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THE CYCLE STRUCTURE OF RANDOM PERMUTATIONS!

By RICHARD, ARRATIA AND SIMON TAVARE

University of Southern California

The total variation distance between the process which counts cycles
of size 1,2,...,b of a random permutation of n objects and a process
(Z,,Z,,...,2Z,) of independent Poisson random variables with EZ; = 1/i
converges to 0 if and only if b/n — 0. This Poisson approximation can be
used to give simple proofs of limit theorems and bounds for a wide variety
of functionals of random permutations. These limit theorems include the
Erd6s-Turan theorem for the asymptotic normality of the log of the order
of a random permutation, and the DeLaurentis—Pittel functional central
limit theorem for the cycle sizes.

We give a simple explicit upper bound on the total variation distance to
show that this distance decays to zero superexponentially fast as a function
of n/b — ». A similar result holds for derangements and, more generally,
for permutations conditioned to have given numbers of cycles of various
sizes. Comparison results are included to show that in approximating the
cycle structure by an independent Poisson process the main discrepancy
arises from independence rather than from Poisson marginals.

1. Introduction. Random permutations play an important role in many
areas of probability and statistics. Most people meet them (implicitly at least)
in the context of the so-called hat-check problem: » mathematicians drop off
their hats at a restaurant before having a meal. After the meal, the hats are
returned at random. How many mathematicians get back their own hat? Feller
(1968) is the most accessible reference to this. The return of the hats induces a
random permutation of 1,. .., n: label the mathematicians 1, ..., n, and assign
to j the label of the mathematician whose hat was returned to j. The solution
to the simplest hat-check problem is then seen to be the distribution of the
number of singleton cycles of this random permutation. Denoting this number
by C,(n), an inclusion-exclusion argument shows that for 2 = 0,1,...,n,

1 n—k (__1)1
(1) P(Cl(n) =k)=ﬁl=0 1A
It follows immediafely from (1) that
e—l
P(C1(n)=k)_)ﬁ’ n — w,

so that C,(n) converges in distribution to a random variable Z; having the
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1568 R. ARRATIA AND S. TAVARE

Poisson distribution with mean 1. Using properties of alternating series with
decreasing terms, it can be seen that for & = 0,1,...,n,

1 1
E\(n—k+D)! (n-£+2)!

<|P(Cy(n) = k) - P(Z, = k)|
1
e e
kl(n—Fk+ 1)
as given in David and Barton [(1962), page 105]. It follows that

gn+1 n ntl _
@D Grninr s L PCm k) - Pz = k) s T
Since
e”! 1 1 1
P(Z1>n)=(n+1)!1+n+2+(n+2)(n+3)+“. <(.T—T)!’

we see from (2) that the total variation distance d,(n) between the law of
C((n) and the law of Z,, defined by

dy(n) = %kz:iolﬂm(cl(n) — k) - P(Z, = b)),

satisfies the inequalities

3 2" n d 2"
< < —
) (rrDlnrz =49 =G
for n = 1,2,... . Therefore the rate of convergence to the Poisson probabili-

ties is superexponential in n as n — .

Let C; = C;(n) be the number of cycles of length j in a random permuta-
tion of {1,2, ..., n}. Cauchy’s formula for the probability law of (Cy,...,C,) is
given by

n 1\% 1
(4) P(C, =a,,...,C,=a,) = l—[(—) o
Jj=1\J /] @a;
for nonnegative integers a,,..., a, satisfying L7_jia; = n. Asymptotically,
the finite-dimensional distributions of (C,,...,C,) are those of a Poisson
process on N, as the following result of Goncharov (1944) and Kolchin (1971)
shows.

THEOREM 1. For i =1,2,..., let Ci(n) denote the number of cycles of
length i in a random n-permutation. The process of cycle counts converges in
distribution to a Poisson process on N with intensity i~'. That is, as n — o,

(Cy(n),Cy(n),...) = (2, Z,,...),
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where the Z;, i = 1,2, ..., are independent Poisson-distributed random vari-
ables with

1
i
Proor. For nonnegative integers m,,..., m,, it is known that

o - M

Jj=1

where we write x"! = x(x — 1) -+ (x — r + 1). See, for example, Watterson
(1974a). Equation (5) may be expressed as

(6) [E( ﬁ CJ!'"J'J) = IE( ]EIZJ[.’"Jl)l{ Zk‘, Jjm; < n}.
j-1 j=1 j=1

We may now fix k and integers m,...,m, > 0 and let n —  in (6). The
result follows from the method of moments. O ‘

REMARK. It follows from (5) that C; and C; are uncorrelated if i +j < n,
whereas EC;C; = 0if i +j > n.

It is the purpose of this paper to provide explicit bounds on how close the
distribution of (C,,C,, ...) is to that of (Z,, Z,, . ..), the independent Poisson
components of Theorem 1. Specifically, for 1 < b < n we will estimate d, =
d,(n), the total variation distance between the law of (C, ..., C,) and the law
of (Z,,..., Z,), defined by

dbE”j(Cl""’Cb) —J(Zl,...,zb)ll

(7 — sup |P((Cy,...,C,) €A) — P((Z,...,Z,) € A)),
Acz7b

where Z,={0,1,...}. We will prove that d,(n) — 0 if and only if b = o(n)
and that if /n — 0, then d,(n) — 0 superexponentially fast relative to n/b.
The result d,(n) < 2b/n was proved by Diaconis and Pitman (1986) and
independently by Barbour (1990). We are indebted to Diaconis and Freedman
(1980) for showing the value of considering the total variation distance be-
tween a growing number of coordinates of a dependent process and the
corresponding restriction of its limiting, independent process.

