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FUNCTIONAL LAWS OF THE ITERATED LOGARITHM FOR
THE INCREMENTS OF EMPIRICAL AND
QUANTILE PROCESSES

By PauL DEHEUVELS' AND Davip M. Mason?

Université Paris VI and University of Delaware

Let {a,(2), 0 < ¢t < 1} and {B,(¢), 0 < ¢t < 1} be the empirical and quan-
tile processes generated by the first n observations from an i.i.d. sequence
of uniformly distributed random variables on (0, 1). Let 0 <a, <1 be a
sequence of constants such that a, - 0 as n —» . We investigate the
strong limiting behavior as n — « of the increment functions

{a,(t +a,s) —a,(t),0<s <1}

{Bn(t + ans) -Bn(t)! 0<s< 1}:

where 0 < ¢ < 1 — a,,. Under suitable regularity assumptions imposed upon
a,, we prove functional laws of the iterated logarithm for these increment
functions and discuss statistical applications in the field of nonparametric
estimation.

1. Introduction. Let U,,U,, ... be a sequence of independent and uni-
formly distributed on (0, 1) random variables. For each integer n > 1, denote
by U(t) =n"'#{U. <t:1 <i < n}, for —» < ¢t < », the right-continuous em-
pirical distribution function, and denote by V,(¢) = influ > 0: U, (u) > t}, for
0<t<1, withV,(¢) =0for¢ < 0and V() = V(1) for ¢t > 1, the left-continu-
ous empirical quantile function, based on the first n of these random vari-
ables. Let a,(¢) = n'/%(U(¢) — t), for —» <t < », be the uniform empirical
process and B,(¢) = n'/%(V,(¢) — t), for —© < ¢ < », be the uniform quantile
process.

For any 0 < a < 1 and integer n > 1 consider the increment functions

£(a,t;s) =a,(t+sa) —a,t),
fa(a,t;8) = Bu(t +sa) — B,(2),

for0<s<land0O<t<1l.

(1.1)
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Much attention has been directed toward the investigation of the limiting
behavior of the maximal oscillations of ¢, and ¢,. Let, namely, for 0 <a < 1,

Ef(a) =+ sup =¢&,(a,t;1),
0<t<l-—a

(1.2)
0;(a) =+ sup =+, (a,t;1).
O0<t<l-a
A sequence of constants {a,, n > 1} will be said to satisfy the
Csorg6—Révész—Stute [CRS] conditions if the following hold:

(S.1) 0<a,<lforn>1, a,l0and na,to asn to;
(8.2) (log(1/a,))/loglogn — © as n — «;
(S.3) na,/logn —> o asn — o,

Under the CRS conditions, Stute (1982a) [for E¥(a,)] and Mason (1984)
[for ®,5(a,)] obtained results which can be extended (see Remark 4.1 in the
sequel) to show that

lim Z#(a,)/(2a, log(1/a,))

n—oo

1/2

(1.3) . L2
= lim 0*(a,)/(2a,log(1/a,)) "= +1 as.

In the boundary case when na,/log n = ¢ € (0, ), the limiting behavior of
statistics related to 5 *(a,) has been studied by Mason, Shorack and Wellner
(1983). Mason (1984) considers likewise statistics related to ©f(a,), while
Deheuvels and Devroye (1984) consider ©,%(a,) in the general case where
‘na, = O(log n) as n - «. Whenever na,/logn — ¢ € (0,»), we have

(1.4) lim E%(a,)/(2a,log n)/? = (62— 1)(c/2)'* as,
and
(1.5) lim ©%(a,)/(2a,logn)"? = (y£- 1)(c/2)'* as.,

where 0 < §,< 1 < 8§} < « are the roots (in ) of the equation A(8) = 1/c,
with the convention that §;=0 for 0 <¢ <1, 0 <y, <1<y/ < are the
roots (in y) of the equation I(y) = 1/c and the functions A(-) and I(-) are
defined by

xlogx —x+1, for0<x <o
. h = ’ ’
(1.6) (%) {00, forx <0,
with the convention that 0log0 = 0, and
_Jx—1-logx, for0<x <o,
(1.7) i(x) = {00, for x < 0.

The results given in (1.3)-(1.5) bear a striking similarity to the limiting
behavior of the tail empirical processes which we now describe. Introduce the
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conditions

(S.4) na,/loglogn - © asn —

and

(S.5) na,/loglogn — c € (0,®) asn — .

Under (S.1) and (S.4), Kiefer (1972) proved that
limsup + a,(a,)/(2a, loglog n)l/2

(1.8) " e
= limsup + B,(a,)/(2a,loglogn)*=1 as.

Moreover, in the boundary case (S.5), Kiefer (1972) [see, e.g., Deheuvels
(1986)] also proved that

(1.9) limsup + a,(a,)/(2a,loglog n)"? = + (55— 1)(c/2)"? as.,

n—oo

and
(1.10) limsup + B,(a,)/(2a, loglog n)"/? = + (vt - 1)(c/2)1/2 a.s.

n—w

A new proof of (1.8) can be achieved by using the functional laws of the
iterated logarithm [LIL] given for the tail empirical process ¢.(a,,0;)
by Mason (1988) and for the tail empirical quantile process {a,,0; ) by
Einmahl and Mason (1988). In the same way, (1.9) and (1.10) follow from the
results of Deheuvels and Mason (1990) as an application of nonstandard
functional laws of the iterated logarithm. In order to describe these laws, we
need to introduce the following notation.

Denote by Ip(0,1) [resp., I(0,1)] the set of all right-continuous (resp.,
left-continuous) distribution functions of nonnegative and bounded Radon
measures with support in [0,1]. For any f & I4(0,1) [resp., I(0,1)]
and —o <x <o, set flx +)= lim, ;, f(x £ &). Further, for fe Iz4(0,1)
[resp., 1(0, 1)] set

(1.11) f(x) = [Oxf'(t) dt + fs(x), for —o <x < o,

where fg € I4(0,1) [resp., 1(0, 1)] is the distribution function of the singular
component in the Lebesgue decomposition of df and f is the Lebesgue
derivative (defined uniquely a.e.) of the absolutely continuous part of this
decomposition.

We now state in Theorems A and B the nonstandard functional LIL’s given
in Deheuvels and Mason (1990).

THEOREM A. Under (8.5), the sequence of functions {nU,(a,s)/loglog n,
0 < s < 1} is almost surely relatively compact in I4:(0,1) endowed with the
topology of uniform convergence, with set of limit points equal to A, where A,
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consists of all absolutely continuous functions f in I(0, 1) such that

(1.12) ¢['h(f(s)/c)ds <1,
0
and k() is as in (1.6).

THEOREM B. Under (S.5), the sequence of functions {nV (a,s)/loglog n,
0 <s <1+} is almost surely relatively compact in 1(0, 1) endowed with the
topology of weak convergence of the underlying measures, with set of limit
points equal to T,, where T, consists of all functions g in I(0,1) such that

(1.13) gs(1+) +c[ U(g(s)/e)ds < 1,
0
and I(+) is as in (1.7).

A description of how Theorems A and B may be used to obtain limiting laws
such as (1.9) and (1.10) is given in Deheuvels and Mason (1991).

The similarity of (1.4) and (1.5) with (1.9) and (1.10) hints that versions of
the functional LIL’s given in Theorems A and B may exist for the increment
functions ¢, and ¢, in the range corresponding to

(S.6) na,/logn - ce€ (0,0) asn — .

We will show in Section 2 that this is the case and describe the correspond-
ing laws. Section 3 will be devoted to the case where the sequence {a,, n > 1}
satisfies the CRS conditions. In this range, we shall obtain Strassen-type laws
in the spirit of the well-known functional LIL due to Strassen (1964) and
similar to the tail-process versions due to Mason (1988) and Einmahl and
Mason (1988) under (S.1) and (S.4). The cases where na,/logn — 0 or
(log(1/a,))/loglog n — ¢ € [0,®) as n — = will be considered elsewhere.

In Section 4, we will consider applications of our results. In particular, we
shall prove laws of the iterated logarithm for nonparametric estimates of a
density and of its derivatives which extend those obtained by Stute (1982b).
Moreover, we obtain similar results for nearest-neighbor-type estimates.

2. Nonstandard functional LIL’s for increments of empirical
processes. Throughout this section, {a,, n > 1} will denote a sequence of
constants satisfying assumption (S.6), that is,

na
(2.1)

log’;z —>c€(0,0) asn — oo,

We assume implicitly that n > n,, where n, > 1 is an integer such that
0<a,<1 for all n=>n,. Instead of ¢,(a,,? ) and {,(a,,t; ), we will
consider, for 0 <s <1+ and0 <t <1 —a,,

n
Nu(@n,t;8) = 7——(U,(t + sa,) — U,(2)),
(2.2) 1°,gl"
v(a,,t;s) = E(Vn(t +sa,) — V,(¢)),
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with the conventions that U/ u+ ) = UyJu) and V(u+ ) =lim, ,V (u+ &),
for 0 < » < 1. It will be convenient to set

n.(e,,t;8) =v,(a,,t;s) =0, fors<0and0 <?<1,

nn(an’t;s) = nn(an’t;l)’ vn(an’t;s) = vn(an’t;1+)’
fors>1land0<t<1-ga,.

Moreover, for 1 —a, <t < 1, let n,(a,,¢;s) and v,(a,,t; s) be as in (2.2) for
0<s<(1-8/a,+, and set n,(a,,t;s)=n,(a,,t;Q -8)/a,) +a,s -1
+t and v,(a,,t,s) =v(a,, t;1 -t)/a,+)+a,s -1+t for A -t)/a, <
s < 1+ . These conventions ensure that n,(a,,t; - ) € Izc(0,1) and v,(a,, ¢; - )
el(0,1)forall0 <t <1.

We will make use of the following notation. For any bounded function f on
[0,1], set || fll = sup, ., <,|f(s)], and, for any ¢ > 0 and A C I(0,1), denote
by A* the set of all functions f € Ix(0, 1) such that there exists an f = ff .EA
with || f — fIl < . Consider also the weak topology on I(0, 1) [see, e.g., Hognas
(1977)], which is conveniently defined via the Lévy metric given for f e I(0,1)
and g € 1(0, 1) by

(2.3) di(f,g)=inf{r=0: f(s—r)-r<g(s)<f(s+r)+ r,all s}.

