The Annals of Probability
1992, Vol. 20, No. 3, 1484-1497

ON THE DISTRIBUTION OF THE HILBERT TRANSFORM OF
THE LOCAL TIME OF A SYMMETRIC LEVY PROCESS!

By P. J. Frrzsimmons AND R. K. GETOOR
University of California, San Diego

We derive simple explicit formulas for the Fourier-Laplace transforms
of the Hilbert transform and related functionals of the local time of a
symmetric Lévy process. These formulas generalize results of Biane and
Yor for Brownian motion. The method of proof provides an explanation (of
sorts) for the presence of the hyperbolic functions in such formulas.

1. Introduction. The paper of Biane and Yor [3] contains a wealth of
information on the distribution of certain functionals of Brownian motion and
related processes. Some of the most striking of their results concern the
Hilbert transform of the Brownian local time. To recall one example from [3],
let (B,),. o be standard one-dimensional Brownian motion with B, = 0, and
consider the fluctuating additive functional

tdS

© _,, ax .
(1.1) H,=j0(L, —L;)— = lim [ —5 i,z

el070
where {L}: ¢t > 0, x € R} is Brownian local time. If T is an exponential random
variable independent of (B,) with mean ¢!, then ([3], page 67)

(1.2) E(exp(iAHy)) = sech(/\(2q)—1/2), A ER.

This formula is derived in [3] through a combination of excursion theory,
Brownian scaling and special properties of Bessel processes. In fact, (1.2) is
just one of a group of explicit formulas in [3] for Fourier transforms of random
variables related to (H,).

Our aim in this paper is to show that (1.2) and various companion identities
hold for a wide class of symmetric one-dimensional Lévy processes. One only
has to recognize the expression (2q)~ !/ for what it is:

(29) 7% = [(e7p(t,0) dt,
0

where p(¢,x) is the Brownian transition density. Then the form of (1.2)
appropriate to a suitable Lévy process is obtained by relacing (2¢q)~'/2 by the
analogous expression for the Lévy process.

Our proofs are more direct than those found in [3] and are based on moment
calculations which yield a combinatorial explanation for the ubiquity of the
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LOCAL TIME OF A SYMMETRIC LEVY PROCESS 1485

hyperbolic functions in (1.2) and its companions. Of course, we would never
have arrived at our results without the hint provided by the Brownian case.

The process (H,) arises naturally in certain limit theorems for occupation
times. See Yamada [10], [11] for the Brownian case and [5] for similar results in
the context of stable processes.

We now proceed to set down our hypotheses precisely, after which we shall
formulate our main results.

Throughout the paper, X = (Q, &, %, 0,, X,, P*) will denote the canonical
realization of a real-valued Lévy process. Thus X is a Hunt process with
stationary independent increments and Lévy exponent ¢ determined by

(1.3) P°(exp(irX,)) = exp(—ty(A)), t=0,A€R.

We assume that X is symmetric, so that ¢ is even (hence real). This means
that ¢ can be represented as

(1.4) W) = o2 + f:(1 — cos Ax)v(dx),

where o > 0 and v is a measure on 0, oo such that [5(x* A 1)v(dx) < ». We
assume further that

(1.5) f:[q +¢(1)] 'dr <o for some (and then all) g > 0.

Because of (1.5), there are continuous transition densities p(t, x) and resolvent
densities ©#9(x) such that for ¢ > 0 and x € R,

[T op(t, %) dt = u(x),
0

1 dA 1 .o cosAx

(1.6) uq(x) = E[_we_i'\xq—_'_ﬁ/\—) = *;j;) m dA
and
(1.7) P=[eo'f(X,) dt = [ut(y = %) f(3) dy

for any bounded or positive Borel function f.