2. Estimating total variation distance. We will need some further
notation in this section. Define a = (a,...,a,) € Z5,C, = (Cy,...,C,), Z, =
(Z,,...,Z,) and, for integers 0 </ < m,

Tim=(00+1)Z+ (L +2)Z 5+ +tmZ,,
with T,,,, = 0.
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The key observation, due to Watterson (1974a, b), is that the probability law
(4) of (C,C,,...) is simply related to that of (Z, Z,,...):

(8) P(C,=a) =P(Z,=al|T,,=n).

Relation (8) may be verified directly from (4). Shepp and Lloyd (1966) used a
similar relation: If Z; are Poisson with parameter EZ; = xi/i, for 0 < x < 1,
and T = T,, = X7_,iZ;, then (Cy,...,C,) =(Z,,...,Z,|T = n) in distribu-
tion. See formula (30) for a general discussion of the role of the factor x‘
in EZ,.

Our strategy for bounding the total variation distance d, is outlined in the
next two lemmas. The first task is to find a simple explicit expression for d,.
We will start from the following equivalent definition of d,:

9 dy=3 X |P(C, = a) — P(Z, = a)|.

aezb

REMARK. The following lemma, although elementary, is significant in that
it reduces a total variation distance between processes to a simpler total
variation distance between two random variables.

LEMMma 1. For1<b <n,
(10) db=”‘/(T0b) _-/(TOb'TOn:n)”-
Proor. Writing La = £5_, ja;, the right-hand side of (9) is
2 L |P(C,=a)-P(Z,=a),
r=0 a: La=r
which, with the help of (8), may be written
(11) X X IP(Zb=a|T0n=n)—P(zb=a)I‘
r=0 a: La=r
Using the independence of the Z;, note that if 23=1 ja;=r,

[p(zb = a, TOn = n)

on

P(Zb=a,Tbn=n—r)
P(To, = n)

P(Z, = a)P(T,, =n—r)
[FD(TOn = n) .

Factoring out the common factor P(Z, = a), we see then that (11) may be
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written
i-3E L o Gt
= % f |P(To, = 7) — P(To, = 7| Ty, = n)],

0

I

r

establishing the lemma. O

We will apply the following lemma with R = Ty, S = T,,, p = P(T,,, = n)
and ¢ = (T, = n).

LeEmMMA 2. Let R and S be independent discrete random variables, with
densities g and f, respectively, and suppose n is some constant such that
p=P(R+S=n)>0. Let ¢ > 0 be any constant. Then the total variation
distance between the law of R, and the law of R conditional on R+ S = n,
satisfies the inequality

1 fo-r
£ (R) - ARIR+§ =)l = 5 T2 -1
froer ‘
< ~1f.
<ngr "
Proor. First we have
p fn—r fn—r ‘
1= - ~1|.
. l ngr(c I)SZrlgr ”

Second, lgr - grfn.—r/pl = lgr -1 fn—r/cl + lgrfn—r/c — & fn—r/pl‘ Sum-
ming over r, we get

fo-r
Y&, .

r

1

c b

n—r

-1

foer
c

)

<2) g,

r

—1|+p

<Ye

r

Observe that for ¢ = p the inequality gives away a factor of two. O

Lemmas 3 through 6 are used to show that the density of T}, is nearly
constant, corresponding to an upper bound on |f,_,/c — 1|. Lemmas 7 and 8
apply large deviation theory to bound the probability that T,, is large,
corresponding to an upper bound on g,. These two upper bounds have
matching decay rates, so that in our proof of Theorem 2 the terms with r
between 1 and n contribute equally to the final upper bound on total variation
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distance. A special argument is required for the case r = n; P(T,, = 0)/P(T},
=n) > b, which can be large compared to n/b. This motivates the more
detailed large deviation estimate in the second part of Lemma 8.

LEMMA 3. Fix b and n, and define

fr=P(Ty, = k).
Then f;, j = 0, satisfy the recursion
(13) kfy =(k =1 fr_1+fo-p-1— Focn-1

where f; is defined to be 0 if j < 0.

Proor. Let f(2) =175, szj be the probability generating function of
T4, Then

n

F(z) = E(zTm) = exp( Y (- 1)).

Jj=b+1

We will write this in the form f(2) = exp(L7_,a;2/), where

no1
Ao = — Z g
j=b+1J
0, j=12,...,bn+1,n+2,...,
=/1
a;=4{* b
-, j=b+1,...,n.
J

Since f'(z) = (X ja jzj 1) f(2), the coefficients f; and a; are related by the
recursion [cf. Pourahmadi (1984)]

& .
(14) fk+1=J§0(1—k—£—1)ak+l_jfj, E=0,1,2,...,
where

fo = exp(a,).
It follows that f, =f, = -+ =f, = 0 and, for all &,

e ¥ 1)
PR+ j—kri-n

empty sums being interpreted as zero. Multiplying by (¢ + 1) and differencing
in %k shows that

(BF+1)for1=kfy + fop — foens

completing the proof of the lemma. O
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ReMARK. The special case b = 0 of Lemma 3 shows that P(T,, = k) is
constant for £k = 0,1,..., n, as noted by Watterson (1974a).

