)/2 < 2(2—(mk+1)2i(mk+1)/2)
and thus

Z 9~ mrQi(mi+1)/2 < .9 Z 9-l+i)/2
k=p =1,
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Finally, it follows from (5.9) that, since m, > k& + [, we have

(5.10) Q( sup |X? — X5l = C(a)( ¥ 2—l+i(l)/2)) < 8e~P.
tERy =1,

On the other hand, from (5.7) we have

(5.11) Q(tsulg) X — X¢| > 27%C(p,a)(1 + u)) < 8e™* card R,.
€ p

If we take u = p + y/log card R, in (5.11) and combine with (5.10), we get

Q( sup | Xy — X§| > C(P,a)( > 2"”"(’)/2)) < 16e7?’

teERy =1,
where C(p, a) depends only on p, a, K,B and 8. As N is arbitrary, we get
(5.12) Q(suplXt‘" - Xgl = C(P,a)( > 2‘“"(”/2)) < 16e77".

\teL =1,

We can now conclude the proof of Theorem 1.3. Given ¢ > 0, we pick p
such that p~' + £, b, <&, 16e” P* < ¢, and we pick a such that P,(H,) >
1 — &. Then (5.12) holds for w = (w,, wy), ®; €B, ,, wy € H,. By Fubini’s
theorem, we have

Pr( sup IX, — X,| > C(p,a)( Y 2"“"(”/2)) < 8e.
s, teL =1,

The claim concerning a.s. continuity follows from Fubini’s theorem, and the
fact that P-a.s., the random Fourier series X;° is a.s. bounded (as we have
shown), so that it is a.s. continuous by Theorem 1.1 of [4]. O

The proof of Theorem 1.6 is rather similar, but does require an extra idea.
It is easy to see from (1.5) that for all u > 0, for some constant C depending
on § only,

/le

8
l ulf,|(log eulfyl)'S dP < CB(E(u?'IﬁYI2 A 1) + ua, (log* uay))
g k4
< CB(E(uzlfyl2 A1)+ uza?;).
In order to use Proposition 2.8 to prove a substitute of (5.3), we desire that

Y E(MAPlv(s) = 1P A 1) < 20500 B adly(s) — 117 < 28,
Y Y

This is done by using the sets
V, = mG,i(mk)+1 N{seK;d(s,0) < 27 ™}
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instead of U,. It is easily seen that

L 27" (log1/IVi))""* < C( ¥ 2714072 4 ¥ 274 (log Ny(K))?),
g k

=1,

and this is exactly what we need to complete the proof as above. O

6. The p-stable and ¢-radial cases. Consider a positive measure 6 on
R* and a probability measure m on R”. Consider the case where v is the
image of # ® m by the map (x, 8) — xB. Then, following Marcus [3], we say
that the process is ¢-radial. Set ®(u) = [7x%u® A 1d6(x). Then

(6.1) o.(s,t,u) = [ (1B(s) = B()lu) dm(B).

Of particular importance is the case when 6 has density ¢ ?~! with respect to
Lebesgue measure A. In this case, the process is called p-stable. It is easily
seen that for some constant c¢(p) we have ®(u) = c¢(p)u”. Thus if we define
the distance d, on T by

d5(s,1) = [ e(p)1B(5) — B()F dm(B),

we see that ¢(s, ¢, u) = d8(s,t)u”.
For p > 1 the sets V, of Theorem 1.1 are thus of the type

{seT;d,(s,t) < CMu=t*/r}.

Setting ¢ =1 — 1/p, v = CMu~'/9, Theorem 1.1 means that T can be cov-
ered by at most exp(CM /v)? balls (for d) of radius v, which is the formulation
of [4], Theorem 26.

We now turn to the case where T' = G is a locally compact group. We still
assume p > 1. We denote by B(e) the ball for d, centered at 0 of radius ¢. For
simplicity of notation, we set N,(A) = N(A, B(2 *)). We now relate Theorems
1.2 and 1.4 with the usual entropy conditions.

