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CONDITIONAL EXITS FOR SMALL NOISE DIFFUSIONS
WITH CHARACTERISTIC BOUNDARY

By MARTIN V. DAY
Virginia Tech

The small noise exit problem of Wentzell and Freidlin is of particular
interest for regions whose boundary consists of trajectories of the underly-
ing (unperturbed) dynamical system. This is called the case of characteristic
boundary. One fruitful approach to attacking this problem involves condi-
tioning the probability measure so that exit to the boundary occurs more
quickly. In a previous paper, this approach was applied to some simplified
examples, revealing some previously unanticipated phenomena for the
characteristic boundary exit problem. In this paper we develop certain
aspects of this approach more generally. In particular we present stochastic
differential equations which give an asymptotically correct description of
this conditioned process by using a carefully chosen system of coordinates
near the boundary.

1. Introduction. The past decade has seen extensive study of the effects
of adding small random perturbations to a (deterministic) dynamical system

(1.1) i(t) =b(x(¢));  x(0) = x,.

The work of Wentzell and Freidlin [14] developed a rich mathematical theory
for the study of “small noise diffusion” perturbations:

(1.2)  dx®(t) = b(x%(2)) dt + 20 (x%(2)) dw(t);  x°(0) = x,.
Although other types of perturbations may be more reasonable in applied
contexts, (1.2) is very appealing mathematically. It yields a Markov diffusion
process x°(¢) and thus makes a tremendous arsenal of mathematical theory
available: It6 calculus and stochastic differential equations, elliptic and
parabolic partial differential equations, the large deviations theory of Wentzell
and Freidlin and more.

One of the most interesting problems in this area has been the exit problem.
Suppose D is a bounded region, with smooth boundary 4D, which is attracted
by (1.1) to a unique stable critical point 0 € D. Let
(1.3) 5 = inf{¢ > 0: x°(¢) € D}
be the first exit time of x* from D. The exit problem concerns the asymptotic
behavior, as ¢ | 0, of the exit time 7§ and exit position x°(7p).

The exit problem was first studied under the assumption that (1.1) enters D
nontangentially:

(b(y),n(y)) <0, allyeaD,
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1386 M. V. DAY

where n(y) is the unit outward normal. Recently there has been increasing
interest in the case of characteristic boundary:

(1.4) (b(y),n(y)) =0, allyeaD.

Several papers have addressed aspects of this version of the problem: [2, 3, 7,
8,9, 10, 17, 18]. Large deviations results for the distributions of 7§, and x°(75)
generalize to the case (1.4); see [9]. But, as was pointed out there, these large
deviations results are often inconclusive in the characteristic boundary case.

In [8] we presented an approach to the asymptotic behavior of the exit
distribution

u(xy, A) = P, [x°(7H) € A], AcaD,

which revealed some previously unexpected phenomena. Taking D to be the
unit disk, we assumed x° could be expressed as a decoupled system in terms of
its radial and angular components. Specifically with p = 1 — r denoting the
distance to dD we assumed

dp(t) = Bp*(t) dt + £'/2dBy(t),
doc(t) = b(6°(¢)) dt + /2 dBy(2).

Based on this we described the possible cycling or precession of u° around 4D
as a periodic function of log(¢'/%). We explained how u° could have a limit u°
giving positive probability to repelling critical points of (1.1) on 4D, or that u°
could have positive density on a section of 4D between two critical points. In
particular, the boundary invariance conjecture made in Section 6 of [7] is false
in general.

Our purpose in the present paper is to look somewhat more carefully at the
conditional exit approach of [8]. In Section 2 we will exhibit the main features
of this approach in a more general setting. We will describe a coordinate
system (p, 8) near 4D in which (1.2) looks something like (1.5). The motive for
this is to allow us to appeal to the explicit conditioning calculations carried out
in Section 3. However the change of coordinates will introduce additional Z(e)
drift terms. We will show in Section 4 that these terms are negligible for our
asymptotic calculations. This issue was noted in [8] but not addressed there; it
was avoided by assuming (1.5). However we must deal with such &(¢) addi-
tions to the drift if we want to discuss (1.2) in more generality.

Some other issues involved in developing the conditional exit approach in
general are brought into focus, but not resolved here. One of these is the
existence of the system of coordinates mentioned above. We will see that this
boils down to certain regularity conditions on the ‘““boundary quasipotential’’:

W(x) = V(x,9D),
V being the variational distance function of Freidlin and Wentzell [14]. We will
simply assume these properties for our discussion here.
Our analysis is aimed at providing an asymptotically correct characteriza-

tion of the process x° when considered with respect to the probability P
obtained by conditioning on exit. This culminates in Section 5 where the

(1.5)
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conditional exit kernel Q¢ of Section 3 is described in terms of stochastic
differential equations for the conditioned process. However we do not carry the
analysis of these equations to the point necessary for resolving the characteris-
tic boundary exit problem in general. Instead, in Section 6, we describe a class
of examples which, by the analysis of this paper, reduce to the simplified
situation considered in [8]. This shows that the various phenomena described
in [8] do indeed occur for examples which are properly of the form (1.2).

We finish this introduction by describing our assumptions and notation. We
limit our discussion to two-dimensional systems, though all our arguments
generalize to higher dimensions. The two-dimensional case is simpler since 4D
can be identified with R modulo some period S. (In higher dimensions dD is a
manifold without a single chart parameterization.) For A ¢ R?, A denotes its
closure and dA its boundary. D c R? is assumed to be bounded, open and
simply connected.

We will take smooth to mean_C3 in the following. D is assumed smooth, as
are the coefficient functions b: D — R2 and o: D —» R? ® R2. ¢ is nonsingular
everywhere in D and a(x) denotes o(x)o(x)7.

We assume 0 € D and for every x, € D the solution of (1 1) satisfies
x(t) e D forall ¢t > 0and x(¢) > 0as ¢t > «. (1.4) will be a consequence of our
hypotheses of W-regularity in Section 2.

The w(t) in (1.2) is of course a two-dimensional Brownian motion. For the
bulk of the paper (0, &, P) and {#,} will be as described at the end of Section
2. The various other probability measures that occur below (P>, P°,...) are
all defined on this same (Q, %). Diagram (5.2) illustrates how these are
related to each other.

2. Conditioning on exit and the natural coordinates. We have two
objectives in this section. The first is to discuss the general idea of conditioning
on exit in the exit problem, elaborating on Section 2 of [8]. The second is to
discuss a system of coordinates (p, #) in which this approach can be reduced to
explicit calculations.

Consider a nested pair of slightly smaller (smooth) domains 0 € C ¢ G ¢ D.
(We will choose them more carefully below.) Define the following pair of
stopping times:

(2.1) 7&=inf{t > 0: x°(¢) €9G} and &= inf{t > 7&: x°(¢) €9C}.
Notice that if x°(0) € 4G, then 7§ = 0 and 7§ is the first hitting time of dC.
Otherwise 7§ is the first time after 7§ at which dC is hit. 0 < 7§ < 7¢ in

general. In addition to the exit measure u° from D consider the distribution of
the first exit position from G:

v°(xy, B) =Px0[x°‘(1'§) € B]; BcdG,x,€@.

We will be able to choose G so that the exit problem from G is a nontangential
one:

(2.2) (b(y),n(y)> <0, allyedq.
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The basic idea of the conditional exit approach is to represent u® in terms of
v® and the behavior of x° subject to the conditional probability that 75 < 7§&.
This is a very rare event, but conditioning on it will allow us to see much more
clearly how the transition from dG to dD occurs, when it eventually does. To
make this conditioning argument precise, define two probability kernels:

Re(x,A) = P [x*(7§) € Alrg < 1p], x€94G, AcaC,
Q°(x, A) = P,[x°(7p) € Alrp < 7¢], x€0G, AciD.