LeEmma 4. If
fi )
—e€[l-r,1+5s], i=k—-bk—-b+1,...,k,
k

then
gy, % =k k41, k+b
—eli-— — =k, k+1,...k+
fk k, k ) l b ) )

for 2b <k <n —b.

Proor. Use the recursion (13) and the hypothesis of the lemma to see that
for j =0,1,...,5,

k-b+j—1 )

1
fk+j= k+j (kfk Z fi

l=k-b

1
m(kfk +Ji(1=7)f)

Jjr
=(1- =—|F..
( j+Ek i
Since 0 <j < b, it follows that
J b b
< < -,
k+j  k+b "k

so that
rb .
fk+jz(1——k—)fk, j=0,1,...,b.

An analogous argument establishes that for j = 0,1,...,b,

1
frvj < m(kfk +j(1+5)f)

e
<(1- )

fr

completing the proof. O
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LEMMA 5. For 2b <k < n — b define
fi
M(k) = max — —1}.
i,jelk—b,k1\

Then

M(E + b) sM(k)%.

Proor. Define r > 0 and s > 0 by

(1-r)fy= min f,

elk—b,k]

and

(1+s)fp= max f
elk—b,k]

Then M(k)=(1+s)/01—-r)—1= (r +5)/(1 — r). Now apply Lemma 4
with these values of r and s to get

M(k+b)s(1+%)/(1—:k?)—1

b(s +r)
T k-rb
b(1-r
w(k)%%
sM(k);. 0O

LEMMA 6. For integers 1 < b < n and any integer | with 1 <1 < n/b, the
density f, = P(T,, = k) satisfies

fi . b b b1
B f, S b+12b+1 b+l 0

Proor. Direct calculation for & + 1 < k < 2b + 1 gives
fr=P(Z,=1,Z;,=0forall b <i <n withi +# k)
=k 'P(Z;=0forall b <i <n)

= fo/k'
Thus the function M(k) in Lemma 5 satisfies
2b+1 b
M(2b+1)=f”“— - 1=

fops1 b+1 b+1°
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Applying Lemma 5 with 2 = 2b + 1 yields

b b
26+1 b+12b+1’
and repeated applications of Lemma 5 yield

fi b b b

——1=M((I+1)b+1) < .
lb<i,jn2i(+b+1fj (« ) ) b+12b+1 b+1

M(3b + 1) < M(2b + 1)

Now the recursion kf, = (k — 1)f,_; + fr_p_1 of Lemma 3, valid for k£ < n,
implies that if f; € [c,d] for i=k,k +1,...,k + b, then f, €[c,d] for i =
k,k +1,...,n. Therefore

<

< 7

max —
zb<i,jgnfj b<i,j<lb+b+1

which completes the proof of this lemma. O

LEmMma 7. For B > 0,
(15) log EePToe < 8,

ProoF. Recalling the fact that Ty, = £L%_,jZ;, where the Z; are indepen-
dent Poisson random variables with EZ; = J 1, we see that

b 1 )
logEefToo = Y —(eP/ - 1)
j=1J

b B .
=Efe”dx
j=170

sb/oﬁeb"dx

=eb -1,
from which the result follows. O
LEMMmA 8. Forx > 0,

x -—X

(16) P(T,, = bx) < inf (EePToo—Pbx) < (—) ,
B=0 e
and
(1 P(To, = bx; Ty, = n) < P(T,, = n) inf (EefToo~Fbx),
B=0

Proor. For any B > 0, Markov’s inequality shows that

P(Typ, = bx) = P(ePTos > ePb*) < EeFTos /ghbx,
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Since B was arbitrary, if follows that
P(T,, = bx) < inf (EePToo=Rbx),
B=0

Next, use (15) to establish

log( inf([EeBTOb‘ﬁ‘bx)) = inf log(EePTos=Bbx)
B=0 B=0

< inf (e®® — Bbx)
B=0

= inf (e” — 7x)
720

x
= —x log —,
e

the last line following from elementary calculus. This establishes (16).

Under P, the Z; are independent Poisson random variables with EZ; = i~ 1.
Let Q be a new measure under which the Z; are still independent Poisson
random variables, but with means given by

ehi

-, 1<i<bd,
EoZ, = { '
Qi 1

-, b<i<n,
i

for some B > 0. Then

dQ b 1
—_ = BiZ, _ - Bi _ 1
ap i=l—11e exp( i(e ))

b 1 _
= eBTOb exp(_ Z T(eBl — 1))
i=1t

1
= eBToz,'

EpeBTOb

Therefore

P(Top > bx; To, = n) = [1(Toy 2 bx; Tp, = n) dP
= fl(TOb > bx; TOn = n)e_BT:ObIEPeBTOb dQ

= fl(TOb > bx; Ty, = n)e Po*EpefToe dQ

= e PO ELePTwnQ(T,, > bx; Ty, = n)
< e P ELePTuQ(T,, = n).