For any ¢ > 0 and B c I(0, 1), denote by B¢ the set of all functions g € I(0, 1)
such that there exists a § =4, , € B with d;(g, ) <e. We will endow at
times Ig(0, 1) with the Skorohod J , topology as defined in Skorohod (1956)
and Billingsley [(1968), pages 111-123]. This topology is metrizable and such
that, whenever f is continuous, f,, — f in the Skorohod topology is equivalent
to |l f, — fll = 0. An obvious consequence of this fact and of the properties of
A, [see, e.g., Section 2 in Deheuvels and Mason (1990)] is that, for any B C A,
and ¢ > 0, B® is a Skorohod neighborhood of B.

The main results of this section are stated in the following two theorems.

THEOREM 2.1. Under (8.6), for any e > 0, there exists almost surely a
finite N! such that, for all n > N/, we have
(2.4) (Ma(@n,t;°),0<t<1—a,} cAe.

Moreover, for any f € A, and & > 0, there exists almost surely a finite N, ,
such that, for all n > N/, there exists af,0 <=1, ;<1 — a,, such that

(2.5) IInn(an,f; ) - fll<e.

THEOREM 2.2. Under (8.6), for any e > 0, there exists almost surely a
finite M_ such that, for all n > M, we have

(2.6) {va(@n,t;),0<t<1-a,} iy
Moreover, for any g € T, and & > 0, there exists almost surely a finite M ,
such that, for alln > M" _, there exists a ,0 <t =1 <1-a,, such that

£ 8 n,e g —

(2.7 di(va(a,, i), 8) <e.
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In the remainder of this section, we will prove Theorems 2.1 and 2.2. The
following sequence of lemmas is directed toward the proof of Theorem 2.1.

Let {II,(2), ¢t > 0} denote a right-continuous Poisson process with parameter
n > 1, that is, such that E(I1,(#)) = nt, for ¢> 0. Define for 0 < aq < 1,
0<s<land0<t¢t<1-a,

1
(2.8) H,(a,t;5) = (It + sa) = IL,(1)).

LemMa 2.1. For any choice of {t,,...,t,) C{ka,: 0 <k <aj' -1}, with
0 <ma, < 3 and Borel subsets A,,..., A,, of Iz(0,1), endowed with the
topology of uniform convergence, let

El = {nn(an’ti; ) EAi1i= 1,...,m}

and

E,={H,(a,,t;")€A;:i=1,...,m}.
We have
(2.9) P(E,) <2P(E,), foralln > 5.

Proor. Set R = U (¢,¢; + a,]. Notice that the Lebesgue measure of R,
written |R|, is equal to ma, < 3. Set R =[0,1] — R. Since {nU(s), 0 <
s < 1} has the same distribution as {II (s), 0 < s < 1}, conditioned on I, =
n, we see that

P(E,) = P(E,lll,(1) = n) = P(E, N {I1(1) = n})

P(IL,(1) =n)
_ ¢ P(B0{(R) =)) 0 {I1(R) = n - )
Jj=0 P(Hn(l) = n) ’

which, since the events E, N {II,(R) = j} and {II,(R) = n — j} are indepen-
dent, is equal to

P(II(R) =n —j)

L P(E, 0 {IL(R) =)

P(IL,(1) = n)
P(E,) = .
= P(I,(1) = n) om2x P(IL(R) =n - j)
P(E,)

- P R) = |nIR

< P, @ -y () = IED,

where [u] < u <[u] + 1 denotes the integer part of «. Here, we have used the
facts that I1,(R) follows a Poisson distribution with parameter n|R|, and that
[see, e.g., Johnson and Kotz (1969), page 92] P(II,(A) =) < P(II (A) =
[n|AlD, for all j and A C [0, ). Finally, using Stirling’s formula [recall that
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n!=(n/e)*2mn)/?exp(8,/n), with 0 < 6, < 1/12 for n > 1], we obtain that

P(Il(R) = [nlﬁl]) nl/2p1/12 , ]
P(Il,(1) = n) = (%n_1)1/2 <2, forn =5,

which suffices for (2.9). O

REMARK 2.1. The proof of Lemma 2.1 was largely based on the proof of
inequality 2.3 of Einmahl (1987). Note for further use that for (2.9) we need
not require any specific assumption imposed on 0 < a, < 1.

LeEMMA 2.2.  For any subset A of I¢(0,1) and ¢ > 0, set
(2.10) Iy, (A) = infd, (f),
, feat

where for f € Ip(0,1) and f being as in (1.11),

(211) J,(f)={¢"fD~ folf(u)log(f(u)/c)du, for f(1) = 0;
| s otherwise.

Let {II(¢), t > 0} be a standard right-continuous Poisson process. Then the
following hold:

() For any closed subset F of I5(0, 1), endowed with the Skorohod topol-
ogy, we have

(2.12) limsupT~'log P(T 'II(cT ) € F) < —d, (F).
T >
(ii) For any open subset G of I5c(0, 1), endowed with the Skorohod topology,
we have

(2.13) liminfT™" log P(T'I(cT *) € G) = =, (G).

Proor. This result is a consequence of the large deviation principle of
Varadhan (1966) [see, e.g., Example 1 in Lynch and Sethuraman (1987)]. O

Note here that Theorems 4.1 and 4.2 of Lynch and Sethuraman (1987)
cover the case where, in Lemma 2.2, F is closed (resp., G is open) when
Igc(0,1) is endowed with the weak topology. This, however, is not quite
sufficient for our needs since a set may be closed (or open) in the Skorohod
topology but not in the weak topology.

In the sequel, we will make use of the fact that whenever ¢ > 0 and f€ A_,
N(f)={ge IRC(O 1): llg — Il < &} contains an open Skorohod nelghborhood
of f, denoted by N.(f). Likewise, for £ > 0, A°, contains an open Skorohod
neighborhood of A, denoted by A®..

Our next lemma proves the second half of Theorem 2.1.
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LEmMMA 2.3. Under (8.6), for every f€ A, and & > 0, there exists almost
surely a finite N/ ; such that, for all n > N/, there exists a t=%,.r€
[0,1 — a,] such that (2.5) holds.

Proor. For any ¢ > 0, set 1\7£(f) ={g eIz 0,1):|If—gll<e}D 1V£( . It
is easily checked [see, e.g., the proof of Lemma 2.9 of Deheuvels and Mason
(1990)] that, for fe€ A, Jp, N, 5(f) < 1. Thus, for any fixed 0 <
Jn, (N, 5(f)) <p <1, by (2.13) and using the fact that na,/(clogn) > 1 as
n — o, we obtain that, for all large n,

c c

(na, ) €N, (f)|zn"

(2.14) P( H(nan~)el\78/2(f))zP(

na na

n n

_ Next, observe that, for any A >1 such that (A — 1)Xe/2 + f(D)) <,
N,. (A f) € N(f). Since na,/(clog n) - 1 as n — », we may choose n; > §
so large that, for all n > n, (2.14) holds together with

( Mn 1)(% +f(1)) <e.

clogn

It follows that, for all n > n,,

1 ~
[ . —-p
(2.15) P(lognn(na” ) ENe(f)) >n"*.

We now apply Lemma 2.1 with ¢, =ia,, i=1,...,m, = [1/(2a,)] and
A, =I350,1) — Nf), for i = 1,...,m,. By (2.9) and (2.15), we have, for all

n=n,,
Qn = P(Hn(an’ti; ) $Ns(f)’l = 1""’m"')
<2P(H,(a,,t;") €N(f),i=1,...,m,)

1 . mn
= 2(1 - P(mﬂ(nan *) e N( f))) <2exp(—-n""m,).

Recalling that m, = (1 + o(1))n/(2clog n) as n — », and that p <1, we
see that @, is ultimately less than exp(—n?) for any fixed 0 <y <1 — p. From
this last bound we get % _,Q, < . The conclusion of Lemma 2.3 now follows
from the Borel-Cantelli lemma. O

REMARK 2.2. A close look at the arguments used in the proof of Lemma 2.3
shows that we need only assume that (log m ,)/log n = 1 as n — «. Thus, for
any sequence I, of subintervals of [0,1 — a,] such that

(log(nlI,l/log n))/logn —» 1 asn — «,

there exists with probability 1, for all n sufficiently large, a # =, € I, such
that (2.5) holds. This condition is always satisfied when I, = (cy, c,) is a fixed
nonvoid subinterval of (0, 1).
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For the proof of the first part of Theorem 2.1, we will make use of the
following blocking argument. Introduce the sequence v, = [(1 + y)*], & =
1,2,..., for some constant y > 0, and consider, to start with, the case where
exactly a, =(clogn)/n. Note that v,,,/v, > 1+ y and a,,./a, =
1/(1 +vy) as k > ». Since n(U,(¢ + sa) — Uy(?)) is, for s > 0 and ¢ fixed, a
nondecreasing function of n > 1 and a > 0, it follows that, for all % suffi-
ciently large, we have the inequalities

1+ 7)'2nvk(av,,,t; (1+ 7)_28)

2
<m(an,t;8) < (1 +vy)n,,, (a,,t;s),

forallv,<n<v,,;,s>0and 0 <t < 1.
We start by showing that a version of (2.4) is valid along the sequence {v.).

(2.16)

LemMA 2.4. Under (S.6), for any y>0 and &> 0, (2.4) holds with
probability 1 ultimately in k along n = v,,.

Proor. We start by the observation that, by Theorem 1(I) of Mason,
Shorack and Wellner (1983), for any fixed 0 < A < 1, we have almost surely
limsup  sup  n,(a,,?;) — n.(a,,t";)l

n—o 0<t',t"<l-a,

It —#"| <Aa,
(2.17) . n
<2limsup sup sup {——|U,(t + h) — U,(2)
n—wo 0O<t<l-Aa, 0<h<ia, logn

=2(Ac)s;,

where 8¢ is as in (1.4). Routine analysis shows that C55~ —1/log C - 0 as
C — 0. Thus, by choosing A > 0 so small that 2(rc)d), < e/2 there exists
almost surely an n, < « such that, for all n > n,, if M, =[1 - a,)/(Aa,)],

({nn(an, jra,; ), 7= 0,1,..., M,} c A/?)
= ({n.(a,.t;-),0<t<1-a,}c A:).

Let F, = Ipc(0,1) — A2 C F, = I5(0, 1) — A%/% Obviously, F. is
Skorohod-closed and such that J, (F,) > 1 [see, e.g., the proof of Lemma 2.8
of Deheuvels and Mason (1990)]. By Lemma 2.1 applied with m,=1, it
follows that, for all large n,

(2.18)

R, =P U {n(a,./na,") €F)) < 4M,P(H,(a,,0 ) < F)
0<j<M,

8n
< P
Aclogn (logn

(na, *) Eﬁ),

which by an application of (2.12) and by using the same argument as in the
proof of (2.15) is ultimately less than or equal to n~° for some » > 0. Since
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this evidently implies that £, R, < «, the Borel-Cantelli lemma in combina-
tion with (2.18) completes the proof of Lemma 2.4. O

LeEmMMA 2.5. Under (S.6), for any € > 0, there exists a v > 0 such that
almost surely

logv,,,

(2.19) limsup sup
log v,

k—» 0O0<t<l-a,,

My (@ ts ) — o (a,,.857)] <e.