Then E [R*(x°(7§), A)] for x € dC and A c dC is a transition probability on
dC. It can be shown that this has the Feller property so that an invariant
probability measure 7° on dC exists for it:

(2.4) m°(A) = E,,s[Re(xe(rg), A)] all (measurable) A c dC.
Let

(2.3)

h(y) =P,[rp <7¢], y € 4G,

be the probability of the event we want to condition on. Consider x, € C. If we
use the strong Markov property to calculate u°(x,, A) by conditioning on the
two intermediate stopping times 0 < 7§ < 7§ A 75 < 7p, we find that

(%9, A) = E, [(1 = ho(2°(78))) Re(x°(76), m°(+, A))

2.5
(2.5) +h,(2°(78))Q°(x°(78), A)].

[We use the convenient notations

R(x,6(-)) = [¢(»)R(x,dy) and R(u,A) = [R(z, A)u(dz),

where ¢ is a measurable function and u is a probability measure.]
We will see in Theorem 5.3 that if C and G are chosen as in (2.19) below,
then the y and ¢ dependencies of 4, can be separated asymptotically:

(2.6) ho(y) =7 (&8(») +0(1)),

where g is a positive continuous function on 4G, y° is independent of y € G
and positive (though asymptotically small as ¢ |0) and o(1) = 0 uniformly
over dG as ¢ | 0. Note that there is really a free constant in (2.6); for any ¢ > 0
we can rewrite (2.6) as

e (8(y) +o(1)/c),
where y¢ = ¢y® and g (x) = g(x)/c. Using this,
1-h(y) =1 -%)+7[1-8(y) —o(1)/c].
According to the basic exponential leveling result of [5] (see also [12]),
(2.7) w(y, A) = (0, A) +o(1),
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where the o(1) is uniform over y € dG. Using these facts we can write
E, [(1 = ho(x°(78))) B*(°(76), (-, A))]
= (1 - ¥) B, [R(x°(78), w( -, A))]
+ % E, [1 - g.(x°(7&))](w°(0, A) + 0(1)) + ¥ - o(1) /.

Make these substitutions in (2.5) and then integrate the initial point x, over
dG with respect to the invariant measure 7¢ from (2.4). This yields

we(m, A) = (1= y)u(w, A) + 1B, [8.(x*(78))Q (x°(6), A)]
+ ¥eE 1 - go(x°(7§))](#°(0, A) + 0(1)) + ¥so(1) /e
We can choose ¢ to eliminate the term with 1 — g:
c=c*=E_[g(x°(7§))]; thatis, E_.[1- g (x°(7&))] = 0.

With this choice we can solve for u*(7¢, A):

u(m, A) = cl—e{Ewe[g(xf(ra))Qe(xﬁ(fé), A)] +o(1)}-
Although c° is e-dependent, it obeys the same positive lower bound as g(-), so
that 0(1)/c® = o(1). Thus in terms of the averaged exit distributions
ve(A) = P.[x°(7&) € A] = v¥(7m*, A), A c G,
w(A) = P[x*(rp) € A] = w'(n*, A), AcaD,
we have, for all measurable A C 4D,

g(y)
e

g
(28) w(A4) = Qv A +o(1) = [ @3, A) = vi(dy) + ().
1/c® is simply the normalizing constant which makes g(-) a probability
density with respect to v*:

¢’ = x) dve.
[ g
The exponential leveling result cited in (2.7) implies that, for any x, € D,

|u(x9, A) — u(A)| >0

and similarly for v¢. Thus for any x, € D and measurable A C D, u*(x,, A)
and pf(A) have the same limiting behavior as ¢ | 0.

Equation (2.8) is the fundamental relationship on which the conditional
approach to the exit problem is based. It expresses the exit measure u° for the
characteristic boundary problem in terms of the exit measure v° and the
conditional exit probability @¢. Since G has a nontangential boundary (2.2),
we have a good understanding of how v° behaves from studies such as [6] of
the nontangential exit problem. In most cases v® will converge to some
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limiting measure on 4G:

In this event
cc—>c = x) dv°®
[ g
and so the asymptotic behavior of u® is given by

(2.9) w(4) ~ @5 a).

We concentrate in this paper on finding an asymptotically correct represen-
tation of @° in terms of a system of stochastic differential equations. Our
approach is to choose a new system of coordinates (p, ) in which (1.2) takes a
form somewhat like (1.5). In particular we want:

1. p® = p(x°) to be (essentially) independent of 9° = 6(x°);

2. 0D, 4C and 4G to be level sets of p, so that the conditioning event Tp < 78
is also independent of 6°;

3. the p° equation to be (essentlally) linear, so that explicit calculatlons as in
[8] can be used to study the conditional probability asymptotically as & | 0.

We will now identify smooth functions p = p(x) and 6 = 6(x), defined in
D \ C, that satisfy these criteria.
It6’s formula tells us that p°(¢) = p(x°(¢)) will satisfy

dp°(t) = [{Vp,b) + ea,] dt + £/*(Vp, o dw(t)),

where
2

0
0x‘(x)'

1 3
a;(x) = P Z aij(x)ax

[The functions appearing in the coefficients are all evaluated at x“(¢).] Making
the random time change

ds = (Vp,aVp) dt
we can write this as

(Vp,b)

(2.10) dp*(s) = Yo

+ O(&)|ds + /2 dBy(s),

where B,(s) is a Brownian motion on the s time scale. (We would also like

{Vp,aVp) to have a positive lower bound to avoid singularities in the time

change.) For (2.10) to be (essentially) linear we would like the drift in (2.10),

neglecting the &(¢), to simplify to p itself. Thus we want p(x) to satisfy
(Vp,b)

2.11 =-———— inD\C,
(2.11) P = o, avp)

with p = 0 on 4D, p > 0 inside D and {Vp, aVp) bounded below away from 0.
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The function p which we seek is not as mysterious as it might seem. Indeed
(2.11) implies that

W =p?
would be a smooth function which is 0 on D, positive inside D and satisfying
3(VW,AVW) = (VW,b)
or
(2.12) H(x,-VW(x)) =0,
where H is the Hamiltonian
H(x,p) = 3(p,a(x)p) + {p,b(x)).

Readers familiar with the large deviations theory associated with the exit
problem might recognize (2.12) as a Hamilton-Jacobi equation, similar to that
for the usual quasipotential function. Here it follows (similar to Theorem 3.1,
Chapter 4 of [14]) that W is the boundary quasipotential:

W(x) = V(x,dD)

= inf{Sor(¢): 0 < T <, o € C[0,T], ¢(0) = x, ¢(T) €D},
where S,;(¢) = [fL(¢, ¢) is the usual Wentzell-Freidlin action functional.
Thus the existence problem of the desired function p becomes that of estab-
lishing various regularity properties of W(x) = V(x, dD). It is not our purpose

here to address this issue but to proceed with the analysis of @° assuming that
these properties do hold. Specifically we assume the following.

(2.13)

HypoTHESES OF W-REGULARITY. There exists a boundary strip
D, = {x € D: dist(x,0D) < 8},
some & > 0, in which the boundary quasipotential W(x) = V(x, dD) is smooth,
satisfying (2.12), and that p(x) = yW(x) is also smooth (on 4D in particular).
In addition,
(Vp,aVp) = (VW,aVW)/4W
has a positive lower bound in D,

We will be able to verify these hypotheses using an explicit expression for W
in the examples of Section 6 below.

We should point out that the above hypotheses can only be satisfied for
cases of characteristic boundary, (1.4). Indeed, since p = 0 on 4D but ||Vp| + 0,
Vp is a nonzero multiple of n on dD. From (2.11) we have that

(Vp,b) = p{Vp,aVp) =0 ondD,

which implies (1.4). In fact, with p playing the role of distance to D, (2.11)
also implies the first order degeneracy condition (2.9) of [7] and b(s) > 0 in
(2.6) of [17]. Thus some condition along these lines is necessary for our
hypotheses to be satisfied.
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Next we need to finish our choice of the coordinate system by selecting 6.
Since p is a coordinate in the normal direction, # should be a tangential
coordinate. First parameterize dD by 6 in some nice way (arclength with
respect to some reference point, say). Since dD is one-dimensional, we can
think of # € R with periodic identification (mod S where S is the arclength of
dD). We want to extend this parameterization of dD to a function 6(x) from
D, into R (mod S) such that

(2.14) (Vp,aV8y = 0 in D,.
This is the same as saying that 6(-) should be constant along the solutions of
% =a(x)Vp(x); x(0) €4D.