Finally, we will estimate Q(T,,, = n). One way to realize Q is as follows: Let
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Zf, 1<i<b, be independent Poisson random variables with mean EZ} =
(efi — 1)/i, and let Z;, 1 <i < n, be independent Poisson random variables
with EZ; = 1/i, independent of the Z}. Define W = T _iZ¥. Then

Q(To, = 1) = P(Ton + W=n)

= Y P(To, = k)P(W=rn —k)
k=0

= P(Ty, =n) ¥, P(W=n k)
k=0

<P(T,,=n),

the last equality following from the observation (made in the remark after
Lemma 3) that P(T,, = k) is constant for £ = 0,1,...,n. This completes the
proof of the lemma. O

THEOREM 2. As n — », dy(n) = 0 if and only if b/n > 0. If n/b > =,
dy(n) decays superexponentially fast as a function of n/b. In fact, for all
1<b<n,

dy(n) < F(n/b),
where :
2m—l 1 x\ "%
F(x)=V2mm ——(m —)1 + i + 3(;) ,

with m = |x), so that log F(x) ~ —x log x as x — .

REMaRK. Formula (3) shows that as n — «, F(n)/d(n) ~n®?/m/2.
Thus, relative to the requirement that F(n/b) be an upper bound on d »(n) for

all 1 <b <n, our F(x) is suboptimal by at most a factor of x>?/m/2 as

X — oo,

PROOF OF THEOREM 2. First we will show that if b/n > ¢ > 0 for all n, b,
then liminf, . dy(n) > 0. From the definition of d,(n) and the condition
Y2_,iC; < n, note that

dy(n) 2 P(Ty, > n)

=Pl Y iZ;> n)
b/2<i<b

b
>Pl=- X Zi>n)

2 b/2<i<b

2
=Pl Y Z> —)
b/2<i<b €

2
- P(Poisson(log2) > ;)

> 0.
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If b/n > & > 0 for infinitely many n, we may apply the argument above to an
appropriate subsequence to establish the only if”’ part of the theorem.

Let m =|n/bl. Write &, = If,/f, — 1I, where f is the density of T,.
Using Lemmas 1 and 2, we have

(18)

P(T, =n—k
db(n)=—ZP(TO,, ) (P(”;O :n))—1|
s P(Ty, =n — k)
Sgo (Tow = k)l P(Ty, = n) o

= _Z P(Top =n — k)3,

n
=P(Ty, >n) + Y, P(To, =n — k)8, + P(Ty, = n)d,.
k=1

A bound for the first term in (18) is obtained from (16):

If n

n \—n/b
P(T0b>n)s(b—e) .

> k > Ib, where [ > 1 is an integer, Lemma 6 shows that §, < 1/1!.

For £ =1,2,...,b we have f, = 0 so that §, = 1. Thus, for [ =0,1,...,m,
the terms of the sum in (18) with 2=+ 1,lb +2,...,lb+b and k<n

have 8, <

< 1/1!. Therefore

Z P(Top, =n — k)3,
k=1

IA

IA

IA

IA

IA

IA

m-1 (+1b n
Y X P(To,=n-k)o,+ Y P(To,=n—k)35,
1=0 k=lb+1 k=mb+1
m-1 1 n
Y IP’(n—(l+1)b<T0b<n—lb)+—' Y P(Ty,=n-—k)
1=0 m: k—mb+1
m-1 1 1
Yy l'P(T0b>n—(l+1)b)+——
1=0
m-—1 1
120 l—'P(TOb >(m —1-1)b) + —
m-11/m-1-1 —(m—1-1) 1

— —— + —
=0 l'( e ) m!
m-l1 y2m(m - 1) 1
E N (m-1-1)!  m
\/___m—l 1 1
2mm § (m—1-1!  m

2m-1 1

2mm ——— + —
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The fourth-from-last inequality follows from (16), and the third-from-last from
the fact that k! < y/2w(k + 1) (k/e)*.

Finally, we estimate the rightmost term in (18). A direct calculation (com-
pare the proof of Lemma 6) shows that f,/f, €[b+ 1,2b + 1], so that
b <8, < 2b. Here, it would be too crude to use the bound ®(T,, = n) <
P(T,, = n) < (n/b)™"/® since n/b may go to infinity arbitrarily slowly com-
pared to b. Instead, we argue that the & = 0 term is

P Tn=0 PTn=0
_ P(To, = n, Ty, =n)
B P(Tbn=n)

using (17). For the last factor we have

P(TOn = n) _ P(TOn = 0)
P(Tyn=n)  P(Ty, =n)

19 26 + 1)~ ron = 0)
(19) =+ D5, =0
= (2b + 1)P(T,, = 0)
<2, forany b>1. m|

3. Conditioned permutations. The proof of Theorem 2 is robust enough
to yield a similar result for the cycle structure of random permutations given
some fixed cycle conditions of the form C;(n) = ¢; for i € J. For example, the
case of a randomly selected derangement is described by = {1}, ¢, = 0.
Gaussian limits for this situation are described in Flajolet and Soria (1990).