Proor. Set for 0 <a <1 and n > 1, w,(a)=suplll¢a,t; )l 0<t<
1 — a}. By inequality 1 in Mason, Shorack and Wellner [(1983), page 86], for
every 0 <a <8 <3, n=>1and A > 0, we have

Vna

where ¢(x) = 2x2h(1 + x). Note for further use that ¢(x)11 as x | 0.
Let N, = v, ., — v, and observe that

(2.20) P(wn(a) > /\\/5) < 20a" 1573 exp(—(l - 5)4§¢(_L)),

log v,y

log v,

n"k+1(a"k’ 3 ) - n”k(a”k’t; )“

log N,

=4 log v, "nNk(aVk’ t; )”

N, N2

aV

wy(a,,) = Ay, + Ay e

< +
logv, "* logv,

Since A; , =(1+ o(1))yc as k — », a choice of 0 <y <&/(4c) ensures
that, for all % sufficiently large, A, , <e&/2. Next, choose a =a,, n = N,,
A = (¢/2)log v;)/ /N,a,, and 8 = 3 in (2.20). Obviously, we have as k —

2

€ A €
A2 = (1 + O(l))‘m‘log v, and —‘/’—l——; = (1 + 0(1))—2‘;

Therefore, there exists a y, < ¢/(4c) such that, for any 0 < y < y,, we have
for all % sufficiently large the inequality [recall that x¢(x) - «© as x —» ]

1-6 X[ 2o 31
( ) 9 ¥ \/I_Zg = 'gé"p \/IE = ologv,.
This in turn implies by (2.20) that P(A, , > &/2) is ultimately less than

v; 2. Since ¥ ,v;? < », the Borel-Cantelli lemma completes the proof of
Lemma 2.5. O

Proor oF THEOREM 2.1. We now collect the pieces of our puzzle. In a first
step, we observe [see, e.g., Example 6 in Deheuvels and Mason (1991)] that, for
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any 0 <t <1,
(2.21) sup sup |f(s") = f(s")| < (ct)d,
feA, 0<s',s"<1
Is'—s"| <t
and
(2.22) sup sup If(s)l =ed;.
feA, 0<s<1

It follows from (2.21) and (2.22) that for any 6 > 0,

sup sup If(¢) — f(&)I
feAb O0<t'<t"<1

'/t <(L+y)?

2
Se((1+7)" = 1)85qrpe-1 + 20 = 6y(v,0),

(2.23)

and

(2.24) sup sup  IAf=Fll< (1= (1+9)7%)(0+cd}) = 04(v,96).
feh? Q1+y)"2<A<1

Thus, combining (2.23) and (2.24), we see that

(2.25)  supli(1+y)*f((L+9) ") = Fll < 0.(7,6) + 6(7,0) = 65(7,0).
fed’,

It is easily verified that 65(y,6) - 26 as y | 0. Choose now 6 = £/8, and

select a y; > 0 such that, for all 0 < y < y,, 85(y,¢/8) < 3¢/8. An application

of Lemma 2.4 shows that, for any choice of 0 < y < v,, the event {n, (a,,k, ;)

eA/Bforo0<t<l-a, ,J holds almost surely ultimately in k. This in turn

1mphes that we have a.lmost surely, for all % sufficiently large and all 0 < ¢ <
l1-a,,

(2.26) (1 +v) 0, (a,, 61 +y) 7" ) = @, ts )| < 3e/8.

Next, by Lemma 2.5, we see that there exists a 0 < y, < y, such that, for
any choice of 0 <y <y,, we have almost surely ultimately in %, for all
0<t<1-a,,theevent

logv, €
(2'27) n”k(a"k’t; ) B Wn”kﬂ(avk’t; ) = g,
which in turn implies that
log v, .4
_ t;-) e A/t
lOg v, n"k+1 9% )
and by (2.22) that
logv,. 2
IOgV Mvp 11 a”k’t; ) - (1 + Y) Mopsd a”k’t; )
(2.28)
log v,
1 +y) ———— - 1 + 6 =: 0 ) ’k .
<1+ P 1(4 57 ) = 04y, e, k)
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Since (log v;)/log v, ., = 1 as k — o, we may selecta 0 < y < 72 such that
for all large &, 6,(y,¢, k) < &/8. Thus, by (2.16) and (2.26)-(2.28), we have
almost surely for all % sufficiently large,

(229) ”n’l(an’t; ) - T’Vk(a"k’t; )” = 58/8 and nvk(avu t; ) € ASC/S,

forallv,<n<v,,;and0 <t¢ < l-a,,

By (2.29), it follows that the event {n,(a,,,¢; - ) € A%*/4} holds almost surely
forallv,<n<v,,,0<t<1- a,, and k sufficiently large. To complete the
Proof of Theorem 2.1, it suffices to consider the case where for Vv, <n < v,
1-a, <t<1-a,. For this, notice that, for v, <n < v,,,,

sup ”nn(an’t7) _nn(an’l _ayk;')”
l-a, <t<l-a,
(2.30) .
<2 sup sup {—IUn(t +h) - Un(t)l}.
0<t<1-(a, —a,) O0<h<a, -a, lOg n

Since for v, <n < v, ,,

a,-a,<a, —a, =(1+ o(l))( )a,k as k - o,

Y
1+y
we can choose here y > 0 such that, uniformly over v, < n < v, for all large
k, a, —a, <Aa,, where A > 0 is a constant chosen in such a way that
2(xc)dy, < £/8. By (2.17), it follows that the right-hand-side of (2.30) can
be almost surely rendered less than &/4 for all % sufficiently large. Since
M@, 1 = a,,; ) € A¥/* as. for all large n, it follows that n,(a,,t; ) € A
as.forv, <n<wv,,,,1-a, <t<1-a, and & sufficiently large. Thus, we
have (2.4), as sought.

We have just proved the first part of Theorem 2.1 in the case where
a, =(clogn)/n. When a, is a general sequence satisfying (S.6), we can
readily use the fact, by (2.17), that, uniformly over 0 < ¢ < 1, we have almost
surely

(2.31)

clogn
nn(an’t; ) - nn(T,t; ) - 0.

Thus, by (2.31), the proof of (2.4) can be reduced to the just-treated case where
a, = (clog n)/n. This, in combination with Lemma 2.3, completes the proof
of Theorem 2.1. O

Proor or THEOREM 2.2. The proof of Theorem 2.2, given Theorem 2.1,
follows the lines of the proof of Theorem 2.2 in Deheuvels and Mason (1990),
given Theorem 2.1 of the same paper. Following their notation, we define, for
any v > 0 and w > 0,

(2.32) A, ,={feA,: f(1)=w} and r,,={gerl,:g(1+)= v}.
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Moreover, for any f & Izc(0,1) such that w = f(1) > 0 and for any g €
1(0,1) such that v = g(1 + ) > 0, we define f€ 1(0,1) and g I5:(0,1) by

fo(s)=inf{t:0 <t <1, f(¢) = sf(1)}, for0<s<1,

(2.33)
f(1+)=f"(s)=1, fors>1,

and

(2.34) g (t)=sup{s:0<s<1,g(s)<tg(l+)}, for0<t<1,

g7(0-)=0 and g~ (¢) =1, fort>1.

The following facts will be instrumental for our needs.

Facr 1. For any v >0 and w > 0, A, , is nonvoid if and only if r,,is
nonvoid. This condition is satisfied if and only if one of the following equiva-
lent set of inequalities holds:

(2.35) vé, <w <vd; or wy,<v<wy;.

Moreover, in this case, f— vf < (resp., g - wg ) defines a: one-to-one
mapping of A, , onto I, , (resp., of T, , onto A, ). These mappings have the
property that, for any f€ A, ,, if g = vf <, then f=wg ™ and conversely, if
f=wg™,then g =vf ~.

Proor. See, for example, Lemmas 2.3 and 2.4 in Deheuvels and Mason
(1990). O

Facr 2. For any v > 0 (resp., w > 0), the set A, (resp., I,) is a compact
subset of Ipc(0,1) [resp., (0, 1)] when endowed with the topology of weak
convergence.

Proor. See, for example, Definitions 2.1 and 2.2, Theorem 3.1 and Exam-
ples 1 and 2 in Lynch and Sethuraman (1987). O

We now complete the proof of Theorem 2.2 in the following steps. For
notational convenience, we assume from now on that na,/log n —» w € (0, )
as n o ,

Step 1. We first observe that Theorem 1(I) of Mason (1984) [see, e.g., (1.5)]
implies that, for any fixed & > 0, the set of functions {v,(a,,t;:), 0 <t <
1-a,} cI(0,1) is almost surely ultimately included in the set {g € I(0, 1):
g(1 +) < wy, + €}. Since this set is weakly compact in 1(0, 1), it follows that
{v(a,,t;-),0<t<1-a,} is almost surely relatively compact [with respect
to the weak topology on I1(0, 1)].

SteP 2. Consider a sequence of functions of the form &n, = vn an, tn,
k>1, where 1 <N, <N,< ---, and 0 <ty <1-ay for k> 1. Assume
that this sequence is weakly convergent in 1(0, 1) to a function g € I(0, 1) and
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set v =g(1 +). By (1.5), we have 0 <wy, <v <wy, < ». Let now a'y,
Vn(tn, + an, +) — Vy(ty,) for k > 1. We have, almost surely,

(2.36) N,d'y,/log N, > v € (0,0) ask — .
By (2.31) [notice that (2.31) holds whenever na,/logn — ¢ a.s. as n — «]

taken with ¢ = v, it follows from (2.30) that almost surely uniformly over
0<t<1-dy,

(2.37) ”77N,¢(‘1'N,,,t; ') = 1y, (vN;  log N, t; )” -0 ask > o,

By Theorem 2.1, there exists a subsequence {n,, & > 1} of {N,, £ > 1} such
that, if ¢, =V, (¢, ), we have
(2.38) ||"7nk vnj ! log nk,t’nk; ) - f” -0 as.ask —> o,

where f is a suitable function in A,. By (2.37) and (2.38), if we let f,,
M, (@, 5 - ) we see that ||f, — fll > 0 as. as & > . We will make use of
this fact to show that f€ A, and then, that g € T,,.