Our hypotheses above can be shown to imply that D, is simply covered by
these paths, so that 8(x(¢)) = 8(x(0)) determines a C? extension of 6(x) to D,
satisfying (2.14), with [|V6|| # 0 in D, as well. Notice that (2.14) implies

w0 (D) [t )

ax ax 0 0-22(x)

where
o, = (Vp,aVp)’?%, o, = (V8,aVe)"?

are both smooth positive functions in D,,. In particular x — (p, 8) has nonvan-
ishing Jacobian in D,. Thus (p, 8) does provide a suitable coordinate system in
D,. We will use x and (p, 6) interchangeably in referring to points in D,. For
instance,

ai(x) = a,-(p,0), i = 1’2’

and x°(¢) = (p°(¢), 6°(2)).
The significance of (2.14) is that the off-diagonal elements in (2.15) are 0.
We can define a new two-dimensional Brownian motion by

[wl(t)] _ [,[0;1 0 ]aw,o)g(xe) dl).

wy(t) o] 0 o;! dx
The original system (1.2) can now be expressed as follows in our new coordi-
nate system:
(2.16) dp(t) = [{Vp,b) + ea;] dt + £' %0 dw(2),
doc(t) = [(V8,b) + ea,] dt + £'/%0, dwy(t).
The function «a,; was defined previously. Its counterpart in the #° equation is
1 9%

7= aijaxi ax;’

ay =
2.

which is also continuous in D,.
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The random time change mentioned above is
ds = ai(p*, 6°) dt.
On this time scale,

t
(2.17) Bi(s) = [[an(p*,0%) duy(t)
defines a two-dimensional Brownian motion, (B,(s), B5(s)). Equation (2.11)

says that (Vp,b) = po2. Thus in our new coordinates and on the new time
scale, (1.2) becomes

dp(s) = |p* +e (p 6°)| ds + £'/2dBy(s),
(2.18)
Vé,b
doc(s) = [%ﬁl a2 ds + 1/2—61132(3)
1 f

We have dD = {p = 0} by definition of p. We also want dC and dG to be
level sets of p, so we take
(2.19) C=D\{p<R} and G =D\ {p <po},
where 0 < p, < R are chosen so that {x: 0 < p(x) < R} ¢ D,. Thus
={p=R} and 9G = {p =p(},

and will inherit smoothness from p. We observe that the outward normal n on
3G will be n = —Vp /||Vpll, so that by (2.11),

<Vp,b) {Vp,aVp)

b,n) = = -
by = = =g = TP

on dG. Thus (2.2) is indeed satisfied for this choice of G.

Any x°(0) = x, € G corresponds to an initial p value of p°(0) = p,. The
stopping times on the s-time scale which correspond to 7} and 7§, respec-
tively, are
(2.20) of =inf{s > 0: p°(s) =0} and of = inf{s > 0: p°(s) = R}.

We will denote their infimum by
0o, r = 05 N\ Of.

For a path with o§ < of we recover 7}, by

(2.21) —["° (p o ds.

The coefficient functions in (2.18) are only well-defined for (p, 8) values
corresponding to points in D,. In particular for s > o g, (2.18) and even the
construction of B,(s) breaks down. However in the following sections we will
want to consider (2.18) for all s < ». We will accommodate this with two
conventions. First we consider all the coefficient functions appearing in (2.18)
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to be extended to all p € R, § € R by defining
o;(p,0) = 0,([plo,r,0), ai(p,0) =a,([plor9),

(2.22)
<V0,b>(P, 0) = <V0,b>([p]0,Rs 0),

where

[plo,r = (p AR) V0.

In this way the coefficient functions in (2.18) are defined for all values of p and
0, S-periodic in 6, bounded and Lipshitz continuous with o; uniformly posi-
tive. Second, instead of considering the B;(s) to be constructed from the
original w(¢) of (1.2), we assume that we are given a priori a probability space
(Q, &, P) with filtration {Z: 0 <s < «} and an adapted two-dimensional
Brownian motion (B,(s), Bo(s)). With these conventions, given any initial
values (pg, 8,), (2.18) has a unique solution pair (p°(s), 6°(s)) defined for all
0 < s < . Although these conventions affect the distribution of (p°, 6°) for
s > 0§ g, the distribution for s <og ; is unaffected. This is fine for our
purposes, since our goal is to study ’

Q*(x9, A) = P[(p°(0¢),0°(0§)) € Alog < o]

.23
(2.23) = P[(0,6°(03)) € Alog < o],

where
(p°(0),6°(0)) = (pg,0,) corresponds to x, € IG.

Throughout the remainder of this paper P, (Q, %), {#} and B,(s) will refer to
those just discussed.

3. Detailed conditional analysis of a simplified process. In this
section we will make two simplifications which allow some explicit calculations
to be used for the analysis. We will see that these simplifications do not affect
the asymptotic behavior that we are interested in.

The first simplification is to drop the &(¢) ds terms from (2.18). Theorem
4.3 will justify the omission of these terms. The idea will be to use a Girsanov
transformation, changing the P and B,(s) of Section 2 to a probability
measure P> and associated Brownian pair B; (s). The construction of P”
and B will be discussed at the end of Section 4. For purposes of this section
we consider P> to be any probability measure on (Q, %) and (B; (s), By (s))
to be any {%,} adapted two-dimensional Brownian motion with respect to P".
In particular we allow them to be s-dependent, though we do not include that
dependence in the notation. Thus the equations that we consider in this
section are

dp®(s) =p°(s)ds +&/2dBi (s),  p°(0) =po,
(3.1) (V8,b)

g
d6°(s) = —3 ds+el/20—jdﬂzl>($), 6°(0) = 6,.
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We want to understand the asymptotic (e | 0) behavior of (3.1) when consid-
ered with respect to the conditional probability
P[-]1=P"[-lo§ < of].

The stopping times remain as defined in (2.20).

The second simplification is to condition only on {o§ < «} rather than the
more restrictive event {¢§ < o5}. Proposition 3.2 will imply that this simplifi-
cation does not affect the asymptotic behavior either. Following this we want
to consider (3.1) with respect to

P[] =P"[‘lo§ < .
Define
(3.2) ho(y) = P [o§ < =].
We can calculate k_ explicitly by solving
£
ghe(y) +ok(y) =0, h(0) =1,  h(+x)=0.
The change of variables x = ¢~ /2y eliminates ¢ from the equation:
$h'(x) + xh'(x) = 0.

The standard complementary error function

3.3 h fi 2 ["eg
(3.3) (x)——erc(x)——‘/:;fxe u
gives the desired solution:

(34) he(y) = h(e™'%).

We can perform the conditioning on ¢§ < « rather explicitly in terms of 2
(this is the A-transform operation of Doob):

PA] = P*[A;08 < | /h,(py) = B”[L.; Al

€

where
dpP° Los <eo
~dP®  h,(po)

(3.5) L

Notice that
h(p°(s A 03))
hs(pO)

is a P”-martingale. Applying It6’s lemma we have, for finite s < o,

(3.6) L=E°[LlF] =

’

e[ N 2 1)
dlog(h,(p°(s))) = —g[h—s(pE(S))] ds +£'/2 -~ dBy (s).
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Thus we can write {, as an exponential P ”-martingale:

’

s a"hlg € rshof hg 2
(3.7 {, = exp el/zfo " °h— dp® — —f " "(h—) ds].

Since we know E®[{ ] = 1, our next result follows from the usual Girsanov
theorem.

ProposITION 3.1. Define B°(s) = (B5(s), B5(s)), where B5(s) = By (s) is
unchanged from (3.1) and

s/\oﬁhlg
Bi(s) = Bf (s) = &¥/2 [T 2= (p°(s)) d.