THEOREM 3. For 1 <b<n, J c{l,...,b} and nonnegative integers c;,
i €dJ, satisfying ¥;cjic; =s < n, consider the set of permutations on n
objects having c; cycles of length i for i € J. If this set is nonempty, the cycle
structure of a permutation chosen uniformly from this set satisfies

a*=||Z((Cy,...,C)IC;=¢c;,Vied) - L(ZF,..., Z})|
n-—s n—s\ (n—s)b
sF( - )+2be( = ) .
Here F is given in Theorem 2 and the Z} are mutually independent with

Z¥ =c; ifi €dJ and Z} = Z;, which is Poisson-distributed with mean 1/i, if
-V
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PROOF. Analogous to (8) we have for a € 78,
P(Cy,=alC,=c;,Vied)=P(Z;=alT§ =n),
where T/, = ¥, ., _.iZ¥. As in Lemma 1 we have
P(TE =n —r)

1 oo
*=__ pT*= _ .
a* =g L (T = 1)\ g —py !

Observe that since T}, = T,,, which is independent of T, Lemma 2 yields
the following analog of (18):

(20) d*< Y P(T% =n—k)s,,
k= —o

where, as before,
P(Ty, = k)
IP( Tbn = n)

B =

The k£ = 0 term of (20) requires special handling. For all other terms, the
estimate in Theorem 2 was based on (16), namely, P(Ty,, > n — k) <
((n — k)/be)~(r=k/®) The effect on this upper bound of replacing Z by Z*,
that is, conditioning on Z; = ¢; for i € J, is to replace n by n — s, where
s = ¥, e ic;. This follows because

P(T&"bZn—k)=|P( Y iZizn—k—s)
i<b,i¢&d

sP(ZiZiZn—k—s)
i<b
=P(To, =n -k —5s).

For the 2 =0 term of (20), the bound used before, based on (17), is
destroyed by the extra conditioning. In its place we have

. . P(Ty, = 0)
P(Tgy = n)8o < P(Tgp > n)m
l]:D(wan, = 0)

< P(Tob =>n —S)m

_ P(Top 2 n —5) P(Ty, =0)
- P(To, =0) P(Tp, =n)

n—s —(n—s)/b
< ( ) 2be,
be
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where the last inequality follows from the fact that P(T,, = 0) =
exp(—(1 + 3 + -+ +1/b)) > e ! /b, combined with (19).
This completes the proof. O

4. Independence and Poisson marginals. Theorem 2 says that the
process of counts of cycles of sizes 1 through b in a random permutation of n
objects may be approximated, in total variation, by its limiting process, which
has independent coordinates, if and only if /n tends to zero. This is essen-
tially a result about the dependence within the cycle counting process, rather
than about the particular choice of cycle lengths one through b or the Poisson
distribution of the limit.

4.1. The next two theorems show that the “if and only if b/n — 0”
conclusion of Theorem 2 is preserved even if we consider any b distinct cycle
lengths, not just the b smallest, and even if we enlarge the class of comparison
processes to include all processes with independent coordinates.

THEOREM 4. Let £ C{1,2,...,n} be an index set of size b =b, = |%,|.
The total variation distance between the law of a family (C,(n), i € %,) of cycle
sizes and the corresponding family (Z;, i € .%,), where the Z; are independent
Poisson random variables with EZ; = 1/i, namely,

d(n) =d(H,n) = sup |P((C;,i € 5) €A) - P((Z;,i € A) €4A)],
Aczb

tends to zero if and only if b/n — 0. This is a consequence of the following
bounds, valid for all 1 < b < n:

b
P(Poisson(b/(2n)) > 2n/b) <d(4,,n) < infl' (F(y) + 2y;),
y>
where F(-), given in Theorem 2, has F(y) » 0 asy — .

PrROOF. Recall that the total variation distance between two random ele-
ments X and Y is the infimum of P(X # Y) over all couplings of X and Y on
the same probability space. By compactness, there are maximal couplings,
under which the total variation distance is P(X # Y). Now fix y > 1, and
define m = |n/y]. Choose a maximal coupling of (C,,...,C,) with
(Z,,...,Z,), and extend this to a coupling of the processes (C,,...,C,) and
(Z,,...,Z,). Under this coupling,

d(n) <P((C,i € L) + (Z;,i € %))
<P((Ci:ies,i<m)+ (Z:i€ S, i<m))
+ Y P *Z).

ief:i>m
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To bound the second term above, recall that EC; = EZ, = 1/i, so that
Y PC+Z)s< Y PIC,-Zl=1)

ief:i>m et i>m

y 2

i€f:i>m

IA

2
< —XIJ,,I
n

9 b
= y n .
To bound the first term, note that by the construction of the coupling, it must
be at most d,,. Hence we see from Theorem 2 that
b

d(n) sF(F;/—yT) +2y-

b
F + 2y—.
<F(y) + 2y
It follows that

d(n) s;r;fl'(F(y) +2y%).