For this, observe that

(2.39) U(Vu(t)) — tl < 1/n, forall0<t< 1.
Thus, by (2.39),

n
Ifo (1) — wl = ‘ log’; - (U (Vi + @0, +)) = Un (Vi (20,))) - wl

AT w|+0
logn,

from where it follows that f(1) = lim, _, f, (1) =wand feA,
Recalling that U,(¢) = sup{s: V,(s) > ¢}, it follows from . 39) that, uni-
formly over 0 < ¢ < 1, almost surely

w
—(Unk(t;,k +id,,) — U, (8,) + U, (8,) - tnk)
ng

)=o(1) as k — o,

log n,

wg, (t)

(2.40) wlog n,

1
nkank fnk(t) + O(m) —)f(t) as kB > o,

Since g,, — g a.s. as £ — o, with respect to the weak topology in I (0 1), we
must have g, (1 +) — g(l + ) = v. It follows readily that wg,, — wg ™, which
by (2.40) 1mphes that wg ~ = f. By Fact 1, this implies that g = vf “ €T, , C
T,

Step 3. Fix any ¢ > 0 and consider I‘s If we do not have ultimately in n
the inclusion {v,(a,,t;-),0<¢t<1-a } c [, then there exists a sequence
&n, = vnflan, ty,; )Wlth N, > ©and 0 <ty <1 - ay,such that gy, &I}
for each %2 > 1. By Steps 1 and 2, we can almost surely extract a subsequence
8., ~ & €T, as k - «. Since then we must have d;(g,,, g) — 0, we obtain a
contradlctlon This proves (2.6).
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STEP 4. Choose any function g € T, and let v = g(1 + ). By Fact 1, we

have 0 <wy, <v <wy,<» and f=wg~ €A, ,cA, Fixa §>0, and
define @ as follows:

+ 0)t t< ———m—
v(l ), for0 <t< 21+ 0)’

Al sl )+ 2

6
), = - —_—
o for iz o) ='<1" 2a70)
1 vl 1 1 0
f()+-——2 + v( +0)(t— +—'—2(1+0)),
for1l — m <t.

It is readily verified that f©® € A, .. Set b}, = v(1 + §)(log n)/n), and
fix 0 <c; <cy<1and & > 0. By Lemma 2.3 and Remark 2.2, there exists
almost surely a sequence ¢, <s, <c, and a finite N, such that, for all
n > N,

(2.41) 1m,(6,,8,;°) —FPl <e,.

Let f(t) = n,(b,s),;¢), for t > 0, and set g®(s) = inf{¢: £(¢) > s} and
g¥(s) = inflt: FO(¢) > s}, for s > 0. It is readily verified that

s for 0 v
m, or SSS?,
2.42) g@(s) = —1—(1( —ﬁ))+—0— for 2 sy
(242) &%) = T8l L5 3 20+0)’ Mg SfE=gTw
1 1 vé " v
1+o+u(1+0)(3_w_?)’ org twss,
and, whenever (2.41) holds,
1 n slogn
@)(s) = V(U (s, + —
B O 1 T A LG R A

forO0<s<w+ v —e¢,.
Observe that, for all n > N, by (2.41),

(2.44) g©@(s—¢e) <gP(s) <g¥s +¢,), forO0<s<w+ v —e,
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where we use the convention that g®(s) = 0 for s < 0. Assume, from now on,
that n > N, and that &, > 0 is such that &; < v0/4. Let u'y =v0/2 — ;. By
setting s = u/y in (2.44) and by (2.42), we have

0 2g,
2(1+6) v(l+8) 2(1+6)°
Thus, combining (2.44) and (2.45), we obtain, for 0 < s < w + vf — &,

(2.45)

< gP(uy) <

O o — - < g® — O,
g (s 81) 2(1 + 0) gn (s) gn (uo)
(2.46)
<g®(s +¢,) — P
g V7 91+60)  u(l+o)
Set now
log n
tn = Un(sln) + uIO
and let
- na,
s =ul lognu

in (2.46). Since c¢; < s/, < c,, by the Glivenko—Cantelli theorem, for any fixed
0 < ¢} <c; <cy<ch <1, there exists a.s. an N; > N, such that ¢, € (c}, c3)
for n > N,. Moreover, since na,/log n — w as n — «, there exists an N, > N,
such that, forall0 <u <1 +,

vo na, vl na,
— - <up+ u=——g,+—u
log n 2 log n
(2.47) . g g
v
S? +tw+e <w+ vl — ey
Noting that
na, ,
f,")(u’o + lognu) - 89uy) = mvn(an,tn;u), for0<u<1+,
we see, by setting
na, vl na,
=y + — = — — +
8= %o lognu 2 7 lognu

in (2.46) and in view of (2.42) and (2.47), that, forall0 < u <1 + and n > N,,

1 na, 2 1
v(1+ B)g(wlognu B ;81) = v(1+0) Ut @ni )
1 na, 2g,
= v(l + B)g(wlognu) * v(l+86)’

where we use the convention that g(¢) = 0 for £ < 0 and g(¢) = g(1 +) for
t> 1.

(2.48)
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Next, observe that we may choose N3 > N, such that, for all n > N; and
O<ucx<l,
na, 2 na, 3

u— —eg, < u<u+ —e,.
wlogn w wlogn w

3
2.4 - —&, <
(2.49) u w €1
Thus, by (2.48) and (2.49), we see that, for all n > Nj,

3
(2.50) dL(vn(an,tn; ~),g) <& max(;,2).

Since £, > 0 may be chosen as small as desired, (2.50) implies (2.7) by
choosing &, = ¢/max(3/w,2) and 6 > 4¢;/v. This completes the proof of
Theorem 2.2. O

REMARK 2.3. In the proof of Theorem 2.2, we have shown that, in (2.7), we
may always choose £ = £, g € (ch,¢y), where 0 <¢} <c, <1 are arbltrary
but fixed points of (0, 1). Wlth the notation of this proof and by using the
classical Chung (1949) law of the iterated logarithm for empirical processes, we
see that

(2.51) lt, — s3] = O(n~"/?(loglog n)l/z) a.s.asn — ,

uniformly over s, € [0,1]. Thus, by Remark 2.2, we obtain readily that we
may restrict the ch01ce of £, , , to an arbitrary sequence I’ of subintervals of
(0, 1) such that (log(nII'I/log n))/log n—->lasn—> o«

REMARK 2.4. By Fact 2, we see that, for any £ > 0, there exists a finite set
{g1,c---,8n ) €T, such that, for any g € T,, there exists an i, 1 <i < N,
with d L(g, &: ) < &/2. By applying Theorem 2.2 to each function & . for
i=1,..., N, we see that, for n > max(M , g My gy ) We have (2.7).
Thus, in the statement of Theorem 2.2, we may take M , independent of
g € I,. Likewise, in Theorem 2.1, we may take N , independent of feaA,.

3. Strassen-type functional LIL’s for the increments of empirical
processes. In order to motivate the results of this section, we cite the
functional LIL’s obtained for the tail processes by Mason (1988) (for «,) and
by Einmahl and Mason (1988) (for B8,,). Their results are stated in Theorem C.
Denote by B(0, 1) the set of all bounded functions on [0, 1]. For any f € B(0, 1),
set || fIl = supy ., .1If(s)| and, for any £ > 0 and C < B(0, 1), denote by C* the
set of all functions f € B(0,1) such that there exists an f= ff . € C with

If-Fll<e.

THEOREM C. Under (S.1) and (S.4), the sequences of functions
{an(ans)/(Zan loglogn)'/?,0 <5 < 1}
and
{Bn(ans)/(Zan loglogn)'?,0 < s < 1}
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are both almost surely relatively compact in B(0, 1) endowed with the topology
of uniform convergence on [0, 1]. In both cases, the set of limit points is equal
to the Strassen set S, which consists of all absolutely continuous functions f on
[0, 1] such that

(3.1) f(0) =0 and f (F(s)) ds < 1,
where f denotes the Lebesgue derivative of f.

We now state in Theorem 3.1 below the analogue of Theorem C for the
increment processes ¢, and ¢, as defined in (1.1).

THEOREM 3.1. Under the CRS conditions, for any e > 0, there exists
almost surely a finite n', such that, for all n > n',, we have

(32)  {&(an.t;7)/(2a,l0g(1/a,))"*,0<t <1~a,} S,
and )
(33)  {t(an.t;7)/(2a,l08(1/a,))*0<t<1-a,)}CS;.

Moreover, for any f € S, and & > 0, there exists almost surely a finite n’, ,

such that, for all n > n', ;, there exist a t, 0 <t=t, <1-a, andaf
0<t=%,, ;<1- suchthat

(3.4) I€.(an, ;) /(2a, log(1/a,))/* = fll <&
and
(3.5) IZ, (@, -)/ (20, log(1/a,))* - fll < e.

In the remainder of this section, we present the proof of Theorem 3.1.
Throughout and unless otherwise specified, we assume that the CRS condi-
tions [i.e., (S.1), (S.2) and (S.3)] are satisfied. First, we consider the case of £,.
Let {IL,(¢), t > 0} be a right-continuous Poisson process with parameter n > 1
[see, e.g., (2.8)]. For 0 <a < 1, let

L,(a,t;s) =n~Y3(I1(t + sa) — I1,(t) — nsa),
for0 <s<1land?¢=>0.

(3.6)

LEMMA 3. 1. For any choice of {t,,...,t,} c{ka,: 0 <k <a,'— 1} with
0 < ma, < % and Borel subsets B}, ..., B, of B(0,1) endowed with the topol-

n =

ogy of uniform convergence on [O 1] set A, ={¢(a,,t;;-)EB,i=1,...,m}
and A, ={L,(a,,t; ") €B,,i .., m}. We have
(3.7 P(A)) < 2P(A ), foralln >5.

ProoF. The proof of Lemma 3.1 is practically the same as the proof of
Lemma 2.1 after a change of scale. Therefore, we omit details. O
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Our next lemma gives a large deviation result which will be instrumental
for our needs. For any f € B(0, 1), set

1, . if f is absolutely continuous on [0, 1]
[ (f(s)) ds, o
(3.8) J(f) =10 with Lebesgue derivative f,
o, otherwise,
and, for any B c B(0, 1), define
(3.9) J(B) = inf J(f).
feB

LEMMA 3.2. Let {W(), t > 0} be a standard Wiener process and, for any
A >0, set W(t) = 271207 'W(A2), for 0 < ¢ < 1. Then the following hold:

() For each closed subset F of B(0, 1) endowed with the topology of uniform
convergence on [0, 1],

(3.10) limsupA~!log P(W, € F) < —J(F).