It is well known ([4], VI(4.11)) that (1.5) (in combination with the symmetry
of X) guarantees the existence of local time (L}: t > 0, x € R) for X. For each
x € R, (L¥),, is a continuous additive functional (CAF) of X such that the
support of the measure d,L¥ coincides almost surely with {¢: X, = x}. More-
over (L¥) can be normalized so that

1.8 p=[ e~ dLy = uf y—x
0 t
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and then
(1.9) [F(X,)ds = [ f(x)L; dx

for all ¢ > 0 and all bounded Borel functions f almost surely.
To ensure that a jointly continuous version of local time can be chosen, we
need to impose one more condition. Define

ol — cos Ax

by = sp ~ [* T

p(x) = ["Tog(1 + u=*)]"* dyfa(u)
0
Our final hypothesis is
(1.10) flx_lp(x) dx < =,
0

Implicit in (1.10) is the finiteness of p(1/2), which is equivalent to Barlow’s
condition

(1.11) ¥ (52" /m) " <=
n=1

(see [1], especially page 29), and under which a version of (L}) can be chosen so
as to be jointly continuous in ¢ and x. Moreover, by [1], (1.11) implies that
there are constants C(w, t,) with C(w, t,) <  such that almost surely,

(1.12) sup |Li(w) — LY(w)| < C(w,ty)p(lx = y1)

0<t<t,

for all x,y € R and ¢, > 0.
It is worth noting that both (1.5) and (1.10) hold provided

sup{B = 0: A AY(A) > +was A - +x} > 1.

In particular, any symmetric stable process of index a €11, 2] satisfies our
hypotheses.

As noted in (2.7) of [5], there is a set A € & * (the universal completion of
&) with 8,A c A for all £ > 0 and P*(A) = 1 for all x € R and a version of
L% such that (1.9), (1.12), the joint continuity of (¢, x) = L(w) and

(1.13) Li (@) = Li(o) + Li(6,0)

hold identically for o € A. Moreover, one can take w — L¥(w) to be & N F*
measurable for each ¢ and x and one can assume that for w € A,

(1.14) L*(w) = 0 whenever |x| > sup{X,(w)|: 0 <s < ¢}.

These properties of (L¥) will be used in the sequel without special mention.
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In view of (1.10), (1.12) and (1.14), the integral
1 = . B
(1.15) Ho= [y (Lt - L) dy

is absolutely convergent almost surely, and defines a (fluctuating) CAF of X.
Of course, H, is the (negative of the) Hilbert transform of x — L7, evaluated
at x = 0. Evidently,

1 t 1 t
— Tim — -1 _ - -1
H, ilfl(?; - oXs Lix, > ds p.v.wfoXs ds.
It can be shown that (H,) is a CAF of zero energy (in the sense of Fukushima
[7D) and that ¢ — H, is of unbounded variation over any interval on which
¢t — L? is not constant.

NotaTioN. In the sequel we shall write P for P° and L, for L. The
function

1 dA
(1.16) k(q) = u?(0) = =

‘n'foq+l/f(7‘)’ 7>0,

will play an important role in what follows. Note, for example, that if X is a
stable process with (1) = ¢|A|*, @ > 1, ¢ > 0, then

ql/a—l

«(q) = act/*sin(m/a)

Our main results concern the P-distribution of Hg for various random
times S. Among these are certain exit and entrance times associated with the
zero set {t: X, = 0}. We define for ¢ > 0,

g(t) =sup{s <t: X, =0}  (supo =0),
d(t) = inf{s > t: X, = 0} (inf ¢ = +).

(1.17) TeEOREM. Let T = T(q) be an exponentially distributed random
variable independent of X with parameter ¢ > 0. Then for A, u € R,

(1.18) P(exp(iAHy)) = sech(Ak(q)),
h(Ax
(1.19) P(exp(iAHy))) = ta_n)‘%#q))_
P(exp(i\Hyr, + in(Hy — Hyr))))
(1.20) _ tanh(Ak(q)) m
T s ()

In particular, Hypy and Hy — Hy g, are independent.
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Our Lévy process X is (point) recurrent if and only if the zero set {t:
X, = 0} is unbounded a.s. P. As is well known, this is equivalent to the
condition P(L, = ») = 1, which in turn is equivalent to «(0) := k(0 + ) = ;
see (38.16) below or [6], Section 5. These observations, together with the
recurrence criterion ([2], 13.23), show that

(1.21) k(0) = ifandonlyif ['w(A) 'dA =
0
Of course, P(d(T) = «) > 0 if X is transient (i.e., nonrecurrent).

