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ON GENERALIZED RENEWAL MEASURES AND CERTAIN
FIRST PASSAGE TIMES!

By GEROLD ALSMEYER
University of Kiel

Let X, X,,... beiid. random variables with common mean p > 0 and
associated random walk Sy =0, S, =X, + --- +X,, n > 1. For a regu-
larly varying function ¢(¢) = t°L(¢), « > —1 with slowly varying L(%), we
consider the generalized renewal function

U) = L #(n)P(S, 1), (<R,
n>0

by relating it to the family 7 = 7(¢) = inf{r > 1: S,, > ¢} ¢ > 0. One of the
major results is that Uy(t) <« for all ¢t € R, iff ¢(t)_1U¢(t) ~1/(a +
Du**last > o, iff E(X;)?$(X7) < o, provided ¢ is ultimately increasing
(= a = 0). A related result is proved for Uy(t + h) — Uy#) and U; (¢) =
L2 00(n)P(M, <t), where M, = max, ;. , S;. Our results form exten-
sions of earlier ones by Heyde, Kalma, Gut and others, who either consid-
ered more specific functions ¢ or used stronger moment assumptions. The
proofs are based on a regeneration technique from renewal theory and two
martingale inequalities by Burkholder, Davis and Gundy.

1. Introduction and results. Let X;, X,,... be a sequence of ii.d.
real-valued random variables with finite positive mean ux and associated
random walk S;=0, S,=X,+ ---+X, for n>1. Given an arbitrary
function ¢: [0, %) — [0, ),

(1.1) Uy= X #(n)P(S, € ")
n>=0

defines a so-called generalized renewal measure of (S,), ., which for ¢ =1
clearly reduces to the ordinary renewal measure. The latter one has been
studied in great detail and one may consult the textbook by Asmussen (1987)
and the references given therein. For ¢(¢) =¢~', U, is called the harmonic
renewal measure and its behavior is closely related to that of the ladder
variables and ladder heights associated with (S,),.,. For results in this
special case, we refer to Greenwood, Omey and Teugels (1982), Griibel (1986,
1987, 1988) and Alsmeyer (1990). In Heyde (1964, 1966), Kalma (1972),
Maejima and Omey (1984), Embrechts, Maejima and Omey (1984) and also in
Alsmeyer (1990), the asymptotic behavior of U,(¢) and U,(¢ + h) — U,(#), as
t — o, is examined for the more general case when ¢(¢) is a regularly varying
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1230 G. ALSMEYER

function, that is, for ¢(¢) = #*L(¢) with some slowly varying L(t). For a > 0, it
has been shown by Heyde (1966) that

to(t)
(a + )p*t

provided E(X;)?*2 < « for some B such that ¢(¢) = O(¢#), with equivalence
holding if ¢(¢) = ¢* [and B = a then]. Furthermore, for a > —1, nonarith-
metic X; and all 2 > 0,

(1.2) Uy(t) ~ ast — o,

ho(t)
(1.3) Uy(t + h) — Uy(t) ~ s ast — »,
provided E(X{)?*! < » for B = a, if ¢(t) = t* and for B = [a] + 1 otherwise.
This result is due to Kalma (1972) (the first part) and to Maejima and Omey
(1984) (the second one); see also Embrechts, Maejima and Omey (1984). The
main object of this paper is to sharpen these results by giving the right
moment conditions on X,; equivalent with, respectively, (1.2) and (1.3) for

general regularly varying ¢(¢) = t*L(¢), @ > 0. Our proofs are based on a

simple device which, for nonnegative X;, X,,..., consists in relating a gener-
alized renewal function U,(#) to a suitable moment function of the family
(1.4) () =inf{n >1: S, >¢t}, t=>0,

of first passage times, that is, to EH(7(¢)) for some appropriate H. This has
been done already in Alsmeyer (1990) for harmonic renewal measures and it is
also shown there in the final section how to employ the device for general ¢(¢).
However, for the two-sided case, the situation is more difficult and we have to
modify our device and to combine it with appropriate techniques from renewal
theory. In particular, we will extend a well-known result on existence of
E¢(7(t)) and some related quantities from the special class ¢(¢) = %, a > 1, to
the more general class of regularly varying functions being considered here.
The result is stated in Theorem 3 in Section 2. Our main results, Theorem 1
and 2, are given below.