A—> 0

(ii) For each open subset G of B(0, 1) endowed with the topology of uniform
convergence on [0, 1],

(3.11) liminfA~'log P(W, € G) > —J(G).
A—> 0

Proor. See, for example, Ventsel (1976). O

The following lemma establishes the second part [i.e., (3.4)] of Theorem 3.1
for £,.

LEmMA 3.3. Under the CRS conditions, for every f€ S, and & > 0, there
exists almost surely a finite ', ; such that, for all n > n', ;, there exists a
t=t,,.r€10,1—a,lsuch that (3.4) holds.

Proor. Set N,(f)={g €B(0,1): |If—gll<e}. By Lemma 3.1 applied
with ¢, =ia,, i=1,...,m,=[1/2a,)] and B}:= B(0,1) — N.(f), for i =
1,..., m,, we obtain

P, := P( "ﬁ"{ £(anstis )/ (2a, log(1/a,))"* ¢ Ns(f)})

=1

(3 12) <2 ( O n(an,ti; ~)/(2an log(l/an))l/2 & Ne( f)})

= 2(1 - P(L,(a,,0;)/(2a, log(1/a,))""* € N.(f))) "
=2(1-P, )"

In a second step, we evaluate P, ,. For this, we make use of the approxima-
tion results of Komlés, Major and Tusnady (1975a, b), which enable us to
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construct on the same probability space a standard Poisson process {II(2),
¢t > 0} and a standard Wiener process {W(¢), ¢t > 0} such that, for universal
constants C; > 0, C, > 0 and C; > 0,

(3.13) P(OsupTIH(x) —x—W(x)=C, logT + z) < C, exp(—Cs2),
<x=<

forall T>0and —» <z < o,
By (8.6), (3.12) and (3.13), we see that

p,, - p| (res) —na, ) EN(f))
" \(2na, log(1/a,))* "
-P( M) en (f))
(3.14) (2na, log(1/a,))"? 7
Mi(na,s) — na,s — W(na,s)l
_P(021:21 : (2nzznlog(1/a,,))$/2 )28‘/2)
=Py, - P?f,/nz-

Notice that
W(na,-)/(2na, log(1/a,))""* =, 2*(log(1/a,)) "W ((log(1/a,) ),
so that
P2,n = P(Wlog(l/un) € NE/Z( f))

Since f € S, we have obviously J(N, ,,(f)) < 1. Thus, by (3.11), it follows
that for any p € (J(N, /5(f), 1), we have for all n sufficiently large

(3.15) P, , > exp(—plog(l/a,)) = a?.
Next, observe that (S.1) implies that

(log(na,))/(2na, log(1/a,))
This, when combined with (3.13), (3.14) and (8.3), implies that, for large n,

1/2—>O as n — oo,

P2 <Pl sup IM(x) —x— W(x)l

O<x<na,

€ 1)\
> C, log(na,) + Z(Znan log(a—)) )

n

-5 [enoutoe -]

1 ) 1 1 )
< Eexp —p log . = 2an.

n

(3.16)

< Cyexp
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By (3.14), (3.15) and (3.16), we have ultimately as n — o,
Pl,n 2 P2,n _Pg,/nz 2 %afw
which, when combined with (3.12), yields for all large n the inequalities
1 1( 1 1
(3.17) P, < 2exp(— Emnafl) < 2exp( -3 ( ia, )aﬁ) = 2exp(— §a’,’,—1).

Since p — 1 < 0, by (S.2), the RHS of (3.17) is ultimately less than or equal
to

2 exp(—5(log n)r)

for an arbitrary r > 1. It follows evidently that ©,P, < «, which by the
Borel-Cantelli lemma implies (8.4), as sought. O

REMARK 3.1. A close look at the arguments used in the proof of Lemma
3.3 shows that we need only assume that (log m,)/log(1/a,) - 1 as n — o,
Thus, for any sequence I, of subintervals of [0,1 — a,] such that
(log(I1,,| /@ ,,))/log(1/a,) — 1 as n — =, there exists with probablhty 1, for all
n sufficiently large, a t =¢, €1, such that (8.4) holds. This condition is
always satisfied when I, = (cl, c2) is a fixed nonvoid subinterval of (0, 1). Here
recall that |I| denotes the length of the interval I.

We now turn to the proof of (3.2). Fix any y > 0 and ¢ > 0. Let v, =
[(A+ )k, k=1,2,. = (2aq, log(l /a, D2 and consider the events

1/2 &
Ci(e,7) = {(n/vk“) o5t En(an,, 0 t5) € S§
forsome0<t<1l-a, andy,<n< Vk+1}’

and

D,(e,y) = {b,,kilf,,h+1 a, ,t;')&S;forsome0d<t<1l-a

”h+1} :

LEMMA 3.4.  For every ¢ > 0 and y > 0, there exists a K = K, ey Such that
k > K implies that

(3.18) P(C(2,7)) < 2P(Dy(2/2,7)).
ProoF. Let r;,i=1,2,..., be a denumeration of the rationals in [0,1 —
a,, l and 1ntroduce the events fori=1,2,... and v, <n <v,,,,

Ek i, n(g) = {(n/vk+1)1/2 V41 n(auhﬂ, i ) & SE}
E, .(e) = U Ey,; A(¢)

i>1

and
Fyia(e) = {03},

b (G ) = (/1) P, s )| < e},
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Observe that for any ¢’ > 0 and ¢” > 0, the sequences of events {E, ; (&),
i > 1} and {F, ; ,(¢"), i > 1} are independent. Denote by A the complement of
the event A. We have

Ve+1 o i—1 g-1
P(Cy(e,v))= X YL PlE,; (e)n NE, ;. (¢) N Er,q(e)),
g=vp+1li=1 Jj=1 r=v,+1
and hence
inf inf P(Fk,m,n(e/Z))P(Ck(a,y))
vp<n<vp,y m=>1
Ve+1 o
< X YP Ey i (e) NFy,; (/2)
g=vp+1li=1
(3.19)

i-1 q-1
N .DlEk,j,q(E) n Er,q(s))

r=v,+1
< P( U Ek,i,vk+1(8/2)) = P(Dy(£/2,7)).
i=1

Next, we see that, for any 0 <a < 3, A > 0 and n > 1, one has

P( sup n|U,(u) — ul > A) < P( sup n|U,(u) —ul/(1 -—u) = /\),

O<u=<a O<u<a

which by the fact that n(U,(x) — »)/(1 — u) is a martingale in u [see, e.g.,
Shorack and Wellner (1986), pages 271 and 870], is

< E(n?lU,(a) — al®)/(AM(1 - a))® < 2na/A2.

From this last inequality, we obtain that, for all v, < n < Vy.1, M= 1and
all % large enough,

P(Fimn(e/D) = P(vilf?  sup (s = mIU,,,, () — ul = (/2B

O<u<a,,

< 8(vp41 — Vk)auk“/(sz”kﬂbfk“)
<4/(s’log(1/a,,,)) >0 ask - .
Using this bound in (3.19) yields (3.18). O

LeEmMA 3.5. We have

lim|limsup max sup |(n/vk+1)1/2b,,'hi1 -0
- vl0 koo Ve<R<Vpii0<t<l—g
(3.20)

Ve+1

X“fn(avk_,_l’ t, )”) =0 a.s.
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Proor. The LHS of (3.20) is less than or equal to

limlimsup( max [b,b,! _(Vk+1/n)1/2|)

(3 21) 70 posw Vp<n<vpi s
X limsupb, 'o,(a,),
n—o
where w,(a,) is as in (2.20). By Theorem 0.2 of Stute (1982a), we have
(3.22) limb;'w,(a,) =1 as.
n—oo

Moreover, (S.1) implies that na, T~ and @, |0 as n 1, so that b, =
(2a, log(1/a,)'/? is ultimately nonincreasing and such that, for v, <n <

Vet

0<b,/b,,,,—1<b,/b, —1<(1+0(1))(¥4+1/vz) — 1>y ask > o,
This, in combination with (3.21) and (3.22), readily yields (3.20). O

LEmMA 3.6. We have

lim(limsu max su b (a,, Lt ) —E(a,,t;- ||)
(3.23) 'yJ,O k_)wpuk<n5uk+1 OStSIPa n §n( k+1 ) gn( n )

Ye+1

=0 a.s.
Proor. From a, |0 we get that for v, <n <v,,,,
a,-a,, =a,l-a,, s,)<a,l-a,,r /s,).
From na, 1 we obtain that, for all 2 large enough,
a,,. /¢, Zv/V1 21 —y.
Therefore, for v, < n < v, ; and for all £ large enough,
a,—a,, <a,(l-ga, /a,)<vya,.
Hence the LHS of (3.23) is less than or equal to
(3.24) lim ( lim b; ,(va,,)).

L 0O\n—ox

By (3.22) and (8.24) it is easy to conclude (3.23). O

In view of Lemmas 3.4-3.6, we will show in the sequel that the proof of
(3.2) boils down to showing that, for every ¢ > 0 and y > 0,

(3.25) élp(Dk(s,y)) <,

Toward this end, we will make use of the following inequality.
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LeEMMA 3.7. Forall 0<6<1,&>0 and n > 1, we have

P(b;%,(a,,t;*) & S§ forsome 0 <t<1-a,)

(3.26) N )
< (6a,) P(b,'%¢,(a,,0;") & S§'?) + P(b;'w,(0a,) > ¢/4)

Proor. For fia, <t <0G+ 1a, and i =0,1,...,[(a;' - 1)/6] — 1 =
p, =1, or for p,a,<t<1-a, and i = pu,, we have uniformly over 0 <
s<1,

Ifn(an,t;s) - fn(an,i()an;s)l
< la,(t+sa,) —a,(ifa, + sa,)| + la,(t) — a,(ifa,)l
< 2w,(0a,).