Then B° is a two-dimensional Brownian motion with respect to P°. (3.1) is
described by

’

kb
dp(s) = [p°(s) + &3~ (p°(s))Locoy|ds + e /2 dpi(s),

3.8
(3.8) . {Vo,b) 12 %2 3
do*(s) = — ds +¢ (r_dﬁl (s),

1 1

with respect to P°.

The effect of conditioning on of < » is therefore to replace the drift
coefficient in the first equation of (3.1) with the conditional drift,

b(y) =y +e3-(¥)
for s < of. The 6° equation remains unchanged. Thus for s < o, (3.8) is
dp°(s) = b (p°) ds + e/2dBi(s),
(3.9) (6, b)

.
do°(s) = —5—ds + /2 0—2dﬁg(s).
1 1

To see the structure of b more clearly, define d* by

x+w= -x —d*(x)
h(x) ’
that is,
h(x) e
d*(x) = — - 2x = ——— — 2x.

h(x) f:e_32 ds
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Then
B =y +eni?) Ly g g KT
(3.10) K.(y) h(e™'/%y)
—(y + £2d* (7 2y)).
The inequalities [1] (7.1.13) tell us that
—H(x)

x+Vx2+4/7 < 7(2) <x+Vx2+2.

This means that
0<Vx?+4/m —x <d*(x) <Vx®’+2 —x,
and so

(8.11) 0 <vVy?+4de/m —y <e'2d*(e2y) < Vy® + 2e —y.

Notice that £!/2d*(¢~1/2y) is &(¢) uniformly on any compact subset of (0, x),
but not at 0. Indeed, £/2d*(0) = £/22/ V&, which is only &(¢'/2). The
leftmost inequality in (3.11) gives us a lower bound:

(3.12) bo(y) < —y allye[0,x).
Using this in (3.10) yields

h’€
(3.13) - 871: < —2b°.
We also have the following uniform approximations:
(3.14) b°(y) = -y + &(¢) oncompacts C (0,x),
(3.15) b°(y) = —y + O(&"?) oncompacts C [0, ).

According to (3.10), b.° is the reversal of the p° drift from (3.1) plus a
boundary layer correction given by the d* term. Theorem 4.3 below will say
that &(¢) perturbations to the drift are asymptotically negligible. The d* term
is #(¢) away from the boundary, but only £(¢'/%) in the boundary layer and
not negligible. Indeed it turns out that the distribution of of for the diffusion

dy*(s) = —y°(s)ds + /2dB (s);  ¥°(0) = po,
is described asymptotically by
0% — log(poe/?) = %,

where % is a random variable with density (2/ Vrm)exp(—s — e~2%) =
(1/ v )e*q(s). Thus dropping the £/2d*(s~'/2y) from b2 produces a different
asymptotic limit law for o§ than that given by Proposition 3.3 below.

Next we want to establish the asymptotic equivalence of P> and P°. Since
{o¢ <o} c{of <} U {of = «} and P"[of = x] = 0, we have that P> < P°
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and
dP® 1.

of<oh

dP° ~ P°[of <of]

Using the strong Markov property,
1 - P°[o§ < of] = P°[af < 0of]
P [of < o§ < ]
P®[o§ < o]

P o5 < =]
- Pp';[a(;’ < 00]
h(e"'?R)
= h(£—1/2p0) .

Now, it is clear from the formula e*’h(x) = [fe **~"*dv that e*’h(x) is
decreasing. This implies that

0< —h(E—I/ZR) < e~ (BR*-p})/e
T k(%) T
Hence
(3.16) P°la§ < og] — 1.
It follows that for any r > 1,
. aP*
E°ll1 - 3P 0.

This proves the following result which will justify our assertion that condition-
ing on {o§ < =} instead of {o§ < o} does not affect the ¢ | 0 asymptotics.

ProposiTION 3.2. P> < P°and, foranyr > 1,

r
>

as ¢£]0.
We turn now to the conditional distribution of o.

ProposITION 3.3. The distribution of of with respect to either P® or P° is
such that

o5 —log(e™"%py) = € ase |0,
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where ¢ is a random variable with density given by

q(s) = Qe @s+e™™)

This was proven in [8], where Proposition 3.1 is the case of P° and
Proposition 3.2 implies that of P>. (Note that B in [8] has the value 1 here
and our p, had the value ; there; so y, = ¢ '/%, in the propositions there.)
Also note that the assertion for P> follows from that for P° using Proposition
3.2 above.

Next we want to establish some bounds on exponential moments of o and
o, g- For this purpose we are interested in positive solutions to

€
(3.17) —2—u’; +yu', + Au, = 0.

The change of variable x = ¢~ '/%y, u _(y) = u(x) eliminates ¢ from the equa-
tion, yielding

(3.18) W+ xu + Au = 0.

The transformation

(3.19) u(x) = e 2w(V2x)

now puts the equation in the form

(3.20) w'(x) — (22 +a)w(x) =0, a=73—-A.

The solutions of this are parabolic cylinder functions, as described in Chapter
19 of [1]. For A < 1 the standard solution U(a, x) has a closed form expression
given in [1] (19.5.3). Taking

wy(x) = 2¢7Y21(1 - A)U(a, x)
leads to the following solution of (3.18):
(3.21) uy(x) = [ s ds.
0
We note that u, is everywhere positive. We will need its value at 0:

1l »
fv—(A+1)/Ze—vdv

u(0) = j;) she " ds = 3 A

1F 1-2
)

The second standard solution of (3.20) is
wy(x) = V(a,x).

(3.22)

From [1] (19.3.6),
9(/Da+1/D gin(m(2 — Lo
(G- 1)

wy(0) = F(% — %a)
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for |A| < 1. The asymptotic formula [1] (19.8.1),

2
(8.23) wy(x) ~ V — e¥ /4= /(1 + O(x72)) asx - +,
mw

implies that w,(x) > 0 for all large x. Thus if w,(x) < 0 for some x > 0, then
w, would have at least two distinct positive zeros and the Sturm comparison
theorem [4] would imply that w; also has a positive zero, which it does not.
Thus wy(x) > 0 for all x > 0. If w,y(x*) = 0 for some x* > 0, then wyH(x*) =0
as well, implying w, = 0 which is also false. Thus wy(x) > 0 for all x > 0,
provided |A| < 1. The solution of (3.18) related to w, by (3.19) will be denoted
u,. It follows from (3.23) that

(3.24) uy(x) ~ ‘/g(\/gx)_'\ as x — +o.

With these facts we proceed to establish the desired exponential moments.

ProposiTION 3.4. Forany 0 <A <1,

limsupE " [e*6.r] < o,
el0

ProoF. Let u . (y) = uy(e"/2y). By (3.17), e**u (p*(s)) is a nonnegative
martingale. Using Fatou’s lemma,
E®[e*br - u (p*(o5 r))]

< iminfE® [eX8.2" Dy (p*(0¢ g A T))| = u.(po)-

T >
Therefore, since p*(o§ ;) = 0 or R,
ue(pO)
u,(0) Au(R)’

Now u,0) = wy(0) > 0 and is independent of e. By (3.24), u(R) =
uy(e7?R) > 0 as ¢l0 and so u,0) A u,(R)=u,(R) for all sufficiently
small e. Thus

Eb[e)\a&g] <

ua(pO)
u(R)

_ u2(£_1/2p0)
" uy(e”?R)

—A
- (%) ase |0,

the last line following from (3.24). This proves the proposition. O

Eb[e)\a&R]

IA
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CoroLLARY 3.5. For any constant ¢ > 0,
E”[e*6r] > 1 and E"[eosr] >0 aselO.
Proor. Let K =limsup E>[e?%2/2). Using the inequality E"[e*°] <
E®[ePee'/P 1 < p < o, with 1/p = 2¢c gives
1 < E°[e*obr] < B> [eb.8/2]%
< (K+1)*°  [for all sufficiently small ¢]

- 1.