Let %7, denote the class of all functions ¢: [0,) — [0,©) which are
regularly varying at infinity with exponent «, a € R, that is,

tlim (¢(tx)/Pp(t)) = x* forall x > 0.

Then ¢ is of the form ¢(¢) = t*L(¢) for some L € 2%, the class of nonnega-
tive, slowly varying functions. Typical ex~mples are ¢(¢) = (¢ + 1)* logf(¢ + 1)
for arbitrary a,B € R, £ € N and with log, denoting the k-fold iterated
logarithm.

THEOREM 1. (a) Let u = EX, € (0,%). For each ultimately increasing ¢ €
RY,, a > 0, the following statements are then equivalent:

(1.5) E(X7)’6(Xp) <o,
(1.6) Uy(t) <o forallt e R,
(1.7 4dQ) ast > o,

Uy(t) ~ @+ Dt
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(b) For ultimately decreasing ¢ € R, a € (—1,0], (1.5) still implies (1.6)
and (1.7).

Clearly, the ultimate monotonicity is an additional requirement only when
a = 0. For the statement of Theorem 2, let M,, = max,_;_, S; for n > 0 and
(1.8) Uf(t) = Y ¢(n)P(M, <t).
n>0
Generalized renewal functions for the sequence of maxima were considered by

Heyde (1966) who proved (1.11) below under a stronger moment condition on
X,.

THEOREM 2. (a) Let u = EX, € (0, ). For each ultimately increasing ¢ €
K7, a = 0, the following statements are equivalent:

(19) EX;¢(X;7) <,
(1.10) Uj(t) <o forallt eR,
tp(2)
+ ~N —
(1.11) Uy (t) (a+ )u=*t ast — o,
(1.12) Uy(t+h) —Uyt) < forallt€Randh >0,

ho(t)
(1.13) Uyt +h) —Uy(t) ~—5 forallh>0ast > »,
7’
where for the latter assertion X, is additionally supposed to be nonarithmetic.
(b) For ultimately decreasing ¢ € #7,, a € (—1,0], u € (0,®) is sufficient

for validity of (1.10) through (1.13).

REMARKS. (a) An arithmetic version of (1.13) can also be easily formulated.
(b) A look at the proofs of our theorems shows that the equivalences remain
true when replacing “for all ¢+ € R” by “for some ¢ € R” in (1.6) and (1.10).

The proofs of Theorem 1 and 2 are given in Section 3. They are preceded by
a number of results in Section 2, the most important of which is Theorem 3
below generalizing some moment results in random walk theory.

2. A basic theorem and further prerequisites. Let S, = min,_, S,
o_=inf{n > 1: S, < 0} the first weakly descending ladder epoch and S, the
associated ladder variable.

THEOREM 3. Suppose pu = EX, € (0,»). For each ultimately increasing
¢ € BV, a = 0, the following statements are then equivalent:

(2.1) EX;$(X;) <,
(2.2) E¢(IS«]) <o,
(2.3) E}(IS,_1)1(o_< ®) < o,

(2.4) Er(t)¢(7(t)) <o forall (some)t > 0.
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For ¢(t) =t* a>1, (2.1) « (2.2) is a result of Kiefer and Wolfowitz
(1956), (2.1) < (2.3) of Hogan (1983) and Janson (1986) and finally (2.1) <
(2.4) of Gut (1974). Our proof is essentially based on Lemma 4 which in turn is
furnished by three further ones, two of them being rather elementary and the
third one giving two martingale inequalities essentially due to Burkholder,
Davis and Gundy (1972). Gut [(1974), Lemma 2.3] used the classical Burkholder
inequality for proving the assertions of Lemma 4 for the special ¢’s above. For
the functions considered here, however, this inequality is no longer adequate.

Let us begin with some general remarks on the functions ¢ to be considered
here. It is known, see Bingham, Goldie and Teugels [(1987), page 44], that for
each ¢ € #7,, there is an infinitely often differentiable ¢ € %%, such that
o) ~ y(t) as t —> « and

(2.5) " Y(t) ~a(a—1) - (e —n+ 1)Y(¢) foralln > 1.