Since F(y) — 0 as y — o, we see that d(n) —» 0if b/n — 0.
For the converse, note that [{j € .Z: j > b/2}| > b/2. Define the Poisson
random variable N by

N= Y 9z,
je€SL: j=b/2

and note that
EN 3 1 b1
= - = .
jet: j=bs2J 2n
Since {N > 2n/b} C{L ;< , jZ; > n}, we see that

d(n) > P(jeZ%ij > n)

2n
> P(N > —)

b
> P(Poisson(—) > 2n/b).
2n

If, for fixed ¢ > 0, |.%,| > en for infinitely many n, then this argument may be
applied along a suitably chosen subsequence to complete the proof. O
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THEOREM 5. If b/n is bounded away from zero, then no process with
independent coordinates can successfully approximate (C(n), i € %) in the
total variation distance. More precisely, for all € > 0,

R p(Poi e 4
min 1 ( 01sson(§) > —

€

< liminf min |Z(C;,i€ L) - Z(Y,,i€ . %)|,
now | £|zen,Y
where the minimum is taken over all choices of #Z, € {1,2...n} of size at least
en and over all choices of mutually independent random variables Y.

ProOOF. Assume that .Z, and Y are given, with |.Z|/n > ¢ > 0. We may
assume that the Y, are nonnegative integer-valued, since for general Y the act
of replacing with zero all values outside of {0, 1,2, ...} preserves the mutual
independence of Y and does not increase the total variation distance to (C;(n),
ie #). Let A={ie ~:PY,>0)<1/2n).

Suppose for the first case that |A| > en/2, and let B consist of the [¢n /2]

smallest elements of A. In a random permutation of {1,2,...,n}, the size of
the cycle containing the element 1 is uniformly distributed over {1,2,...,n},
hence
Bl €
i€B n 2

On the other hand,
|

|B
P(Z Y,.>0)s Y P(Y,>0) < —.
ieB ieB 2n
Thus in this case, the total variation distance is at least P(X; . zC; > 0) —
PZ,.zY, > 0) > e/4.
In the second case, suppose that |A| < en/2, so that

D= {i AN — Y. 1 -
= . |:D . >
{lE n.lZ ) (12 )_2 }

has size |D| > en /4. Then we have

En
P(ZiYi>n)2IP — Y Y. >n
ieD 4ieD

4
-¢(£ x>
ieD €

o(Bi ol 1 en >4)
> inomi (2n,[4l) "

£ 4
- P(Poisson(—) > —) > 0. 0
8 €
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4.2. The following conjecture embodies the idea that independence, rather
than Poisson marginals, is the dominant contribution to the distance d,(n)
between the cycle counting process (Cy,...,C,) and its limiting Poisson pro-
cess (Z,,...,2Z).

CONJECTURE 1. As n — o, for any sequence b = b(n) with 1 < b(n) < n,
dy(n) ~ min{|| £Z(C(n),...,Cyn)) — L(Y,..., Y)I: Y, independent}.

Note that trivially, the left-hand side is greater than or equal to the
right-hand side, since the Poisson process Z is among the candidates Y. Also,
the process (Ci(n),...,Ci(n)), which has independent coordinates and the
same marginals as the cycle counting process, is one of the candidates for
(Y, ...,Y,), but in general this choice does not attain the minimum.

4.3. We will now estimate the total variation distance d}(n) between
(Ci,...,Cp) and (Z,,...,Z;). Recall Goncharov’s (1944) result about the
marginal distribution of C;, derivable via inclusion—exclusion:

j—k ln/jl-k jm n
gy =L Ll —o,1,....| %]
(21)  P(C,=k) = mz=0( D", k=01, ljl

Arguments similar to those used to derive (3) establish the following upper
bound on the total variation distance between C ' and Z;:

, 1\"**  2r n
=) (7] e -l

Indeed, for each fixed j, d({j}, n) is asymptotic to the right-hand side of (22).
Since [|-Z(C)) — Z(Z)Il = d({j}, n), we see from (22) that for 1 < b < n,

;)(n) E”“/(Ci,’clg) _“/(Zla'--:zb)”

-1- [i]l (1= 12(C)) = Z(Z)))

IA

> |-£(c) -2(2)

Jj=1

L) e

IA

Now define
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Then

n 1 r+1 or
(n) = ,=lzn/bj(j§g,(7) (r+ 1)!)‘

Zg(;) (rirl)! S+ 1)'(r 1)
(r+1)l(r 1)' (r(r+1) 1)
)

) (r(r+1) 1)

But

= «m(g
< (%) A=t

the last inequality following from the observation that

1 ( n 1) 2 /b
+1]<—y—.
nvr+1\r(r+1) ryn
It follows that

(23) (n) 2e b i 1 ( 2e )r

pn) < —— V - =] .

’ 27 i /bl rin
Equation (23) may be used to establish the following result, the proof of which
is omitted.

ProrosiTioN 1. Forn > 6,

where

- 2 %) e

REMARK. For b = n, the bound in Proposition 1 simplifies to
dy(ny < 2021

" Vo (1 — 2e/n) n

The contrasting behavior of d,(n) is given in Section 5.2.

=0(n™Y).
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Observe that as n and n/b — o,

F.(n/b) 2\/§ez(n
F(n/b) Ve \b
Comparison with Table 1 in Section 5.3 shows that d,(n) > F.(n/b), so

that the dominant contribution arises from dependence versus independence,
as opposed to matching the marginals.