The remainder of the proof is obvious. O

We are now prepared to show that (3.25) holds for all £ > 0 and y > 0. We
first use Lemma 3.7 to obtain that, for any > 0 sufficiently small,

P(Dk(e’Y)) = (oa”k+1)_1P(b';¢}-1§”h+l a"h+1’0; ) ¢ 88/2)
+P(b,! w, (00, )> e/4)

Ve+1 Ve+
= Qur+ Qs -
Next, we use Lemma 3.1 to obtain the inequality
P(b';ilkan a"k+1’0; ) & Sf)/2) < 2P(b"_k§-1L(a O; ) ¢ Sf)/2) = 2Q3:k'
We now follow the arguments of the proof of Lemma 3.3 to obtain the
following analogue of (3.14), with P§/? being as in (3.16):
(3.27) @3, < P(Wlog(l/u,,k_H) & 53/4) + P50 = Q t Qs

3, V41
Since B(0,1) — S§/* is closed (with respect to the topology of uniform
convergence) and obviously satisfies J(B(0,1) — S§/%) > 1, it follows from
(3.10) that, for any p € (1, J(B(0, 1) — S§/*)), we have, for all k sufficiently
large,

(3.28) Qs < exp( -p log(l/a,,m)) =al .

Moreover, the same arguments as used for (3.15) and (3.16) show that, for
all k& sufficiently large,
(3.29) Qs <af

Ve+1”

Thus, combining (3.27), (3.28) and (3.29), we obtain, for all large £,

Vi+1?

_ 4 4 !
(3.30) Q,,<2(0a, ) '@, < 7% = EeXp(—(P - 1)1°g(a ))
Ve+1
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Since (S.2) implies that log(1 /a,,,)/logk > as k — o, we see from
(3.30) that @, , < 1/k2 for all large k) 'so that

(3.31) Z Qy ; <.

Next, we use (2.20) taken w1th =%, a=0a
9~ 2(log(l /a,,, D"? to obtain

Q2k<1600 gt

"k+1

(3.32) e? 1 1 €[ Vi@, o
X exp _ﬁ *®|a, vh+1 v E(W) |

Since (S.3) implies that na,/log(1/a,) - «, and y(x)11 as x | 0, the RHS of
(3.32) is ultimately less than or equal to
1606 Y W
P 7| bag *®la, ]|

Thus, the same argument as used for (3.31) shows that, for any 0 < 6 < £2/64,
we have

(3.33) Y Q<.
k=1

Combining (3.31) and (3.33), we see that (3.25) holds as sought. By the
Borel-Cantelli lemma and Lemmas 3.4-3.6, it follows that for any & > 0,
whenever y > 0 is sufficiently small, the event

U (6.%(ant;),0st<1~a, }¢S;
Vp<n<vp,,
holds finitely often with probability 1. The following lemma shows that the
same is true for the event

U {b.%(ant;),1-a,, <t<l-a,)zS;,

Vi

n=v,,,; and A =

Vp<n=<vp.,

thus completing the proof of (3.2).

LEmMMA 3.8. We have

lim ( limsup sup sup b, !

yi0 k—w y<n<v,, l-a,  <t<l-a,

(3.34)
XNE(@ps t5°) = n(@ns 1 —a,, s -)n) —0 as.

Proor. By the same arguments as used in the proof of Lemma 3.6, we see
that the RHS of (3.34) is less than or equal to

lim (2 lim 5, wn(yan))

Yi0\ n—ow
which equals zero almost surely by (3.22) and (3.24). O



FUNCTIONAL LAWS OF THE ITERATED LOGARITHM 1273 -

Having completed the proof of Theorem 3.1 for £, we turn our attention to
¢, We will show that the corresponding part of Theorem 3.1 holds by means of
a Bahadur-type representation in the spirit of the well-known Bahadur repre-
sentation for sample quantiles [Bahadur (1966), Kiefer (1967, 1970)]. The
following sequence of lemmas is directed toward this aim.

LEMMA 3.9. Foranyn>1,0<t<1-a, and 0 <s <1, we have
(83.35)  u(an,t;s) — {a,(V(t +a,s)) —a,(V())) <2n V2

Proor. It follows from (1.6) in Shorack (1982), in combination with the
triangle inequality. O

Lemma 3.10. We have
limsup sup sup n'/%(a,log(1/a,))” " *(logn) '/*
(3.36) n—o» 0<t<l-a,0<s<l1
X la,(V(t + a,s)) — a,(V,(¢) +a,s) <2%* as.
Proor. Fix any & > 0. By Theorem 1 of Mason (1984), we have almost
surely for all n sufficiently large
(8.3T) IV,(¢ +a,s) — V,(¢) — a,sl <@, = (1 +¢)*(2n"'a, log(1/a,))"?,

foral0<¢t<1-a,and0<s <1

Consider d,. This sequence obviously satisfies (ultimately in n) the CRS
conditions. By Theorem 0.2 of Stute (1982a) and the conventions of Section 1,
it follows that

limsup sup sup la,(V,(u)) — a,(V, () +v)
(3.38) n—o 0<V(u)<10<v<d,
x(26,log(1/d,)) * <1 as.
Next, we observe that the CRS conditions imposed upon {a,, » > 1} imply that
(3.39) 1/2< li'rleicrolf(log(l/c‘zn))/log n < limsup (log(1/4,))/log n < 1.

n-—o

By (3.37)-(3.39), the LHS of (3.36) is almost surely less than or equal to
(1 + £)23/4, Since &£ > 0 is arbitrary, we have (3.36). O

Our next lemma gives the desired Bahadur-type representation of ¢, in
terms of ¢,,.

LEmMmA 3.11. We have

].ln:o sup "{n(an:t’ ) - gn(an’Vn(t)’ )”
(3.40) n 0<t<l-a,

x(2a,log(1/a,)) =0 a.s.
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Proor. By (3.35) and (3.36), it is readily verified that (3.40) follows from

(n~V*(a, log(1/a,))" *(log n)""?)

lim

n— log(1 /2
(3.41) (a,log(1/a,))
) log? n 4
- ’}1_1)1:0 ( na, log(l/a,) ) =0

For the proof of (3.41), observe that we have either a, = min(a,,n '/2) or
a, = max(a,,n”'/2). In the first case, log(1/a,) > 3 log n, so that, by (S.3),

(log®n)/(na,log(l/a,)) < 2(logn)/(na,) -0 asn — .
In the second case, by (S.1),
(log®n)/(na, log(1/a,)) = O((log® n)/(na,))
= O((log?n)/n'/?) -0 asn — .
Thus, in both cases, (3.41) holds. O

LeEmMA 3.12. For any fixed A > 1, we have almost surely

lim sup sup I (a,,t; ) — é(ay, 1 —a,; )l
n—oo l-Aa,<t<l-a,

(3.42)
X (2a, log(1/a,)) " < (2(x - 1))%,

and, for all n sufficiently large,

(3.43) V.1 -2a,)<1-a,.

Proor. By (1.8), it is readily verified that
(3.44) lim (V,(1-2a,)-(1-a,))/a,=1-21<0 as,

which implies (3.43). Moreover, by (3.44) and (3.22),

lim sup sup 1€n(@n, Va(8); *) = €al@n, 1 = an; )l
n—w 1l-ia,<t<l-a,
(3.45) X (2a,, log(1/a,)) "

< lim b; 0, (2(A - 1)a,) = (2(A - 1))? as,
which, when combined with (3.40), yields (3.42). O

We have now in hand all the ingredients needed for the proof of (3.3). Select
by (3.2) an n{), such that for all n > n{),,

(3.46) {fn(an, u;*)/(2a, log(l/an))l/z, 0O<u<l- an> c Sg/2.
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Next, choose A =1 + j5¢7 and select by (3.42) and (3.43) an n®, such
that, for all n > n®,,

sup "{n a,,t;) —€&(a,,1—a,; )l 2a, log(1 a, 172
(3.47) 1-aa,<t<l-a, ( ) ( ) /( (1/ ))

<e/2
and
(3.48) V,(1-2a,)<1-a,.
Finally, by (3.40), select an n®) &2 such that for all n > n®®,,
(3.49) sup ”{n(an,t; ) — n(an,Vn(t); .)”/(2an log(l/an))l/z <e/2.

0<t<l-Aa,

By combining (3.46)—(3.49), we see that (3.3) holds whenever n > max(n{),,
1 < i < 3). This completes the first half of the proof of Theorem 3.1 for ¢,,.

For the second half of this proof, we select an arbitrary f € S, and fix an
e > 0. By (3.4) and Remark 3.1, there exist almost surely an n{), and a
sequence ; < s, < 2 such that, for all n >n®,,

(3.50) I€:(an, 5,5 )/ (20, log(1/a,))"* = Fll < 2 /4.

Set now ¢, = U,(s,). Observe that ¢, = i /n, where 0 < i < n is an integer.
Moreover, by the Glivenko—Cantelli theorem, we have almost surely for all
large n, 3<t, < 3, together with the inequality V,(¢,) <s, < V.(¢, + 1/n).
This, in turn, implies [see, e.g., Devroye (1981, 1982a) and Deheuvels (1982)]
that

lim sup|V,(¢,) — s,/(n/log n)

n-—oo

(3.51)
< lim max |V,(j/n) = V,((j - 1)/n)|(n/log n)=1 as.

n—-w l<j<n

By (3.51) and the definition of ¢, it follows that
lim supll€,(a,, Vi(ta)3 ) = €n(@n, 505 )/ (20, log(1/a,))"?

n-—o

(3.52) < limsup  sup  [I§,(a,, 1) — E(a,, )
n—oo o<t,t'<1
It"—y'|<2n"llogn

X (2a, log(l/an))_1/2=0 a.s.,

where we have used (2.17) [note that (3.52) is a consequence of Theorem 1(I) of
Mason, Shorack and Wellner (1983)].

Recalling that ultimately 3 < ¢, < %, (3.49), (3.50) and (3.52) imply that
whenever n > n%), is chosen so large that the LHS of (3.52) is less than /4
and ¢, < Aa,, we have

(3.53) I(anst,; )/ (20, log(1/a,)) " ~ fll <e.
By (3.53), we have (3.5), which completes the proof of Theorem 3.1. 00
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REMARK 3.2. The same argument as in Remark 2.4 shows that n’ r in
Theorem 3.1 may be chosen independently of f€ S.

REMARK 3.3. It is readily verified from the arguments used for the proof of
Theorem 3.1 that the conclusion of this theorem holds if there exists a
sequence {A,, n > 1} satisfying the CRS conditions and such that A,/a, — 1
as n — o,

4. Applications.

4.1. Oscillation moduli of the empirical and quantile processes. Let E*(a)
and 0 (a) be as in (1.2), and define likewise

(4.1.1) Ef(a)=+ sup sup + £.(a,t;s)
0<t<l-a 0O<sx<1
and

(4.1.2) 6,:—“(a) =+ sup sup =+ {,(a,t;s).