Let .7, denote the subclass of all such smooth functions in #%,. It is not
difficult to see that much of our subsequent analysis, in particular for the
proof of Theorem 3, can be restricted w.l.o.g. to functions ¢ € %, whenever
this helps simplifying the arguments. Note that ¢ is then either ultimately
concave or ultimately convex if a & {0, 1}. The next lemma shows that even
more regularity assumptions on ¢ can be assumed without loss of generality.

Lemma 1. (a) Each unbounded, ultimately increasing (and ultimately
convex /concave)p € #Y,, a > 0, is asymptotically equal to a function ¢ [i.e.,
&) ~ Y(t), as t — «] which is increasing (and convex /concave) and satisfies
$(0) = 0 and

(2.6) Y(x+y) <c(d(x) +¢(v))

for all x,y €[0,») and a suitable constant ¢ € (0,x). In particular, y(2x) <
2cy(x).
(b) If ¢ is ultimately concave or an element of /¥, then

j=1
holds for all sufficiently large b, all n > 1 and x,,...,x, > 0.
ProoF. (a) Choose b so large that ¢(¢) = (b + t) — $(b) is increasing
(and convex/concave) with ¢'(0) = ¢'() > 0. The latter is possible because ¢

is unbounded. Clearly, ¢(¢) ~ ¢(¢) as ¢ — =, and (0) = 0. Furthermore, for
al x>y >0,

Wxty) )
Y(x) +¢(y) ~ ¥(x)
and the right-hand side converges to 2 as x — 0, because ¢'(0) > 0. In

particular, it remains bounded for 0 < y < x < ¢ sufficiently small. However, it
does so also for x > &£ > 0 by the uniform convergence theorem for regularly
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varying functions; see Bingham, Goldie and Teugels [(1987), page 22]. This
easily implies (2.6).

(b) If ¢ is ultimately concave, there is nothing to prove. So let ¢ € SY,.
Choose some B € (0, 1), set y(¢) = tAp(2), Yy (t) = (b + ¢) — Y(b) and note
that, for sufficiently large b, ¢, #’7; is concave with ,(0) = 0. Thus, by
applying (2.7) to ¢, for all n > 1 and all x,,...,x, > 0,

_¥(bts,) _ dy(s,) +b7P(b)

(b +5n) = (b+s,)"  (b+s,)"?
% () N bPe(b)
2.8) T iTi(b+s,)? (b+s,)P
no(b+ax;\P n —1)bP(b
= El(b +s;) b+ ) - (b +)s,,(;5‘S :
< % o6 +x),
where s, =x; + -+ +x, and x; <s, for all 1 <i < n has been used for the

last inequality. O

The following two martingale inequalities are due to Burkholder, Davis and
Gundy (1972). However, inequality (2.9), though following from their Theorem
3.1, cannot be found there; see instead Chow and Teicher [(1978), Theorem
11.3.2, page 397].

LEMMA 2. Let ¢: [0,®) — [0, ) be an increasing, continuous function with
$(0) = 0 and Y(2¢t) < cy(t) for all t > 0 and some c € (0,). Then, for all
y € [1,2), there is a constant K = K, € (0,) such that for all martingales
(W,),, - o with increments Y,,Y,,... and canonical filtration (Z), 50 that is,
F =o(W,,...,W,) forn =0,

L E(Y,)

Jj=1

(2.9) Ey(suplW,|) <K

n>1

.

1/,) + E¢(

1/2)

LEmMma 3. Let X, be nonnegative and 1 be an arbitrary stopping time for
(S,),, > 1. Then for all measurable : [0, %) — [0, ),

supIYnI)

n>1

If ¢ is furthermore convex, then even

Xy

(2.10) E(/f(supIWnI) < KE«p(
Jj=1

n>1

(2.11) Ey(maxX,) < Ey(X,)Er.
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Proor. The assertion follows immediately because of
y(maxX,) < ¥ (X,)
n=rt n=1
and Wald’s identity. O

LEmMMA 4. Let y € /7, a = 0, be an increasing, continuous function with
$(0) = 0 and ¥(2¢t) < cy(t) for all t > 0 and some c € (0,x). Suppose u =
EX, = 0 and E¢(X,|) < ». Then for all a.s. finite stopping times 7 for
(Sn)n >1

(2.12) Ey(1S,]) < CE(7 V ¢(7)).
Moreover, if a > 1, then for each B > 1V a/2,
(2.13) Ey(S,]) < CEr®.
Finally, if a = 1 and ¢ is convex, then

(2.14) Ey(S,|) < CEr.