This proves the first assertion. For the second,

0 <E”[eo§ g] <EP[ebr—1] - 0. O

ProposiTioN 3.6. For any constant ¢ > 0,

lim supE°[e°"5/ ‘°g(£_1/2)] < oo,
el0

ProoF. Let A = c/log(e~'/2). Then A — 0 as ¢ | 0. In particular A < 1 for
all ¢ sufficiently small. Take u (y) = u,(¢ ~'/2y). Using Fatou’s lemma on the
martingale e**u (p(s)),

E® [e*u,(p*(0%)); 06 < @]

< UiminfE® [eX6" Dy (p*(a§ A T))| = u.(po)-

T >
Therefore
E®[e*b; 06 < o] <u,(po)/u.(0),
and so
1 uw,
(3.25) E°[e*6] < (po)

u,(0) h.(po)

By (3.22), 1 (0) = u4(0) = 3T((1 — 1)/2) > I'(3)/2 > 0 as ¢ | 0. For the other
term in (3.25), check that

u(x)  Vr [FsTre T s

h(x) 2 faoe—s2—2sx ds

Vo A[[&"v‘"e_("/")ze_” dv]
—x .

2 fffe‘("/")ze“% dv

[

As x »> o and A = ¢/log(e¢~1/%) - 0 (simultaneously) the ratio of integrals in
the last expression above converges to 1. With x, = ¢ '/%, in particular we
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have

u.(po) uq(xo) - v

hip)  h(xg) 2 0
s

R
Using this in (8.25) proves the proposition. O

Vo
Tec as £ 0.

CoroLLARY 3.7. For any constant ¢, E°[e*“*§] > 1 and E°[eaf] —> 0 as
e }0.

Proor. This is the same as Corollary 3.5, using 1/p = ¢ log(¢ ~1/2). O

The last issue that we want to consider in this section is the behavior of
integrals such as

(3.26) A “f(p*,0%) ds,

when considered with respect to P°. It follows from (3.9) and (3.14) that on
bounded time intervals (p?, 8°) converges to (p*, 6*), where

p*(s) = —p*(s),  p*(0) =py,
(V6,b)
(6*(s)),  6%(0) = 6.

2
41
To be precise, it follows that for any T < o,

(327) sup |(5*(1),0°()) = (p*(),0%())| =0 in P*-probabilty.
0,

Because 0§ — «, we anticipate that (3.26) approaches

(3.28) j:f(p*, 6*) ds.

Since p*(s) = e~ %p,, (3.28) will be finite if f(p, ) = &(p) as p — 0, uniformly
in 6.

6*(s) =

ProposiTION 3.8. Suppose f(p,0) is a continuous function of p > 0 and
0 € R, periodic in 6, with f(p,0) = &(p) as p — 0, uniformly in 0. Then

[ F (ot 0%y ds > [ F(p*,6%) ds
0 0
in P°-probability as € | 0.

Proor. Consider the stopping time o5 = inf{s > 0: p°(s) < 8} for any 0 <
8 < py- It follows from (3.27) that, in probability,

of > 5, = log(p,/8) and j:;f(pa,Os) ds — j:'sf(p*,O*) ds.
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From our hypotheses,
f f(p*,0%)ds
S5

can be made arbitrarily small by choosing & sufficiently small. We need to

show that, for any given 8’ > 0, we can make

(3.29) lim supP°[ > &
el0

J7f(p%,6%) ds
T5

arbitrarily small by choosing 8 sufficiently small.
The hypotheses imply that for some constant B and all 0 < p < R,

| f(p,6)| < Bp.
Therefore

> 8| < P°log <o§] +P° .

(3.30) P°[

[, 0) ds
Os

Bft:p8 ds > &

Because of (3.16) we can concentrate on the last term. Using (3.12) and (3.9),
we have

[7ptds < = ["b2(p%) ds
o5 o5

(of

(3.31) = “[Ps("é) - p(05) + & 5dl31°(s)]

of
=52 [Tdpe(s).
Os

Since we know that of has finite second moment, E° [ ;;,5 dB;’1 = 0 and so,
independently of &,

E;[[‘fps(s) ds| < 6.
0'8 |

Consequently,

ol ] B
P°[Bf:ps ds > ¥ | < =9,
Os i

which — 0 as 8 — 0 uniformly in &. This establishes what we wanted for
(3.29) and completes the proof. O

We comment that because of (8.16) we do not need f to be defined for all
p > 0. Instead f could be a continuous function on D \ C expressed in our
(p,0) coordinates and so defined only for 0 < p < R. Then we could replace [§5
with [¢6% in the proposition, with the same conclusion. This is the setting for
the following revision, which we will use in Section 5. The #/,/h, essentially
provides the needed &(p) factor as p — 0.
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ProprosiTioN 3.9. Suppose ¢: D \ C —» R is a bounded continuous func-
tion. Then

sf"‘ikcﬁ(pe 6’S)E(pe) ds - —2f°°¢>(p* 8*)p* ds
0 " h, 0 ’
in P°-probability as ¢ | 0.

Proor. From (3.10) and (3.11), we know that

’

€ ;L—s (p) @ —2p uniformly on compacts.

£

We repeat the reasoning of the preceding proof:
al o5 h,e
e[ g (pt, 69 2 (p) ds = 2 [ ¢(p*,6%)p* ds
0 . 0
in P°-probability. If |¢| < B, then in place of the second term of (3.30) we get

a5 hls & ’
P[B[%E —sz(p)ds>a

By (3.13),
["5 —gﬁ’i( ) ds < —2["% °(p®) ds
o5 he P B o5 e 1P ’
from which point we proceed as in (3.31). O

4. Asymptotically negligible perturbations. The situation described
by Proposition 3.2 will occur several times in the remainder of our discussion.
In this section we focus on that notion, establishing some notation and
properties.

DEFINITION. Suppose P; and P, are both probability measures on (Q, &),
depending on the parameter ¢ > 0. If for all sufficiently small ¢, P, < P, and,
for every r > 1,

Ell— -1
' dP,

]—*0 asel0,

then we say P, is asymptotically replaceable by P; and write

P,
Thus Proposition 3.2 simply says P " <L P°. The following lemmas describe
some simple properties of this notion. The first is a transitive property.

LemMa 4.1. Suppose that P,, P, and P; are probability measures on
(Q, F) with P, < P, and P, < P,. Then P, < P,.
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Proor. Write

dpP, dP,
&= d_Pl and {, = d_Pz
Then
dP,
ap, = {a4;.
Since

LH—1=(L-D4L+ (6L -1)
and we know that E,[|{; — 1|"] - 0, it is enough to show that

(4.1) E\[|(& - Dal] - 0.

To see this,
E[|(& - Dal] = Bl - 1) 00
< El[lgl - 1|2r 1]1/2 . El[(gl)Zr—l

_ 2
= Byflc, - 1) B[ ()"
This implies (4.1) because Ej[|;, — 1/*"] » 0 and E|[({)?¥ ']> 1. D

]1/2

]1/2

The next lemma says that asymptotic replacements preserve exponential
moment results such as Corollaries 3.5 and 3.7.

LEMMA 4.2. Suppose P, d P, are probability measures and o° is a stop-
ping time such that as ¢ |0,

E[e**'] > 1 foreveryc> 0.

Then
E,[e**""] > 1 foreveryc > 0.
Proor.
E [esco'”] - E [esca”] =E [eeca‘(& — 1)]
2 1 1 dPl
1/2
dP 2
£2co’® 172 2
sEl[eZ ] El d_Pl_l - 0. O

Next we want to consider conditions which imply P, P P, for situations
where dP,/dP, is a Girsanov density. Suppose that for each ¢ > 0, we have a
probability measure P, on (Q, %), an {%,}-adapted Brownian motion B8'(s), a
progressively measurable process #(s) satisfying a uniform bound in s and &:

(4.2) lg(s)| <K as.,
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and a stopping time o° with the property that, for each constant ¢ > 0,
(4.3) E[e**"'1 > 1 aselO0.
Let

@0 aw) = e[ [ i) ap's) - 5 [ u(o) )

be the exponential martingale which would occur as the Girsanov density
associated with adding the &(¢) perturbation ey(s)1;_,¢ ds to an equation

such as (3.1). We begin by recalling the following result (see [16], Theorem 6.1
and the Note following its proof):

THE Novikov CONDITION. Suppose ¢(s) is progressively measurable and o
is a stopping time (finite a.s.) for which

(4.5) El[exp(%La¢(s)2 ds)
Then

< o,

tAo tAo
to = e [“0(s) dB(s) 4 [0(5)" s
0 0
is a uniformly integrable martingale. In particular E [{ ] = 1.