-5/2
) b1n/bl 0,

5. Complementary results.

5.1. The result of this paper is that the cycle counts for sizes up to b are
asymptotically independent if and only if /n — 0. For the process of indica-
tors of cycles of size at most b, which not only counts the cycles but also says
which elements form each cycle, the boundary for successful approximation by
an independent process is b = Vn. This is shown using the Chen-Stein
method in Arratia, Goldstein and Gordon (1990).

5.2. Lemma 1 and the remark following Lemma 3 show that
dn(n) =1- [FD(TOn = n)
(24)

el £

j=1J
so that as n — o,

-

e
d(n)=1- —;—(1 +0(1)),
where vy is Euler’s constant.

5.3. Here is the argument to show that if b/n — B € [0, 1], then d,(n) —
H(B), where H(0) = 0, H(1) = 1 and H is strictly increasing in [0, 1]. It is a
trivial consequence of Theorem 2 that if this limit H(B) exists, then for
0<pB <1, HQB)<FQA/B). It would be interesting to study the limiting
behavior of H(B) as 8 — 0.

To evaluate H(B) we look at the joint limit distribution of (1/n)T,, and
(1/n)T,, with b =|Bn]. More generally the process [(1/n)Ty 1pnp 0 < B < o]
converges in D[0, ») to a process (X,; 0 < B < ®) which should play a funda-
mental role in understanding random permutations. There is a simple explicit
construction of this limit process, as follows.

Let -+ T_;<Ty<0<T,<Ty< - - be the jump times of a Poisson
process on R with intensity 1, and let J; = e~7:. Equivalently, let
o, U_, Uy, Uy, U,, ... €(0, 1] be independent and uniformly distributed, and
let J, = Uy, Jy = UU,, Jg = UUUs,...,dy=1/U,, J_; =1/(U,U_)),....
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For B > 0 define
(25) Xy =2 J1(J; < B).

This gives a process (Xjz; 0 < B < ) having independent increments, and
sample paths which are right-continuous step functions, with X, =0 and
X, — X;_€ {0, B} for all B. Note that EX, = 1, var(X,) = 3 and X, =4 BX,
for all g > 0.

If b/n — B €[0,1], then ((1/n)T,,, 1/n)T,,) =4 (X4, X; — X,). This fol-
lows from the observation that

cons(27,.) = ep| £ 5[owe(%) 1))

- exp(f —(exp(ux) — 1) dx)

A local limit argument and Lemma 1 then show that if b/n — B € (0, 1], then
(26) dy(n) - H(B) =1-£(X,) = (Xl X, = 1)I.

Let gz be the density of X, and let h; be the density of the continuous part
of X, — X,. Note that P(X; — X; = 0) = B. The limiting total variation dis-
tance may also be written in the form

hg(1 —x) gs(1) )

&1(1) &1(1)

The last term above corresponds to the r = n term of (12).
We have gg(x) = g(x/B)/B and g(x) =e™” for 0 <x < 1, and

—g(x—1)
—

1
mm=§U 8s(x) —4w+ﬁ

(27) gi(x) =

An explicit expression for the density of X, may be found in Kolchin [(1986),
page 54 ff]. Finally, the density h, of the contlnuous part of X; — X, satisfies

0, x < B,
Pa(*) = {B/x B<x<2B,

hg(x —B) = hy(x) — hg(x — 1)

x

(28)

Ky(x) = x> B.

5.4. It is interesting to compare the exact values of d, with the upper
bound from Theorem 2. The special case b = 1 is discussed in the introduc-
tion, where upper and lower bounds for d,(n) are given in equation (3).

In Table 1, we give values of d,(n) and the upper bound F(n/b) from
Theorem 2. Because of numerical inaccuracy in the calculation of d,(n) using



1588 R. ARRATIA AND S. TAVARE
TABLE 1
Exact and estimated total variation distances®
n/b 8 10 12 14 20 30 40 50
F(n/b) 181_,* 112_, 446_, 123 ; 4.83_,, 834_, 427 5 164_,
b 1 586_, 220_, 575_; 111_g 1.88_,, 123 5 3.13_4 6.99 5
2 5145 735_; 7.09_5 482_;; 290_;3 620_5 3.93_,; 2.07_g
5  685_ 426_5 172_,, 48l_;3 185_, 256_5 855 g5 1.81_s
10 301, 135, 384_;, 748_,, 899 , 151 _5 529 5 1.06_
20 1.94_¢ 724_g 170_;; 2.71_;, 172_,3 893_, 891_g4 4.76_g,

“Upper bound F(n/b) for d, from Theorem 2. Body of table is exact d, from Lemma 2 and

REDUCE code.