0<t<l—-a 0<s<1
Let b, = (2a,, log(1/a,))'/2. Theorem 3.1 shows that whenever {a ,, n > 1}
satisfies the CRS conditions, all four statistics b,'E*(a,), b; 15 EX(a,),

b,'0f(a,) and b, 1(:7)“—“(a ») have almost sure limits when n — « equal to
(4.1.3) + sup +f(1) = £ sup sup *f(s)=+L1.
€S, €Sy 0<s<1

The same holds obviously for b, max(E;(a, ) —-E.(a,)), b, 1max(('i)*(a ),
-0, (a,), b;' max(E; (a,), -E;(a,)) and b;' max(®;(a,), — 0, (a,)) with

+”in (4 13)

L1kew1se, when na,/logn - c € (0,_oo) as n — o, we see from Theorems
2.1 and 2.2 that b,'EX(a,) and b, 'E*(a,) have almost sure limits when
n — « equal to

+(2¢) "% sup + (f(1) —c)
fea,

+(2¢) Y sup sup + (f(s) - cs)
feA, 0<s<1

(82— 1)(c/2)"%,

while ;0 *(a,) and b;'®2(a,) have almost sure limits when n — w equal
to

(4.1.4)

+ (2¢) "% sup + (g(1) - c)
gerl,

(4.1.5) = +(2) “?sup sup + (g(s) —cs)
gel, 0<s<1

= (yt- 1)(0/2)1/2.

Similar results hold for
b, max(E; (a,), ~E;(a,)), b, max(E; (a,), ~E; (a,)),
b, max(0, (a,), -0, (a,))
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and b, ! max(af (a,), —6; (a,)) with “+” in (4.1.4) and (4.1.5), respectively.
Here, we make use of the obvious inequalities

(4.1.6) 8-1>1-6; and y/—1=>1-y;, forc>0.

These results give new proofs for the theorems of Stute (1982a), Mason,
Shorack and Wellner (1983) and Mason (1984). Moreover, they give an addi-
tional insight to the meaning of these theorems by showing in each case [see,
e.g., Deheuvels and Mason (1991)] that the functions ¢,(a,,?; ) and
{(a,,t; ) are nearly linear when the extremum in each of the eight statistics
considered previously is reached.

REMARK 4.1. Notice that Stute (1982a) considers only the limiting be-
havior of max(E}, —E;). Likewise, Mason (1984) considers essentially
max(?),jr , —6; ). Finally, Mason, Shorack and Wellner (1983) consider only
max(E e E; ) and the Lipschitz-(3) modulus of a,,. In that sense, the results

obtained in this section for Ef, B}, ©F and ©, are new. However, the
methods used by the previously mentioned authors could have been applied

without great difficulty to obtain (1.3)-(1.5) as cited in Section 1.

4.2. Laws of the iterated logarithm for kernel density estimators. Consider
a sequence X;, X,,... of independent and identically distributed random
variables on the real line having common distribution function F(x) = P(X;
< x) and density f(x) = F'(x) assumed to be continuous and positive on a
given bounded interval [A, B] (A < B). In the past years, much attention has
been directed toward obtaining limiting properties of estimators of f such as
the well-known Parzen-Rosenblatt kernel density estimator [Rosenblatt (1956)
and Parzen (1962)] given by

Fu(2) = (nh)F X K((x - X) /M)
(4.2.1) =t

- f_°° MK ((x = £)/A,) dF(t),

where F(t) =n"'#{X;, <t: 1 <i <n}, {A,, n > 1} is a sequence of positive
constants, and where the kernel K(-) is assumed to satisfy the conditions:

(K.1) K(-) is of bounded variation on (—, ©),
(K.2) For some 0 <M < =, K(u) = 0 for all |u| > M.
K.3) [ K(u)du = 1.

Conditions which ensure the consistency of such estimators with respect to
various criteria (such as uniformity in the L! convergence) have been given by
several authors, among whom we may cite Deheuvels (1974), Bertrand-Retali
(1978), Silverman (1978), Devroye (1979) and Devroye and Wagner (1979).
These well-known conditions [see, e.g., Devroye and Gyorfi (1985) and Devroye
(1987) for additional references] are stated in Theorem D.
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THEOREM D. Under (K.1)-(K.3), for any given subinterval [C, D] of [A, B]
with C < D, a necessary and sufficient condition to have supc , . p If.(x) —
f(x)| = 0 in probability as n — = for any density f, continuous on [A, B], is
that

(8.7 A, — 0 together with nA,/logn - ©» asn — o,

Rates of strong uniform consistency of f, to f have been obtained by Stute
(1982b) who proved, under the CRS conditions, that whenever A < C < D < B,
we have

y fa(%) = E(fu(%))
im sup

n=® C<x<D Vi(x)

- ( f:oKz(u) du)l/2 as.

Our first result gives a new proof and an extension of (4.2.2).

naA, 1/2
( 2log(1/1,) )

(4.2.2)

THEOREM 4.1. Under the CRS conditions imposed upon {A,, n > 1} and

(K.1) and (K.2), for any A < C < D < B, we have

lim sup <+ fu(x) — E(f.(x)) ( nA, )1/2
n-— o Csxls)D h \/f(x) 2]Og(1//\n)

- (f:oKz(u)du)l/z a.s.

n’

(4.2.3)

_ ProOF. Assume without loss of generality that M = ; in (K.2), and set
K(u) = K(3 — u). Further, let

fu) = (na ™ £ R[ZE ) <+ 30

Since f is continuous and A, - 0, it is straightforward that all we need is
to prove that, for any fixed A < C < D < B, we have

wup i(f;(x)—E(f;(x)))( na, )1/2
(4.2.4) C<x<D Vi) 2log(1/4,)

- (jollfz(u) du)l/z as.

In view of (4.2.4), observe that

n

fux) = [0 (u) dF,(x + )
(4.2.5) 0

_/;IA;I(Fn(x +A,u) — Fn(x))dlf(u)
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Without loss of generality, let F,(x) = U,(F(x)), where U,(-) is as in
Section 1. We obtain directly from (4.2.5) that

', fu(x) — E(fy(x))) f (@, (F(x + A,u))

(4.2.6)
—a,(F(x))) dR(u).
Now set
a,= sup {F(x+A,) —F(x)}=(1+0(1))A, sup f(x) asA, — 0.
C<x<D C<x<D

Since {A,, n > 1} satisfies the CRS conditions, by Theorem 3.1 and Remark
3.3, it follows that, for any & > 0, there exists almost surely an n/, <  such
that, for all n > n’,

{(2a,10g(1/a,)) X (a,(F(x) +a,")

(4.2.7) \
~a,(F(x))):C<x <D} c§;.

For C<x<Dand0<u<1,set v(u,x)= a,(F(x + Au) — F(x)). Ob-
viously, 0 < v,(u, x) < 1. Moreover, by the continuity and positivity of f on
[A, B], for any p > 1, there exist a v, > 0and an n, < » such that D-C< v,
and n > n, imply that

p lu<v,(u,x) <pu forall0 <u<1landC <x <D.

By Schwarz’s inequality, for any 0 < s, ¢t < 1 and & € Sy, we have |g(s) —
g@)| < y|t — s|. It follows that for n < n, and D-C<v

=V

(4.2.8) sup sup llg(v,(-,x)) —gll<yp-1.
8€So C<x<D

Choose now p = 1 + £2 and assume that D — € < v, and n > max(n', n ).
By (4.2.7) and (4.2.8), we have

{(2a,10g(1/a,)) "} (a,(F(x + A, ))

(4.2.9)
—a,(F(x))):C<x< ﬁ} c §2.

By (4.2.6) and (4.2.9), it follows that almost surely

limsup{nl/zx\n(2anlog(l/an))_l/z sup =+ (f,(x) —E(f'n(x)))}
n-o C<x<D

(4.2.10)
<2£f |dK (u)| + sup +[g(u)dK(u)

gE€S,

where [}|dK(u)| [< « by (K.1)] denotes the total variation of K(-). Next, by
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integrating by parts and by Schwarz’s inequality, we have, for any g € S,
2
1 5 1. .
([letw k)| = ([2)K(w) au
0 0
(4.2.11) < (jlg(uf du)(j11€2(u) du)
0 0

s[IKZ(u)du.

~

Next, we see that we may choose v, > 0 so small that for D — C < v, and
C<x< D

nA, 1/2 s 1|2 o
(4.2.12) (m) n An(zanlog(;;)) (f(x))
<l+e¢

for all large n. Thus, by (4.2.10)—(4.2.12), when applied repeatedly to each
element of a subdivision of [C, D] into subintervals of length less than v,, we
obtain that the LHS of (4.2.4) is a.s. for all large n less than or equal to

1 _ 1. 1/2
(4.2.13) 2e(1+e)f0|d1<(u)| +(1+8)([0K2(u)du) +e.

By taking & > 0 arbitrarily small in (4.2.13), we obtain the upper half of
(4.2.4). For the lower half, we use again Theorem 3.1 to show that, for any
g €S, and ¢ > 0, there exists almost surely an n’, , such that for all n > n", ,
there exists an x, € (C, D) (see, e.g., Remark 3. 1) such that

(4.2.14) [(2a, log(1/a,)) " *(an(F(x,) +a, ) — a,(F(x,))) — gl <e.
By the same arguments as in (4.2.8) and (4.2.9), we obtain from (4.2.14)

that, for all n sufficiently large,

(4.2.15) l(2a,log(1/a,))” "*(an(F(x, + A, *)) — an(F(x,))) — &gl < 2¢.
By (4.2.6) and (4.2.15), it follows that almost surely

liminf + n'/A,(2a, log(1/a,)) /% fu(x.) = E(fu(x.)))

n—w

(4.2.16) L .
> —2[ dR(u) F [ g(u)dR(x) as.
0 0

By (4.2.12) and (4.2.16), if we restrict x, to vary in (C,, D,) c (C, D) with
D, — C, < vy,,2 we have, as in (4.2.12) and (4.2.13),

liminf +
(4.2.17) nee

fn(xn) _E(f;z(xn)) ( na, )1/2
Vi(=x,) 2log(1/1,)

—2¢(1 + e)fol|d16(u)| F(L+ s)folg(u) dB(u) — ¢ as.
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Consider now the function g(u) = +(J¢K(s)ds)/(J¢K*(s)ds)'/?, for 0 <
u <1. It can be verified that [ig(u)dK(u) = F(J{K*u)du)'/? and that
g € S,. By making this choice for g in (4.2.17) and letting ¢ > 0 be arbitrarily
small, we obtain the lower-half part of (4.2.4), which completes the proof of
Theorem 4.1. O

REMARK 4.2. It is noteworthy that the conclusion of Theorem 4.1 holds
without assuming (K.3). This assumption is only required to ensure that
[% o f(x) dx = 1, that is, to obtain that f, is a density. Moreover, no positivity
assumption is required on K(-), so that we may apply Theorem 4.1 in the case
of estimates of derivatives of f. Corollary 4.1 is obtained directly from this
theorem by setting K(:-) = H®(:), with H® and f® denoting the pth
derivatives of H and f, respectively. Recently, Hall (1990) showed that any
kernel K(-) with an unbounded support [i.e., not satisfying (K.2)] could be
approximated by a kernel K (-) in such a way that the formal replacement of
K by K, in (4.2.1) modifies the limit in (4.2.2) by less than ¢ a.s. Therefore, we
may use his argument to show that our results hold without assuming (K.2).