(1.22) THEOREM. Let T be an exponential random variable as in (1.17).
Then for A, u € R,

tanh(Ak(q))

(1.23) P(exp(iAHyr)); d(T) <) =1 - tanh(Ak(0)) ’

where tanh(+®) = +1 and
P(exp(i)tHg(T) + in(Hyr, — Hyry)); d(T) < oo)

(1.24) tanh(Ak(q)) I M
B A tanh(uk(q))  tanh(uk(0)) ]
In particular, Hy ) and Hy gy — H, g, are independent on {d(T) < «}.

ReEMARK. The independence assertions made in (1.17) and (1.22) are well-
known consequences of excursion theory and are valid quite generally.

For our final result, let 7(¢) = inf{s: L, > t} denote inverse local time at 0.
It is a standard consequence of the strong Markov property that the process
(r(t), H,)), - o is a Lévy process with values in R* X R. (Note that this process
has finite lifetime L, if X is transient.) The distribution of (7(¢), H, ), , is
determined in the following:

(1.25) THEOREM. For q > 0 and A € R,

(1.26) P(exp(—qr(¢) + iAH,,); 7(¢) < ) = exp( —#A coth(Ax(q))).
In particular, if X is recurrent, then

(1.27) P(exp(i)\HT(t))) = exp( —¢IAl),

so that (H,), o is a standard symmetric Cauchy process.

If X is a symmetric stable process with index a > 1, then a scaling
argument shows that (H,,) must be a Cauchy process. But this scaling
argument fails to show that the scale constant in (1.27) is 1. We have no
sensible explanation for the remarkable formula (1.27) in the general case.

The rest of the paper is laid out as follows. In Section 2 we prove a
combinatorial lemma which serves as the key ingredient in Section 3, where
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the moments of (H,) are computed. The proofs of (1.17), (1.22) and (1.25) are
in Section 4.

2. A combinatorial lemma. In this section we prepare two identities
that will aid in the evaluation of certain multiple integrals arising from the
moment calculations of Section 3.

We shall say that a real sequence (x,..., x;) is alternating (respectively,
reverse alternating) provided x; > x, <xg3> --- (respectively, x; <x,>
x3 < ---). Let S, denote the set of permutations of {1,2,...,k}. We shall
identify each o € S, with a sequence (o3, ..., 03) in the obvious way. We write
E, for the number of alternating permutations in S, setting E, =1 for
convenience. There is an obvious bijection between alternating and reverse
alternating elements of S,, so E, also counts reverse alternating permuta-
tions. The exponential generating function of {E,: k > 0} can be expressed as
follows:

2n

2.1 T (=1)"E, — h Il < =
( ° a) n=0( ) 2n(2n)! = sech x, X 57

© n x2n+1 T
(2.1b) ngo(—l) Ezn_,,lm = tanh x, IxI < *5

See, for example, formula (58) on page 149 of [9].
Let T, = {—1,1}%, k > 2. Regard 7 = (7,...,7;) € T}, as a choice of signs
to be attached to a permutation o € S,. Define, for k > 2, 0 € S;,, 7 € T},

k

(2.2a) ex(7,0) = [1sen(7;0;, — 7,_10;_1), if kiseven;
j=1
E-1

(2.2b) ex(r,0) = []sen(7;,105,, — 7;07), if kisodd.
j=1

By convention 7,0, = 0 and sgn is the usual sign function. Note that e(r, o)
is unchanged if (o, 0y, . . ., 0;,) is replaced by (x,), - - - » X5(z)), Where 0 <x; <
- < x,, is any sequence of real numbers.