In all three inequalities, C denotes a finite constant which does not depend
on 7.

Proor. Define
n
W,=8.,,= 2 X1(r=2j), n=0,

j=1

which is clearly a martingale with respect to &, = 0(S,,...,S,), n > 0, and it
converges a.s. to W, = S_. Its increments Y, = X, 1(1 > n) satisfy

E(Y, "% _,)=1r=n)u, as,

where u, = E|X;|”. Thus it follows from Lemma 3 and (2.9) in Lemma 2 with
y = 1 that

E¢(I81I)5E¢(sgpoanl) < K(E(ul Y 1 Zj)) + Etb(suIl)IXjIl(T Zj)))

Jj=1
_ K(Et//(p,lr) + E:p(r;xglle))

< K(Ey(pyr) + EY(X,1)E7) < CE(7 V ¥(7))
for a suitable constant C which does not depend on 7. This proves (2.12). If
a>1,(2.9) gives for each y €[1,2], y < a and 8 > a/7,
1/7)

d

+ B suplX,1(~ zj)))

Ey(S.1) < Eu(suplW,|) < K

n>0

By 2 17 2))

j=1

Jj=z1

< K(Ey(pY/r/7) + E¢(X,])Er) < CEr®,
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where C € (0,») is a constant which does depend on B but not on 7. Since
v €1[1,2], y < a is arbitrary, (2.13) follows.

Finally, if ¢ € /7] is convex, then y(b + t'/?) € % , is clearly con-
cave for sufficiently large 4. Using this, the monotonicity of , Wald’s identity
and (2.10), we obtain

1/2)

Y X21(7 =)

Jj=1

Ey(S,1) < Ev(suplW,|) < KEw(

n=0

1/2
) = KEy

Y X?
j=1

b+ ) X?

j=1
= KEy(b + |X,|)E~,
which shows (2.14).

< KEy

1/2) < KE(éll/fab + XJ.I))

Proor oF THEOREM 3. With regard to Lemma 1(a), it is obviously no loss of
generality to assume ¢ € .7, to be increasing with ¢(0) = 0 and ¢(2t) <
c¢(t) for all £ > 0 and some ¢ € (0,»). Let G, be the distribution of S, ), the
first strictly ascending ladder height and V*= 1, ,G*"™ the associated re-
newal measure. Let G_ be the distribution of S, given o_< ®, y = P(0_< )
and V'=X . ,y"G*"™. Then the following facts are known; see Asmussen
[(1987), page 201] and Janson [(1986), Lemma 1]:

(2.15) P(S, <t,0_<®)=yG_(t) = f( ]V+(t — 2)P(X, € dx),

(2.16) P(S, <t)=(1-y)V (2),
for all ¢ < 0. Using ¢t/(uE7(0)) < V*(¢) < Ct/(wE7(0)) for all ¢ > ¢ and suit-
able ¢, C € (0, ), we easily infer from (2.15):

P(S,

< —t,o_<®)x /mP(sz s) ds,

t
where f(¢) < g(¢) means that f(z)/g(¢) stays bounded away from 0 and « as
t > . Since ¢(0) =0, ¢' > 0 and [ip(s)ds ~ (a + 1)"1tp(t) as t > o, we
further obtain

E&(S, 1)1(o_< @) = /:qS’(t)P(SLs —t,0_< @) dt
< [[#(t) [ P(X;zs)dsdt = [ é()P(X;=t) de
0 t 0

- E(j;)Xl_(b(t) dt) =< EX;76(X7),

which proves equivalence of (2.1) and (2.3).
Since |S, | < IS4| on {o_< »} and ¢ is increasing, clearly (2.2) implies
(2.1). For the reverse conclusion, let (W,), ., be a zero-delayed random walk
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with iid. increments Y;,Y,,... having common distribution G_. Then, by
(2.16),