ProprosITION 6.1. Suppose p > 1. Then for some constant C depending on
p, k only we have

(6.2) Y 27 g C(Z 2-*(log N, (K))”")
=1,
(6.3) }: 27*(log Nk(K))l/q < C( Y 2- l+L(l)/2)

=1,
. The reader will note that log'N,(K) = 0 when K C B(27%). We observe that
UY; = B(274+#1/p~1/2) By the definition of /,, we have
K ¢ B(27%), K c B(2 bt
This implies in particular that N; _,(K) = 1, and (easily) that N, ,(K) > 1.
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For convenience we denote by C a constant that depends only on p and K
and that may vary at each occurrence.

ProoF oF (6.2). For I > l,, we denote by k(!) the integer such that
(6.4) k(1) —-1<1-i(1)(1/p —1/2) < k(1).
Thus we have K N B2 *®) c U, ;,, and thus
(6.5) IK N B(27*®)| < e 2.

Consider now a compact neighborhood L of 0 such that L' =L - L Cc K.
From (6.5) we have that IL' N B2 *D)| < e~ 2’ 50 by Lemma 2.11(i) we have
N, (K) = Ny(L) = |Lle=? so that

(6.6) 2/ < log N, (L) + log*(1/ILI).
Now
9-l+i)/2 — 9-lgix1/p=1/2)9ill)/q
= 2_k(l)+1((1°g Nk(l)(K))l/q + (1°g+(1/|L|))1/q)’
Set A_={l >1y; k(I) <1y — 1}. From (6.6) and N, _,(K) = 1, it follows that
i(1) <C for l € A_, so that from (6.4), l <, + C and

(6.7) Y 2tz < C2h,
leA_

For k£ > [, denote by A, the set
A, ={l; k(1) = k}.

From (6.6) we see that i(l) is bounded on A,. By (6.4) we see that A, is
bounded. Whenever A, is not empty, denote by /(%) its largest element. For
l € A, we have

1—i(l)(1/p—1/2) =k — 1> 1(k) —i(l(k))(1/p—1/2) - 1
so that
i(1)(1/p —1/2) <i(l(k))(1/p = 1/2) +1 = I(k) + 1,
and thus
—1+i(l)/2 < ~l(k) +i(l(k))/2+(1/p—1/2)7"

1
+(_l—l(k))(m—i(117).

@

It follows that

(6.8) Y g-lrih/2 o gl Hidk/2,
leA,
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Now, by (6.6), we have
(6:9) ¥ 902 < ¢+ 2 Y 27k (log Ny(L))Y,

k>1

where the summation on the left is over the values of % for which A, # &. To
complete the proof, we combine (6.7), (6.8) and (6.9) and we observe that since
N, (K) > 1, we have 27" < C(T,2 *(log N,(K)Y9). O

PRroOF OF (6.3). Consider m such that 2 ™(log2)'/971/2 < 1. For &k > [,
we have N,(K) > 2, so for k£ > [, + m, we can define /(%) by

(6.10) 2710 < 27k-1(log N, (K))"/?™1/* < 2-Ukb+1
and we have (k) > [,. We define j(k) by
(6.11) 2/m+1 < log N,(K) < 2/®+2,
Our first task is to show that for some j, depending on K only, we have
(6.12) J(R) 2 jo = i(1(R)) = j().
From (6.10) and (6.11), we have
9~ UR)+j(kX1/P~1/2) < 9-k-1
and thus
Uye, sy © K 0 B(277Y).
Since B(27%*~1) — B(27*~1) c B(27*%), we have
N(K,B(2*"1) — B(2*"1)) = N(K, B(27*)) = N,(K).
From Lemma 2.1(ii) we get
For j(k) > j,, where j, depends on K only, this is less than or equal to e ??

and this proves (6.12) by the definition of i(1).
We have from (6.12), when j(&) > j,,

2 *(log N,(K))"? < 27*(log N,(K))"?""*(log N,(K))
(6.13) < 9l +i(k)/2+3
< Q- Uk +ill(k))/2+3,

Denote A ={k > 1, + m: j(k) < j,}: Clearly,

(6.14) Y, 27*(log N,(K))"? < Cc27h.
5 k€A :

IK N B(27% Y < K’ n B(27%"1)| <

1/2

Also
(6.15) Y. 27*(log Ny(K))"? < C2 b~ "(log N, , o(K))

k<lg+m

1/q
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For [ > I, we denote
B, ={k=>ly+m;keAl(k) =1}