In our case ¢(s) = £/2y(s), and (4.5) is satisfied because
S P
27

for all sufficiently small &, by our hypothesis (4.3) above. Thus, for all
sufficiently small ¢, ,() is a uniformly integrable martingale and
(4.6) E\[{,(¥)] = 1.

Thus ¢, «(¢) is the density of a probability measure P, on (Q, %) with
dP,/dP, = {, (). We can now prove our theorem.

THEOREM 4.3. With the above hypotheses, (4.4) and (4.3) in particular,
P,[A] = [,¢, () AP, defines a probability measure on (Q, &) for which

P,&p,.
Proor. It follows from (4.3) that E [¢0°] — 0. Therefore

2
<g—of—>0
2

€ ot 2
5[ () ds
in probability and

El{(al/z fo"lp dw)z] = El[efo"‘z/;(s)“’ ds] < E[¢K%*] - 0.
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These facts imply that
{oe(¥) = 1

in probability. It suffices to establish uniform integrability of (&, () — 1. For
this it is sufficient to show that E,[{,.(¢)"] remains bounded as ¢ | 0, for each
r > 1. Now one may check that

r € ,o°¢
L) = L,e(2ry)' /2 - exp(afo (2r® - ")llf(s)zdS).
Using the Cauchy-Schwarz inequality gives

. 1/2
E\[L,(¥)"] < E\[L,-(2ry)]"2- El[exp(a[o" (2r? - r)y(s)? ds)] .

The first factor on the right is just 1, by the same reasoning as (4.6). Using the
assumed bound on ¢ for the second factor, (4.3) implies
El[{a-‘(ll’)r] < EI[ee(2r2+r)K2¢n]1/2 S,

completing the proof. O

We want next to apply these results to justify our first simplification in
Section 2: dropping the &(¢) drift terms from (2.18). Let B"(s) =
(B1 (s), Bs (s)) be a two-dimensional Brownian motion with respect to some
probability measure P ”. [Initially we assume no connection with the P and B;
of (2.18).] With respect to these, let p°(s), 8°(s) be the solutions of (3.1).
According to Corollary 3.5,

E® [esca-&g] -1
for any ¢ > 0. Thus we can apply Theorem 4.3 to E®> with 05 r Playing the

role of o°. We want to use a Girsanov change of measure to transform (3.1)
into (2.18). Construct P and g, from P" and B/ via the following formulas:

dpP
= =@ @
(4.7) dPl> _{cré’k_{cr&kgaé’k1
where
2
£ a £ € a
@O 1/2 [P0R1 . n¢ > _ 2 [oor[ Z1
o8 n eXp(s j; 0'12(p ,0°)dBy 2/0 (0_12) ds),
2
'3 a £ € a
2 172 (%o.r_"1 £ 95y dBY — — %0, R 2 ds |-
ot eXp(e A alvz(p’ ) dB3 2f0 (0102 s |;
and

I3 al
§) =B (s) — /2 [TNOR Ly ge ds,
Bi(s) = B (s) —&¥/2 [1"7 025 (o1, 0%)
ay
010,

Ba(s) = BF (5) = & [*"*0" 27, 6%) ds.
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The results of this section imply that
(4.8) ppe,

Since we have only formulated Theorem 4.3 for a single Brownian motion we
need to carry this out in two stages. First construct the intermediate probabil-
ity P* with dP*/dP” = {{) . From Theorem 4.3 and Lemma 4.2, we have

P* ©P" and E*[esbx] > 1 allc>0.

Since B; remains a Brownian motion with respect to P*, we can now apply
Theorem 4.3 to P* with {2 to get

p & px,
Lemma 4.1 now implies (4.8) and
(4.9) E[e®?6r] > 1

follows from Lemma 4.2. With respect to the P and B; thus constructed,
(p®, 0°) satisfies (2.18).

Actually the preceding reasoning is backwards. We really want to start with
the P, B, that we assumed for (2.18) and construct P, B from them.
However to do this we need to know (4.9) initially. Note that (4.9) depends
only on the distribution of of , as determined by (2.18), which does nrot
depend on what Brownian motion is used in place of B8”. Thus we can start
with an arbitrary P” and 87 and argue as above to establish (4.9). With (4.9)
now in hand we can discard our initial choice of P”, B and proceed to
construct P” and B from the P and B; of (2.18) by means of a Girsanov
transformation (the inverse of the one used above) which turns (2.18) into
(3.1). The above formulas remain valid and serve to recover the original P, B,
from the newly constructed P>, B”. In the sequel, P>, B refer to those
constructed in this way.

5. Conditional exit asymptotics. We are now ready to address the
issues necessary for a successful application of the conditional approach to the
exit problem described in Section 2. Specifically, we want to establish (2.6) and
describe the asymptotic behavior of the conditional exit kernel @°(-, - ) of (2.3).

Let P denote the underlying probability measure with respect to which our
original process (p°, 6°) is described by (2.18). Define P to be the correspond-
ing conditional probability measure on {o§ < o5}

P[A] = P[Alo¢ < of].
With x, = (pg, 8,) = (p°(0), 6°(0)), we have from (2.23):
(5.1) Q°(x,,A) = P[(0,6°(03)) € A], ACIG.

Equations (2.18) describe (p*, 6°) under P. Our goal is to describe the distribu-
tion of of and the dynamics of 6°(s), s < o§, when considered subject to P.
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The following diagram is helpful in describing the organization of our argu-
ment.

petpr —p°
(5.2)
TH <751 105 <og 105 <o
psLpr Elp Elpe

The arrows represent absolute continuity of probability measures. The
notation = 1 over an arrow stands for asymptotic replacement as defined as in
Section 4. P" is the probability measure defined at the end of Section 4, with
respect to which (p°, 6°) is described by (3.1) instead of (2.18). Thus the arrow
from P" to P is what we established in (4.8).

The downward arrows correspond to conditioning on the indicated events.
Thus, as already defined in Section 4,

P*[A] = P*[Qlog < o]
and
P°[A] = PP [Alo¢ < «].

We have a good understanding of the behavior of p° under P° from Proposi-
tions 3.1 and 3.3. The arrow from P° to P" is Proposition 3.2. The measure
P* will be defined at the end of this section. It gives the cleanest representa-
tion of the conditioned process in the original x-variables; see (5.11).

The arrow from P® to P is Theorem 5.4 below. Its significance is that we
can substitute P> for P in (5.1), for purposes of determining the asymptotic
behavior of @¢. Consequently, P° and P*® are also acceptable replacements.
Thus either (5.9), (5.10) or (5.11), whichever is more convenient, can be used
to describe the asymptotic behavior of @¢. This conclusion, stated for P° in
Theorem 5.6 below, has been the goal of all our work.

The first theorem of this section, Theorem 5.3, addresses (2.6). To under-
stand its source, begin with the observation that

Ploi <of] =E® [;,sak;ag < a,;],
where ;¢  is the density dP/dP > as given in (4.7). For any A € & we have
P[A]=E" [1A§05,R;ag <og|/E” [{a&R;ag < o'f;,] = E'"[IA{—],

where
7= ?f_"o_f_f__
[0 1]
In other words,
_ dP
(5.3) =B

The fact behind both theorems of this section is the following.
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PropPosSITION 5.1. Let g be the function defined on G by
g(xo) = exp(—szp*(S) - 22 (p*,6%) ds |,
0 oy
where
*(s) = —p*(s),
(Ve,b)

0*(3) = o2 (p*,o*),
1

with x, = (p*(0),8%(0)) = (py, 8,). Then, foranyr > 1,
EO[]{a&R —g(xo)H -0 aselO.