*The notation @, means a X 10°

conventional programming languages, the values of d, were computed using
. very high precision arithmetic in Version 3.3 of the computer algebra package
REDUCE [Hearn (1987)]. The algorithm uses recursions analogous to (14) to
compute the densities of T, and T,,; it then calculates d, using (12). The

code is given below:

array f(1001),a(1001) ,ft0b(1001) ,ftbn(1001);

on numval;
on bigfloat;

procedure fprob(l,m,n);
begin for j:=0:n do a(j):=0;
for j:=0:n do f(j):=0;
a(0):=for j:=L+1:m sum -1/7j;

for j:=Ul+1:m do a(jd:=1/1j;
f(0):=e**a(0);

for k:=0:n-1 do f(k+1):=
(for vi=1:k+1 sum v*xa(v)*f(k+1-v)) / (k+1);

end;
procedure dbn(b

sn);

begin scalar ftOnn,tv;

fprob(0,b

fprob(b,n

sn);
for j:=0:n do ftOb(j):=f(j);
n);
for j:=0:n do ftbn(j):=f(j);

ftOnn:=e**(for j:=1:n sum -1/3j);
tvi=for r:=0:n sum ftOb(r)*abs(ftbn(n - r) /
ftOnn - 1);
tv:i=(tv+1 - (for j:=0:n sum ftOb(j)))/2;

return tv
end;
precision 85;
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The structure of Table 1 suggests the following conjectures:
CONJECTURE 2. For fixed b, d,(n) is a decreasing function of n.
CoNJECTURE 3. For fixed n/b, d,(n) is a decreasing function of b and n.

If both these conjectures were proved, it would follow that, forall n > b > 1,
dy(n) <d (bln/b) < d(n/b)), with sharp bounds on d; given by (3).

6. Discussion.

6.1. The techniques above are useful for analyzing other combinatorial
structures, such as random partitions of a set and random mappings. Suppose
the number of ““M-structures” on a set of size i is m,. Consider ‘‘M-assem-
blies” on {1,..., n}, in which the set {1, ..., n} is partitioned, and an M-struc-
ture is given for each block of the partition [Joyal (1981)]. For example, if the
M-structure is a cyclic permutation, then the M-assembly is a permutation,
represented by its cycle decomposition. For an M-assembly , let 'C;(7) be the
number of blocks of size i, so that C, + 2C, + -+ +nC, = n. The analog of
Cauchy’s formula for the number of M-assemblies with a given block struc-
ture is

n i a; 1 n )
[{m: (Cy(7),...,Co(m)) = (a1,...,a,)}| = n'FI]l(’:z—') a—i!l(jgljaj = n),

so that if an M-assembly on {(1,..., n} is chosen uniformly at random and Z,
are independent Poisson random variables with parameters

m;

|EZl = "

i!

then
n
(29) P((Cy,...,C,) =a) = P((Zl,...,Zn) =al) jZ,= n).
j=1

Furthermore, for any x > 0, the conditional probability on the right-hand side
is unchanged if the Poisson parameters are changed to
m;x :

(30) EZ, = T

where x may depend on n but not on i.

Permutations is the case in which the M-structure is a cyclic permutation,
with m; = (i — 1)! and m,/i! = 1/i. The collection of all n" mappings of a set
of n elements into itself is the case in which m; = (i — D)!Li%i*/k!. Using
x = e~ ! in (30) yields EZ; ~ 1/(2i) as i — = [see Arratia and Tavaré (1992b)].
The Ewens sampling formula [Ewens (1972)] is a nonuniform measure on
permutations that satisfies (29) with EZ; = 6 /i for fixed 8 > 0 [see Watterson
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(19744, b), and Arratia, Barbour and Tavaré (1992)]. Random partitions of a
set is the case m; = 1. This can be compared to a Poisson process by using
x = x(n), the solution of xe* = n in (30) [see Arratia and Tavaré (1992b)].

The analog of Lemma 1 in this general setting is worth recording as the
following lemma.

LemMma 9. If the distribution of (Cy,...,C,) is equal to that of (Z,,...,Z,)
conditional on T, = n, where T, =Z, + 2Z, + -+ +nZ,, then, for any set
B c{1,2,...,n)}, the total variation distance for the processes restricted to B is
equal to the total variation distance between the random variables Ty =
Y ;e plZ; and Ty conditioned on T, = n:

(81) [ -£(C;,i e B) - £(Z;,i€B)| =|L(Tp) - L(TplTy, = n)|.

Proor. Proceed exactly as in the proof of Lemma 1. Note that the only
condition used is the mutual independence of the Z;, and that Poisson
marginals are not needed for the Z;. O

6.2. The explicit bound in Theorem 2 effectively allows the small cycle
sizes to be decoupled into independent Poisson random variables. This decou-
pling provides elementary proofs of limit theorems and bounds for a variety of
functionals of random permutations. The details of these and other applica-
tions appear in Arratia and Tavaré (1992a). Among these limit theorems are
Goncharov’s (1944) result that the number of cycles of a random n-permuta-
tion is asymptotically normal, with mean and variance log n, and its functional
version [DeLaurentis and Pittel (1985)] that considers the cycles of size at most
n' as a process in ¢, 0 < ¢ < 1. Analogous results for random mappings appear
in Hansen (1989), and for the Ewens sampling formula in Hansen (1990).
Another application concerns the celebrated Erdés—Turan theorem, which
states that the log of the order of a random n-permutation is asymptotically
normal, with mean (log n)?/2 and variance (log n)/3. DeLaurentis and Pittel
(1985) give a short proof of the Erdés—Turan theorem using their functional
limit theorem.
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