(2.3) LEMMA. Given k > 2, let n==k/2 or (k — 1)/2 according as k is
even or odd. Then

27k Y eyr,0)=(-1)"E,.

7€T,,0€8,

ProoF. The lemma is an immediate consequence of the following observa-
tions: (a) If £ > 2 is even, then for o € S,,

e (r,0) = (—l)n, Vr € T,, if o isalternating,
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while
Y e,(7,0) =0, if o is not alternating.

TeTy,
(b) If £ > 3 is odd, then for o € S,,
ey(r,0) =(-1)", VreT,, ifo isreverse alternating,
while

Y e,(7,0) =0, if o is not reverse alternating.
T€T),

We shall prove only (a); the proof of (b) is quite similar.

We prove the alternating case of (a) by induction on n = k /2. One can check
that e,(r,0) = —1if o € S, is alternating by listing the four possibilities for
7. Suppose now that e, (7,0) = (—1)" for all alternating o € S,, and all
Tr€T,,. Let 0 €8,,,, be alternating. Then o,, < 0y, > o-2n+2, so by the
remark following (2.2), we have

€rn+2(7,0) = (- l)n sgn(A,,,1)58n(Az,42),

where A; = 7;0; — 7;_,0;_;. It is easy to check that since 0y, < 05,.1 > 02,19,
one has sgn(A,, . )sgn(A,,,,) = —1 for each of the eight possible choices of
(Tops Tons 1, Tonso)- Thus ey, o(r,0) = (=1)"*! forall r € T,, ., and all alter-
nating o € S,,,, 5, and the induction is complete.

Now suppose o € S, is not alternating. Then there is a unique integer j,
1 <j <k, such that (o}, 0y,...,0;) is alternating but (o;,...,0;,) is not. If

=1, then o, <o,. If 1 <j <k, then 0;_, >0;,>0;,, Or 0;_; <0; <0j,,
according as j is even or odd. Given 7 € T}, define 7 € T, by changing the
sign of 7;, leaving the other elements of 7 unchanged. Since the effect on
e,(7, o) of the passage from 7 to 7 is local [only sgn (7,0;) is altered if j =
1, only sgn(A;)sgn(4;, ) is altered if 1 <j <k], it is easy to check that
e, (7,0) = —ey(r,0). Since 7+— 7 is a bijection of T,, it follows that
L oereir,0)=0

3. Moment calculations. In this section we establish several identities
concerning the moments of (H,). We begin by recording a general identity
from which the others will be deduced.

Given a finite (positive) measure u on R, we can define a CAF of X by
setting

At = [Lip(dz), t=0.

In view of (1.8) and (1.9),

(3.1) e[ “e~v'g(X,) dAt = [ut(y — x)g(y)u(dy).
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We write
a(g) = [e'u(dx), <R,

for the Fourier transform of w. The Fourier transform f of a function
f € LXR) is defined analogously.

(8.2) LEMMA. Forq >0, k €N,
P fo “ematHE dAY
(3.3)

- dé. - d ,
(211')k+1 R+ i1 q +l/’(§j) q+ Y(érer) b Sos

the absolute convergence of both integrals being part of the assertion.

kli* [k Sgn(§j+1_§j)] A(=€rs1)

Proor, Let f: R — R be a bounded Borel function with compact support,
so that f is bounded. By a routine calculation we have, for & € N,

I, = Pf:e‘q‘[j:f(Xs) ds]k dA®

k
= kP j[ e~ ,-Ulf(X‘f)] dt, -+ dt, dA®

0<t;< -+ <t <t<oo

(3.4)

k
=k7f l—[uq(xj—xj_l)f(xj)
Rk+1 j=1

Xud(%pyq — %) dxy -0 day p(dxg, ),

where x, = 0. Using (1.6) and the symmetry of ¢, repeated application of
Fubini’s theorem (or the Parseval relation) yields