Moreover this convergence is uniform with respect to x°(0) = x, € 4G.

Notice that p*(s) = py,e~®. Since @,;/02 is bounded and continuous, it
follows that g is well-defined, continuous and positive. Before proving the
proposition, we make some observations and note some consequences. First,
Proposition 3.2 (in which there is no 6,-dependence) and an argument analo-
gous to that for Lemma 4.1 yield the following corollary.

COROLLARY 5.2. Foreachr > 1,
E® []{05% - g(xo)lr] -0 aselO,
uniformly over x, € G. In particular,
E® [505,,3] - g(xo)

uniformly over 4G.
Next we have the result which justifies (2.6).

THEOREM 5.3. The function g of the preceding lemma is positive and
continuous over dG and

P[5 <7¢l

3 _)g(xO)
Y

uniformly over x, € 3G, where y* = h (p,) and h, is as in (3.4).

Proor. Having already noted the properties of g, we only need consider
the convergence

Pxo[rf) <1¢] = Plo§ < of]
(5.4) =E"[{os 506 <08 =E" Lo ,] P05 < 0]

= E"[{y,] - Plog < o] P [o5 < =].
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Now P*[o§ < »] = h (py) = ¥°, from (3.2). We also have from (3.16) that
P°lo§ <of] = 1,

and this is independent of x, € dG, since the first equation of (3.8) does not
involve 6°. The first factor in (5.4) converges uniformly to g(x,) by Corollary
5.2. This proves the theorem. O

The function g has a natural expression in the original space and time
variables x and ¢. To see this, return to the original time scale with
ds = ai(p*,0%) dt.
In this setting (2.11) implies

§5() = —p*a(p*, 6%)
(5.5) = —(Vp,b)(p*, 6%),

6%(t) = (V8,b)(p*,6*)
and

g(xy) = exp(—Z/;)wp*(t)al(p*,B*) dt).

Notice that (5.5) are the equations for the extremals associated with the
boundary quasipotential W = p? of (2.13). In the original x-coordinates the
extremals solve
% = H,(x*, -VW(x*))
(5.6) =b(x*) — aVW(x™)
=b(x*) — 2p(x*)aVp(x™).

When (2.11) and (2.14) are used to convert this to (p, 8)-coordinates, we obtain
(5.5):

6* = (Vo,b) — 2p{V0,aVp) = (V6,b).

The integrand in the exponent for g can be expressed in terms of W, evaluated
along the extremal x*, using (p*, 6*) = (p(x*), 8(x*)) and W = p%

1 2p %
2p*(t)ay(p*, 6%) = 9 Z aijax.ax.(x*)
i 0%
1 2w
=2 (2*) — o(x*),

2 ~ %55, ox,
where by (2.12) and (5.6),
9 (VW,aVW) (VW,b — aVW) 1 (VW, %*)

71 W oW 2 W
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Thus we can write

1 2| VW, 2*) PwW
g(xg) = eXP(—gf [——vvx— + Zaij (x*)] dt
0

dx; 0x;

)

where x* is the extremal (5.6) starting at x,,.
We return now to the proof of the proposition itself.

Proor oF ProposITION 5.1. It suffices to show that {,. = — g in probability
and that for any r > 0, '

(5.7) lim supE°[({c,5 R)r] < o,
el0 ’

[This implies uniformly integrability of I{,; . — g(x,)| to any power.] Using the
factorization (4.7) it suffices to prove '

=g md 1,1
in P°-probability and, for each of { = 1,2,
lim sup E°[(§i,05 R)r] < o,

According to Proposition 3.1, B; = B,° remains a Brownian motion under P°.
Thus Theorem 4.3 implies what we need for {& .. We concentrate therefore on
) ’
{05,13'
Define ¢ to be the function

a
¢(p,0) = 0—12(;0,0)-

Our hypotheses and extended definitions (2.22) imply that this is bounded and
continuous. Let K be a bound:

l¢| < K.
Let ¢°(s) be the process obtained by evaluating ¢ along the path of (p°, 6°):
#°(s) = &(p°(s),0°(s))-

We can rewrite {{p  using Proposition 3.1:

{8 = eXP(sl/2 0"5"*4»8 dpi - % A 05'R¢'5(8)2ds)
(5.8) ) o o
— 1/2 [90.R ¢ o = [90,R, ¢ O0,R " €/ ¢

exp(s [P - 5 [ () ds + e f ¢h€(,,)ds).

Since #, < 0 and —K < ¢°, we have

K K K,
ed - < - eh—.

€ €



CONDITIONAL EXITS 1413
Using (3.13),

o,s h’E o.e °
ejo °’R¢€h—£ds < —2K/0 b2 (p.(s)) ds

— ~2K| 5" (03 ) ~7(0) - 2 ;.
0
Therefore
log({t%,)n) <el/? /(;GO,R((bs + 2K) dp;
€ as' & 2 £ &
_EL 0R(¢ ) ds — 2K(P ("o,R) _Po)
3 € (o
= V2 ["R(¢" + 2K) dB; — = ["F(¢7 + 2K)? ds
0 2Jy
E o & N
+ 5/0 ""(46°K + 4K?)ds — 2K (p*(§ z) — po)
< e/2 [T(4° + 2K) dp;
0
E gt
-5 (e + 2K)*ds + (4K %05  + 2Kp,).
0
This gives the inequality
gé"li)R < §°’5,R exp(84K20.6:,R)exp(2Kp0),
where
T6,R, ¢ o & rosr, . 2
o n = exp(sl/zfo0 (¢° + 2K)dp; — 5/00 (¢° + 2K) ds).
For any r > 0,

B(20,) ] = 00 B (5, | Belexp(e8ri o )] .

€0, R

The third factor of this — 1 as ¢ 0, by Corollary 3.7. We can apply Theorem
4.3 to see that the second factor also — 1. This establishes (5.7).

We now look at the terms of £ from (5.8) individually to see that
(P — g in P°-probability. First, '

90,R
€ ,ot
5]0 *(¢°)?ds - 0.

This follows from Corollary 3.7 and
2
<e& 70’& R-

€ af R
5[5 as



1414 M. V. DAY

For the first term of (5.8),
2
E°[(£1/2 fao’R¢£ dB1°) ] = E°[efao’R(¢€)2 ds] -0
0 0
by Corollary 3.7 again, and so
gl/? /06'}2(755 dp, -0
0
in probability as well. Finally, it follows from Proposition 3.9 that
. 14 o
90,R e_¢ £} d. _ * %) k%

o["" (1) ds 2[ (o, 6%)p* ds
in P°-probability. Putting these together then, we have

(R eXP[O +0 - 2f0 p*o(p*,0%) dS] =g

in PCprobability as claimed.

The uniformity of the convergence in the lemma follows from the observa-
tion that the above arguments all hold if x°(0) is not fixed but is allowed to
depend on e: x°(0) = x§ - x,. O

THEOREM 5.4. P is asymptotically replaceable by P" , that is,
P& pe,
Proor. This is immediate from Corollary 5.2 and (5.3):

— - ED |{¢,-ER_E‘> {a-ger
Eb[lg_llr]= [ OE,—D[{GI]:",]]—)O' o

Proposition 3.2 and Lemma 4.1 result in the following.

COROLLARY 5.5. P & pe, uniformly over (p,, 8,) € 9G.

Consider now the significance of this for the approach to the exit problem
discussed in Section 2, (2.9) in particular. The corollary says that, uniformly
over x, = (p,, 6,) € 3C,

Q°(x9, A) — P, 4 [(0,6°(0§)) €A] >0 ase 0.

[Recall that p*(0) = p, is fixed for % € dC.] Thus Q¢ is given asymptotically by
the P} , -distribution of 9°(oy¢).