When B, is not empty, denote by k(l) its smallest element. An argument
similar to that used to prove (6.8), but easier, shows that

(6.16) ¥ 27*(log Ny(K))"? < €27+ (log N,y (K)) "

keB,

From (6.13), we have
27+ (log Ny (K))"? < 271+i0/2+8,
Together with (6.14), (6.15) and (6.16), this completes the proof. O

Unfortunately, Theorem 1.3 does not cover the case of 1-stable processes,
that is, ®(x) = x. This case is however completely understood ([5, 8]). Setting
LLt = log (max(e, log ¢)), when m is supported by T, the necessary and suffi-
cient condition for sample continuity of (X,),., is the convergence of the
series ¥ ,2 *LLN,(K). It is still of interest to check that even in that case, the

condition ¥,;27!*{1/2 < w0 is the correct condition.

PROPOSITION 6.2. The series ¥ ;27 7¥D/2 converges if and only if the series
¥ .2 *LLN,(K) converges.

Proor. To reduce the technicalities, let us assume that G is compact,
K = G. Thus U, ; = B(27'*'/%). We set N, = N,(G).

We assume first the convergence of Y 27 *LLN,. Define B, as the set of
integers [ for which 2 — 1 <! —i(l)/2 < k '

By the definition of i(l), we have

lB(2—1+i(l)/2)| < e—2"(”_
By Lemma 2.11(i) this implies that
Ni_iae 2 1B(27HHO/2) 71 2 o0

so that

2'D < log N;_;4y/2-
For [ € B,, we have 2! < log N, so that i(l) < log2 log N,,. Since I <k +
i(1)/2 for | € B,, we have

Y. 271+A/2 < (| 4+ log, log N,)27*+1
leB,

and this implies the convergence of T ,27/*i(1/2,
We now turn to the other direction, which is the most interesting part of
this proof. Let k, be the smallest for which LLN, > 1. For k > k, we can
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define a(k) > 0 by
' 2¢®) < LLN, < 2°00+1,
Define by induction k; = inf{k > k;_,; a(k) > a(k;_,)}. Clearly,

(6.17) Y. 27ELLN, < CY, 2 ki+etkp,
k=kg Jjz0

Now
2a(k)

IB(27%) <1/N,<e®
Since B(27%) = U, 4, _},, the definition of i(!) shows that
(6.18) 2200 < 2P = (1) > 2(1 — k).
Consider the interval
= [k; + 2073 k; + 2002

Since k;,, > k; and a(k;, ;) > a(k;), the sets I, are disjoint. For [ € I; we
have
92—k o 92772 . 29k

and thus, by (6.18), we have i(1) > 2( — k), so that 27¢**®/2 > 27% Since
card I; = 2°*)~3, we have

Z g-l+ithy/2 5 Z 9k, +a(k,)~3
i>1 Jj=0

Together with (6.17), this completes the proof. O

It would be too space-consuming to discuss the full generality of Theorem
1.2 of Marcus [3] and its many conditions, so we will instead briefly indicate
how one could derive his Corollary 1.3 from our results. The Orlicz norm || X||7
of a random variable X is given by

X
Xl = inf{a > 0; ET(;—) < 1}.
If T satisfies T'(ab) < CT(a)T'(b), we thus have
1 1
11— —ET(X 1
EY(X) 5a=>ET(XT (Ca)) < aE (X) <
so that || X|lz < 1/TY1/Ca). Also, if || X|l7 < 1, then ET(X) < CT(1/a).
For what follows it is actually enough that T' ~ ® at «; but for simplicity let

us -assume that T = ®. We can eompare the sets U, , Wlth sets of type {x € U,
dy(x,0) < &}, where

dT(x,O)=inf{a>O;fT(M)d m(y) < }



28 M. TALAGRAND

We observe that, however, unless T'(x) = x? for some p, there is a loss of
information. (This explains why there is a small distance between the condi-
tions of Marcus and the optimal ones.)

If T satisfies T(ab) > ca?T(b), then T(aX) = b implies EX? < b/cT(a),
and U, ; can be compared with a ball for the distance d, given by (2.1).
Arguments as in Proposition 2.2 then allow one to derive Corollary 1.3, part I,
of [3]. Part II of that corollary is of a similar nature.
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