__—kg— k M
I, = (277)k+1'/;3k+1|:jl:[1 q+l/’(§j) :|

I-'i( -¢ k+ 1)
g+ ¥(&rs1)
[The manipulations involved in passing from (3.4) to (3.5) are easily justified

since ji is bounded and both f and [q + ]! lie in L*(R).]
We now take f(x) = f(x) = (wx)" 'L, .|, <.~ in (3.4). Observe that

f.(¢) = (—21)

T

(3.5)

dé; - dépiq

fg /e sin x
g X

dx, £€R,
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which tends boundedly and pointwise to i sgn(¢) as & | 0. Thus (3.5) implies
that for each 2 € N, ¢ > 0,

o k
lim P e*qt[ftfa(Xs) ds] dA}
0

e|0 0
3.6
(8.6) _ ki f kosgn(§,1 — &) | A(—€pvr) d¢, - de
em)* et g+ u(E)  |ate(G)
On the other hand, by (1.9) and (1.15),
3.7 lim [F.(X.)ds = lim [* = (L7 — L~ dy = H
(3.7) lim [(£,(X,) ds = lim [* —[L} -~ L;*] dy = H,

for all £ > 0 almost surely. Now (8.6) for even k € N shows that for each
r > 0, the family of functions (¢, ) = |[§ f(X (@) ds|”, 0 <& <1, is uni-
formly integrable relative to the finite measure e~?* dA*(w)P(d w). Therefore,
we can combine (3.6) and (3.7) to obtain the conclusion of the lemma. O

In two cases we can evaluate the multiple integral in (3.3) by exploiting
symmetry. We note at this point that the P-distribution of ((H,, L,): s > 0,
¢t > 0) is unchanged if H, is replaced by —H,. This follows from (1.9) and
(1.15) because of the symmetry of X. Thus

(3.8) P(H}) = P(f‘Hsk dLs) -0, Vt>o0,
0
whenever £ € N is odd.

(3.9) ProposiTioN. Ifk € N is even, then for q > 0,

(3.10) Pf:qe‘q‘Htk dt = [k(q)]*E,

and

(3.11) P[ e H}dL, = [()]*" Eyyi/(h + 1),
0

where E, is as in Section 2.

Proor. We begin with the proof of (3.10). Fix an even £ € N. For ¢ > 0, let
p(dx) = exp(—ex2/2)dx. Then {(¢)/2m = (2me)~ /2 exp(—£2%/2¢) is an ap-
proximate identity as ¢ | 0. Since ¥(0) = 0 and sgn is continuous except at 0, if
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we substitute u, for u in (3.3), then we can pass to the limit as ¢ | 0 to obtain
P[ e~vH} dt
0

klik sgn(é, — £;) -+ sgn(€, — €p—1)sgn(—§,)

(312) " ok @ @) (@r W ST 9
- klit kosgn(x; —x;_) _
- Q(2w)k R* j=1W dx, dxy,  (%=0),

where we have made the change of variables (¢,,...,&,) = (x;,...,x,). To
evaluate the final expression in (3.12), we partition each of the 2* orthants of
R* into k! sectors according to the relative magnitudes of |x;|, 1 <j < k. (The
hyperplanes forming the boundaries of these sectors can be ignored since they
contribute nothing to the integral. Thus the sectors can be taken to be open.)
Since ¢ is even, each sector contributes

sit(em)* 24 [ (g +u(e)] e Lo+ e(w)] s o d

k
- iik2‘kq'1[(2ﬂ)_1f[q +(x)] tdx| = xi*27hq [x(q)]*
to the final expression in (3.12), the + sign being determined by the (constant)
value of
(3.13) sgn(x)sgn(x, — x1) ** sgn(xy — xp_1)
over the sector. It follows that