THEOREM 5.6. Let (B,%(s), B(s)) be a pair of independent Brownian mo-
tions with respect to a probability measure P°. For a given %o = (py, 0,) € 0G
(using the coordinate system of Section 2), let (p*(s), 8(s)) solve

dp(s) = = [p* + /2 d*(e7/%")| ds + €/2dB(s);  p(0) = py,

59 (V8,b)
(5.9) doc(s) = 5— ds + g'/2 2dﬁ'g(s); 6°(0) = 6,,
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and og be the first hitting time of 0 by p°(s). The conditional exit kernel Q¢ is
given asymptotically by

Q“ (%o, A) = G, 4,)[0°(0§) € A] +0(1),

where o(1) > 0 uniformly over x, = (pg, 8,) € G as ¢ | 0. Moreover the distri-
bution of o does not depend on 0, and is given asymptotically by Proposition
3.3 above.

We can get another representation for @° by converting back to the original
t-time scale. This results in

Q(xy, A) = P°[6°(7p) € A] + 0(1),
with
dp(2) = [—(Vp,b) + 2 d*(e7/%%)02] dt + £'/%0, dw’ (t),
dos(t) = (V8,b) dt + £/ %0, dwi(t).

The o; = g;,(p®, 6°) are still as in (2.15) with the extensions of (2.22) and the
¢-Brownian motions w; (¢) are related to the B,°(s) just as in (2.17). Because
(p*, 6°) are not legitimate as the coordinates of a point x° if p* > R, we must
take (2.21) as the definition of 7§, here. The asymptotic distribution of 75 is
not as clean now because the behavior of 6° enters into (2.21).

Expressing this in the original x coordinate system introduces &(¢) drift
terms again. These can be dropped with another application of Theorem 4.3,
resulting in another probability measure P°®, with P° Pk P*® and a two-
dimensional P°-Brownian motion w®(¢) such that

Q°(xy,A) = P;o[xe(ff,) EA;TEH < ‘ré-] + 0(1),

(5.10)

uniformly over x, € 4G, where
dx®(2) = [b(x*) — aVW(x°) — ae'/2d* (s "/ %p(x*))Vp]| dt
+ &' %0 (x%) dw®(¢)

for t <7 A 7¢. Here o is the original 2 X 2 matrix function from (1.2).
Including the restriction 7, < & keeps the process in the range for which
(p®, 8°) can be interpreted as coordinates of x¢ € D \ C. Now 7p and 7§ can
be interpreted geometrically as in (1.3) and (2.1). The difference between
{rp <7} ={o§ > of} and {r§ < o} = {0¢ < =} is negligible by (3.16).

It is interesting to compare (5.11) with the original (1.2). We see that the
drift b has been replaced by the vector field for the extremals (5.6) plus the
boundary layer correction involving d*. Any of the formulations (5.9), (5.10)
or (5.11) give the correct asymptotic behavior of @Q°. We will use the P°
representation (5.9) for the examples in Section 6. For those examples, the 6°
equation will completely uncouple from the p° equation. This reduces the
study of @° to properties of a one-dimensional diffusion 6¢ on the appropriate
time scale.

(5.11)
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6. A class of examples. We turn our attention now to a special class of
examples for which the approach of the preceding sections can be worked out
more explicitly. These are essentially the examples from [8], slightly general-
ized. The difference is that in [8] the examples were not actually of the form
(1.2), so that the &(¢) contributions to the drift in (2.16) did not occur. Here
the examples are actually of the form (1.2). We will apply the results of the
preceding sections to reduce these examples to the point that the discussion of
Sections 4 and 5 of [8] applies to them; see (6.6) below.

We take D to be the unit disk

D = {x € R?% |x| < 1}.
Let the diffusion coefficient of (1.2) be the identity
o()=1.
Assume that there exists a boundary strip
Dy={x:1-86<Ix| <1} forsome0 <48 <1,

in which drift b can be expressed as follows:

6.1 b(x) = by(r) L + r-2by(6) 2
(6.1) (%) = 1("); +r7%bo( )5-
Here (r, 8) are the usual polar coordinates, so that

ox x ix 0 -1
(6.2) CTI:_M’ %—[1 0 ]x.

In other words,
b i b i 2b,(6 i
C— = — +r —.
oz~ odr) g +re(0) 5

The functions b, and b, are assumed to be smooth, with b,(8) being 2-peri-
odic. In addition to the stability of origin for (1.1) in D, we assume

b(r) <0 forr<i1
and that there exists a constant B > 0 so that
(6.3) b(r)~(r—1)B asrtl.

In particular, (6.3) implies that b, = 0 on dD = {r = 1}, so that this is a
characteristic boundary problem, that is, (1.4) holds.

The fact that the radial component b, is independent of 6 allows us to
verify the W-regularity hypotheses of Section 2 by explicit calculation. Observe
that

W(r) = -2 by(x) du

solves H(x, —VW(x)) = 3(W'(r))? — W' (r)b(r) = 0, with W(1) =0 and
W(r) > 0for 1 — 6 <r < 1. It follows that

wW(r) ~B(1 - r)2 asrtl,
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and so

p(r) =W(r)?~VyB(1-r) asrtl.
It is easy to check that b, € C? implies p is C2in1 — 8 < r < 1 with
—b1(1)

p(1) = -VB and p"(1) = 3B

In particular,

af = (Vp,a%) = (p'(r))”
is uniformly positive in D,, as desired. Note that on dD = {p = 0} we have
(6.4) o =B.
We also note that the lack of §-dependence in b, implies that the function g of
(2.6) is constant.

We pick 0 < p, <R so that {0 <p <R} c D, and take C c G to be the
disks .

C=D\{0<p<R} and G=D\ {0<p <p,}.

Equation (2.14) is satisfied since p is independent of 6. Thus the natural
coordinate system of Section 2 consists of p = p(r) in place of the radial
coordinate r, together with the usual angular coordinate 8. We have

1/2 1 —9
g, = (V6,aVe) == and (V6,b) = r2b,(0).

Thus the 6° equation from (5.9) becomes, on the s-time scale,

1 1
do°(s) = by(6°) o ds + €1/2 o dBa(s).

(1

This explains our inclusion of r2 in the angular part of (6.1); it allows us to
decouple 6° from p°® using a random time change. Let

s 1
u=f—2ds,
o (roy)

N s 1 .
Bi(u) = [~ dBs(s).
Of course ro; is evaluated along the path of x° = (p®, 8°) in these expressions.
On this time scale we have
(6.5) doc(u) = by(6°) du + e/2dp*(u),
and the exit time is given by

* % 1

ds

,
: o (roy)’

= inf{u > 0: p*(u) = 0}.
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The corresponding p°(u) equation is completely uncoupled from (6.5), so that
the random variable 7* is independent of 6°(-). The analysis of the preceding
sections tells us that the conditional kernel @¢ of (2.3) and (2.9) is given by

Q°((po» o), A) = Py 4 [(0,6°(7*)) € A] + o(1),

where o(1) - 0 uniformly over 6, and A cdD as ¢/0. The asymptotic
distribution of 7* follows from Propositions 3.3 and 3.8.

PROPOSITION 6.1. In the setting described above, as ¢ |0,
™ — B log(e" /%) — ¢ = B~¢,

where c is the constant

¢ =B log(po) + [
0

1
()~ B as,

p*(s) = ppe~® and ¢ is a random variable with the density q(s) of Proposition
3.3. )

Proor. First observe that
7.* — B—lo.e = %
i- 17

- [Fr (s s

1

2 2
réo;

(p°(s)) - B-l] ds

where
1 B-1
f(P) = rza_lz(P) .
Since this is a C! function with f(0) = 0 by (6.4), Proposition 3.8 tells us that
™ — B lof > fmf(p*(s)) ds
0

in probability. The present proposition follows from this and Proposition 3.3.
O

We come to the conclusion that, for our class of examples, the exit measure
u° is described asymptotically by

(6.6) pe(A) ~ Po[(0,6°(B tlog(e™¥2) + ¢ + B~'¢)) € A],

with v° the averaged first exit distribution from G, as in Section 2, 6°(-) given
by (6.5) and ¢ an independent random variable as above. This is (except for
changing the values of some constants) the situation studied in Sections 4 and
5 of [8]. Thus all the phenomena described there also occur in the class of
examples of (1.2) described in this section.
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