COROLLARY 4.1. Let H(-) be p times differentiable on (—x,) and such
that H®)(-) is of bounded variation on (—®,x). Assume further that K = H®
satisfies (K.1) and (K.2) and that [* ,H(u) du = 1. Under the CRS conditions
imposed upon {A,, n > 1}, if

n - X
(4.2.18) fP(x) =n";P7t Y H(p)(x : ),
i=1

A

n

then, for any A < C < D < B, we have

fé‘”’(x)~E(f,sP>(x))( nAZP+1 )1/2
VFi(x) 2log(1/A,)

- 172
= (f H(P)(u)zdu) a.s.

lim sup =+

n=® C<x<D

(4.2.19)

Interestingly, for (4.2.19), we need not assume the existence of f‘?. Note
here that

x—1

E(f{(x)) = ffwA;P—lmm( -

) dF(t)

n

_ w dP le—t )
= _mgx—p(z (A )f(t) ¢

n

is always finite under the assumptions of Corollary 4.1. If f is p times
continuously differentiable, integration by parts yields

E(fi"(x)) = f:(%H(xT_E))f(p)(t) dt > fP(x) asA, 0.
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Thus, under this last assumption, we see that a necessary and sufficient
condition for the strong uniform consistency of f"X(-) to f®X-) on [C, D]
(assuming that {A,,, n > 1} satisfies the CRS conditions) is for p > 1 that

(4.2.20) A, — O together with nA%2P*! /logn — «© asn — .

For p = 0, we may not conclude (4.2.19), since the CRS conditions impose
that na,/logn — ® as n — «. However, in this case, we may use Theorem
2.1 to prove the following analogue of Theorem 4.1, covering the limiting
behavior of f,(-) when nA,/logn — L € (0, ). To introduce the statement of
this theorem, observe (see, e.g.,, the proof of Theorem 4.1) that when
nA,/logn —» «, the RHS on (4.2.4) is governed by the constant

sup + ['g(t) dK(t) = sup ¥ ['E(t)g(t) ar
BES, 0 g€S, 0

(follf(t)2 dt)l/z.

It turns out that when nA,/logn — L, we need to evaluate the same
expression as in (4.2.21) with the formal replacement of S, by A, for a suitable
¢ € (0,«). By Theorems 3 and 4 of Deheuvels and Mason (1991), one must
here consider the solutions A; < 0 < A} of the equation in A (assuming that
K #0),

(4.2.22) [ h(exp(AR(2)))dt = 1/c,

where h(-) is as in (1.6). Here, A€ (0, ©) always exists, while A . €(0,x) is
only defined when

(4.2.21)

(4.2.23) c>coi= A13130{ j:h(exp(u{'(t))) dt}_ .

Here, it may be seen that if M* (resp., M) denotes the Lebesgue measure
of the set of points where K(-) > 0 (resp., < 0), we have c, = 0 if M~> 0,
while ¢, = 1/M* when M~ = 0 (assuming that K # 0).

Whenever 0 <c <c,, we will set A;= —», By Theorems 3 and 4 of
Deheuvels and Mason (1991), we have then, for K > 0,

(4.2.24) ::fc * I:K(t)g(t) dt = te fllf(t) exp(AEK(t))dt
= +A*(c, K),

with the convention that A~(c, K) = 0 when A = —c.
We may now state the following theorem, which covers the case where
ni,/logn — L.

THEOREM 4.2. Assume that nA,/logn — L € (0,) as n — . Then, un-
der (K.1)~(K.2) and assuming that K # 0 and K > 0, for any fixed 0 < ¢ < 1
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and A < C <D < B, we have almost surely for all n sufficiently large and
C<x<D,

1+e
(4.2.25) +fu(%) < £ ——A*(Lf(x), K) + .
Moreover, there exists almost surely C < x;f< D for all large n, such that
1-¢
(4.2.26) tf(x}) = + A*(Lf(x),K) —e.

Proor. It will become obvious from the arguments used in the sequel that
the restriction of positivity imposed upon K may easily be relaxed. However,
this assumption simplifies the exposition and will be made from now on. We
will follow the lines of the proof of Theorem 4.1 with small changes. In the
first place, we reduce (4.2.25) and (4.2.26) to the corresponding statements
with the formal replacements of f, by f,, of K by K and of C, D by C, D. By
letting a, = sups_, 5{F(x + A,) — F(x)}, we see that na,/logn —
Lsups_,.p f(x), so that {a,, n > 1} satisfies (S.6). By Theorem 2.1, it
follows that, for any ¢ > 0, there exists almost surely an N < o such that, for
all n > N,

n . -
(4.2.27) {@(Fn(F(x) +a,)-F,(F(x))):C<x< D} C Ay,
where L' == L sups_, .5 f(x). By (2.21), forany 0 <s,¢ < 1land g € A;, we
have [g(s) — g(®)| < L'lt — s16,,_,, so that we replace formally (4.2.8) by
(4.2.28) sup sup lig(va(-,%)) —gll<L'(p—1)8y,_y-

€A C<x<D

By choosing p > 1 so small that the RHS of (4.2.28) is less than &, we
obtain the analogue of (4.2.9) which holds almost surely for all large n and
D — C sufficiently small:

n ~ -
(4.2.29) {@(Fn(zr(x +2,°)) = Fy(F(2))):C<x < D} C AZ.

Given (4.2.29) and (4.2.5), the remainder of the proof is very similar to the
proof of Theorem 4.1 and makes use of (4.2.24) and Remark 2.2. Therefore, we
omit details. O

REMARK 4.3. It is obvious from (4.2.24) that whenever (K.3) holds and
K > 0, we have

1 o
(42.30)  TA*(Lf(x),K) = f(x) f_mK(t) exp(Af s, K(2)) dt,

which is greater than f(x) in the “+” case and less than f(x) in the “—”
case. Thus we see from (4.2.26) and (4.2.29) that the condition nA,/log n — ©
is necessary for strong uniform consistency of f, to f [see, e.g., (4.2.20)].
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Let ¢ »  in (4.2.22). Since h(l + u) ~ u%/2 and (uniformly over t)
exp(AK()) — 1 ~ AK(t) as A — 0, the following expansion holds for (4.2.22):

[°° h(exp(AK(t))) dt = (1 + 0(1)))‘—2[“ K2(t) dt
(4.2.31) - 27
=%, with A =A%, asc — o,

By (4.2.31), we have as ¢ — o,
-1/2

(4.2.32) AF= (1 + o(1))(§)_1/2(f_:xz(t) dt) ,

so that, by (4.2.30) and (4.2.32), we have, under (K.3),

1 w
A (), K) = f(x) = (1 + (1) f(2)AE e [ K3(2) dt

(#4239 - +(1+ 0(1))( ZfLﬂ)w( [ kx0) dt)1/2

as L — .

Consider now the case where f(x) is constant on [C, D][so that E(f(x)) =
f(x)]. It follows from (4.2.25), (4.2.26) and (4.2.33) that if A, =L(ogn)/n,
then a.s.,

lim sup =+
=% C<x<D

ful(x) — E(f(2)) ( nA, )1/2
\/f(x) Zlog(l/’\n)
- 1/2
= -'_-(1+o(1))(f Kz(t)dt) as L — o,
This shows that the statements of Theorems 4.1 and 4.2 are in agreement.

4.3. Laws of the iterated logarithm for nearest neighbor density estimators.
Assume that X, X,,... are as in Section 4.2, and let 0 <A, < 1 be a real
sequence. The nearest neighbor density estimator introduced by Fix and
Hodges (1951) and later studied by Loftsgaarden and Quesenberry (1965)
estimates the common density f of X, X,,... by

(43.1) f(x)= An/inf{h > 0: F(x + g) - Fn(x - %) > A,,}.
Denote by M, (x) the function of x defined for n > 1 by

(432) M, (x)= )tn/inf{h > 0: F(x + g) - F(x - g) > )tn}.
We obtain the following law of the iterated logarithm for £
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THEOREM 4.3. Under the CRS conditions imposed upon {A,, n > 1}, for
any A < C <D < B, we have

f;(x) - Mn(x) nAn 172
£(x) )(2log(1/A,,)) Tl as

(43.3) lim sup =+

no® C<x<D

Proor. The proof is very similar to that just given for Theorem 4.1.
Therefore, we omit details. O

ReEMARK 4.4. Further references to study of fn are given in Devroye
(1982b, 1987), and in Devroye and Gyorfi (1985). The result given in (4.3.3) is
essentially due to Mack (1983), who proved that, under the CRS conditions

imposed upon {A,, n > 1},
nA 1/2
( i ) =1 a.s.

(4.34) lim sup

n=% C<x<D

fu(%) — M, (%)
f(x) 2log(1/1,)

Mack (1983) bases his proof on Theorem 2.15 of Stute (1982a) and makes
use of the assumption [see his proof of (22), Mack (1983), page 191] that the
sequence b,(x) = M (x)n"'k, satisfies the conditions of Stute’s Theorem
2.15. Since he also assumes that %, is a sequence of positive integers such that
n~ 'k, —> 0 as n —> o, this leads to a contradiction (there is no nonultimately
constant sequence of positive integers %, such that %, 10 together with
n~'k, 10 as n 1tx). It is however possible to prove by his methods that the
result (4.3.4) holds when k, ~nA, and A, is as in Theorem 4.3. These
regularity conditions are not mentioned in the statements of his theorems, but
are implicitly used in the proofs. Note further that (4.3.3) is more general
than (4.3.4).

4.4. Conclusion. The application of our functional laws of the iterated
logarithm just detailed comprises only a small subset of the kind of precise
knowledge about the asymptotic a.s. behavior of function estimators that is
now available through our results. Two further applications that immediately
come to mind are the limiting behavior of regression and quantile function
estimators. We will pursue these and related investigations elsewhere in the
near future.

5. Acknowledgement. We thank the referee for a careful reading of our
manuscript and for helpful suggestions.
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