(3.14) P ge "H} dt = i*[x(q)]*27*N,,
0

where N, is the number of sectors for which (3.13) is +1 minus the number
of sectors for which it is — 1. But recalling the notation of Section 2, we see
that there is an obvious bijection between our 2*%! sectors and the cartesian
product T, X S,. Thus, since k is even, Lemma (2.3) yields

(3.15) ikz_ka =Ek'

Combining (3.14) and (3.15) we obtain (3.10). A similar argument leads from
(8.3) with p = ¢, to (8.11). O

REMARK. It is straightforward to verify that
(3.16) P["ge (L))" dt = ki[x(q)]*, kEN.
0

Comparing this with (3.10), we see that
(3.17) P(H}) = P(L})E,/k!, k even.
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Similarly, one can deduce from (3.11) that
(3.18) (Héf(t)) P(L})E;.,/(k +1)!,  keven.
[See (4.5) below for the way to pass from (3.11) to (3.18).]

4. Proofs of (1.17), (1.22) and (1.25). Throughout this section 7' = T'(q)
is an exponentially distributed random variable independent of X with param-
eter ¢ > 0.

ProoF OF (1.17). Formula (1.18) is implicit in (3.10). Indeed P(H}) = 0 if
k is odd; so, for complex A,

P(exp(irHy)) = waqe“” exp(iAH,) dt
( 1) /\2n
o (2n)!

nE2n 2n

= sech(Ak(q)), by (2.1a).

Actually, the interchange of summation and integration above can be justified
only if [Ak(g)| < /2. However the absolute convergence of the integral

.
(4.1) n=

A

n

=L P qeUH dt
0

(4.2) [e**P(Hy € dx)

in the disk |A| < 7/2«(q) implies its absolute convergence throughout the
strip |[Im(A)| < 7/2k(q). The integral in (4.2) is thus analytic in the same strip
by Morera’s theorem. Since sech(Ak(q)) is also analytic in [Im(A)| < 7/2x(q),
the extremes in (4.1) coincide in the strip, and in particular on the real line
Im(A) = 0. Thus (1.18) is proved.

Before continuing we need to recall some basic facts about the excursions of
X from 0. The reader can refer to [8], Section 7 for full details. Let G denote
the set of left endpoints of the intervals contiguous to the zero set {t > 0:

= 0} and let R = inf{t > 0: X, = 0} denote the hitting time of 0. Then there
1s a o-finite measure P on Q such that if Z > 0 is a predictable process and
K = K/ (w)is a ZR*) ® F* measurable process, then

(4.3) P( ¥ sts(os)) - P[ z,B(K,)dL,.
seq@ Y

The measure P satisfies P(R = 0) = 0, and by (4.3) with Z (0) = ¢~% and

K (w) =1 — e 98,

(4.4) P(1-e9®) =k(q)™", ¢>0.
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Proceeding to the proof of (1.19), note that if # > 0, then g(¢) is the unique
point s € G such that s < ¢ and R 6, > ¢ — s. Thus, using (4.3) and (4.4),

waqe ~9 exp(iAHg,) dt
0

=f0qe“”dtP( ¥ ei)«Hs]_(Ross>t_s))

seqG,s<t

(4.5) = f:qe“" dtP(Ltei*Hsp(R >t—s) dLs)

= P(fwe‘qse“‘Hs dLs)P(l — e 9R)
0

- P(fme'qse“Hs dLs)/K(q).

0
But in the light of (2.1b), (3.8) and (3.11), we have
w , ® (iIN)" e
P —qs,iAH, dL = P —qu2n dL
j;) e e s nZ=0 (2n)' j;)e s s
(4.6) = (=1)"A*" E,,
- ¥ L o (@l

oo (2n)! (2n+1)
= A~ !tanh(Ax(q)).

The formal manipulations above can be justified as in the proof of (1.18).
Combining (4.5) with (4.6) we obtain (1.19).
Following the pattern established in the above argument one can show that

(4.7) P(exp(iAHyr, + in(Hy — Hyp)))) = A7 " tanh(Ax(q)) B(q, 1),

where
B(q,u) = [ ge P(e™Fsit <R)dt.
0

But setting A =p in (4.7) and using (1.18), we find that B(q,u) =
u/sinh(uk(q)). Substituting this into (4.7), we obtain (1.20). The proof of
Theorem (1.17) is complete. O

Proor oF (1.25). As noted already in Section 1, Y, == (7(¢), H,,)) is a Lévy
process with values in R*X R up to the lifetime L,. This lifetime is finite if
and only if X is transient, in which case L, has the exponential distribution
under P, with mean «(0) < . [See (3.16).] In any event, there is a Lévy
exponent ¢: R*X R - R* such that for ¢ > 0, A € R,

(4.8) P(exp(—qa-(t) +iAH,,); 7(t) < oo) =exp(—te(q,A)), t=0.
Note that ¢(0,0) = x(0)~! (= 0 if X is recurrent). Using (4.6) and the change
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of variable s = 7(¢), we obtain

Pj;) exp(—q7(2) + iAH, )1 <o dt

= P[ e 9% dL, = A~ tanh(Ax(q)).
0

Combining this with (4.8) we arrive at

(4.9) ¢(g,A) = Acoth(Ak(q)),
which is (1.25). O

ProoF oOF (1.22). The symmetry property of (H,) noted above (3.8) implies
that Y, = (v(¢), H,,)), . o is equal in distribution (under P) to (v(t),— H, ), 5 0-
This means that the Lévy exponent ¢ of Y can be expressed as

(4.10) ¢(g,2) = ¢(0,0) + [ [(1 — e " cos Ax)y(dr,dx), ¢>0,A€R,

where y is a measure on ]0,o[X(R\ {0}) invariant under the mapping
(r,x) - (r, —x) and such that [[[(r + x?) A 1]y(dr,dx) < . The absence of
drift terms in (4.10) is explained by the symmetry of Y noted above and by the
computation

. qd¢ 17"
(4.11) ‘}T}O[qx(q)] = lim [ joq+¢(§)] = 0.

[Indeed letting A — 0 in (4.9) we see that the subordinator (7(¢)) has Lévy
exponent k(q)~!, so the limit in (4.11) represents the drift of (7(¢)); cf. [8],
(7.6), (7.16).] .

It is well known that vy is the P-distribution of (R, Hg); that is,

(4.12) y(dr,dx) = P(R €dr, Hg € dx; R < ).

In fact, the jumps J = {(¢,Y, = Y,_): 0 < |Y, — Y,_| < »} of Y form a Poisson
point process on R*X R*X(R\ {0}) (killed at L.) with intensity dt y(dr, dx),
and since H is continuous,

Y,-Y_= (T(t) -7(t-),H ) T(t )) = (R, Hg)~ 07(t )

But 7(¢) — 7(t — ) > 0 if and only if s = 7(t — ) € G, so (4.12) follows from
(4.3).
Comparing (4.10) with (4.9) and using (4.12), we now find that

(4.13) P(1 - exp(—qR)cos(AHy); R < ©) = A coth(Ak(q)) — x(0)
Thus
B((1 - e 9R)eHE, R < ®) = 15((1 — e 9®)cos(AHp); R < )

(4.14)
= Acoth(Ak(q)) — A coth(Ak(0)).
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Consequently, by (4.3),

oo
= - iAH, i o
_/;)qe qt dtP( Z eirHspinHp 031(t—s<Roos<oo))

seqG,s<t

= [Tqe t*dtP [ HB(eitir;t — s <R < ) dL,
0 0
= P(fme“’se"’\Hs dLs)ﬁ((l — e 9R)erHr; R < )
0

= A~ tanh(Ax(q)) [ 1 coth(px(q)) — u coth(ux(0))],

where the final equality follows from (4.6) and (4.14). This yields (1.24), and
also (1.23) upon setting u = A. O
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