E¢(IS.1) = (1 —v) X vy"E(IW,]),

nx>0

and the desired conclusion obviously follows if we can show that E¢(|W,|) < o
implies E¢(IW,|) = O(n?) as n — « for some p > 0. If a > 1, then ¢ = EW,
is finite, and it follows from (2.6) and Lemma 4 [applied to (W, — j¢); ., and
7 = n] that

EG(W,) < C(6(nt) +E(IW, - nél)) = 0(6(n)) asn -,

where C is a suitable constant. For a = 1, E|W,| may be infinite, but ¢; =
E|W,|? < » for each B < 1. It is not dlfﬁcult to verify that ¢(¢1/P) still satlsﬁes
(2.6) and the conditions in Lemma 4. Thus, since L ;x; < (T ;x£)'/%,

Jvi =
n 1/B
B
LY
j=1

<C qb(nfﬁ) + E¢

E¢(W,|) < E¢

1/B

= 0(¢(n1/l3))

él (lYJlB - fp)

follows again by Lemma 4, but now applied to the martingale (X fz l(lelﬁ -
£5));»1 and 7 = n. For the remaining a’s, ¢ is ultimately subadditive in the
sense of Lemma 1(b), whence

E¢(W,]) = O(n) asn — o,

So we have proved (2.2) < (2.3).
Finally, let us consider equivalence of (2.1) and (2.4). Since 7(8)¢(7(¢))/
tdp(t) » %! a.s. (see Lemma 5 below), we infer from Fatou’s lemma that

.. ET()(7(2))
hﬂglfW >u

Thus, assuming (2.4), we obtain (2.1) from

o> Er(0)6(r(0)) = ["Er(6)o(+(1)) P(Xi € db)

—a—1

> C[ t¢(t) P(X; € dt) = CEX; $(X7),
0

where C is a suitable constant. Now suppose (2.1), write 7 for 7(¢) and let
¢ € S7,. Put ®(t) = t¢(¢), which is then an element of .7, , ;. Since trunca-
tion of Xl, X,,... by some ¢ > 0 enlarges 7 without aﬁ'ectlng X, X5,... we
may assume w.l.o.g. X,, X,,... to be bounded above, so that (2.1) becomes
E®(X,]) < . The following argument is the same as in Gut [(1974), Lemma
2.3.], where the result is proved for ¢(¢) = ¢*, a > 1. Suppose first a > 0.
Then E|X,|® < » for all B < a + 1, whence E7? < » by Theorem 2.1 of Gut
(1974). For e (1 V (a + 1)/2,a + 1), we thus obtain, by applying (2.13) of
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Lemma 4 to (S, — nu), .o,
E®(S, — p1l) < CETP < .

But 0 < S, < ¢ + ¢, whence (2.4) follows.
If « =0, then ® € .7, can be assumed convex, because ¢ is increasing.
Hence we infer from (2.14) in Lemma 4 that

E®(S, — pl) < CET < o,

which again yields the desired conclusion. O

The remainder of this section is devoted to a number of further renewal
theoretic prerequisites which are needed for the proofs of Theorem 1 and 2 in
Section 3. We begin with a lemma which generalizes a result due to Hatori
(1959) and Lai (1975). It is needed for the proof of Lemma 6 below.

LemmA 5. Suppose X; > 0 a.s. and ¢ € #7,, a = 0, to be ultimately
increasing. Let Z(t) = ¢(v(£)) /d(t) for t = 0. Then .

(2.17) Z(t) > u~* a.s.andin mean.

In particular, Z(t), t > 1 are uniformly integrable.

Proor. Let ¢(¢) = t*L(t) for some L € #%,. Writing for short 7 instead
of 7(¢), the a.s. convergence of Z(t) is obvious from

Z(t) = (:)"E%%—)_)—,

t
the slow variation of Lt and the fact that 7/t > u~! a.s. as ¢ > .
In order to prove convergence in mean of Z(¢), we must prove uniform
integrability of Z(¢), ¢ > 1. This, however, is easily concluded from uniform
integrability of (7(¢)/t)? for all p > 0; see Lai (1975).

Let oy = 0, o, = 7(0), 0,,... be the sequence of strictly ascending ladder
epochs associated with (S,,), . o and 7, 75, ... its increments. Furthermore let
(2.18) (¢) = inf{n > 1: S, > t}, t>0.

For the proofs of our main theorems, we must know the asymptotic behavior
of

(2.19) 2 () = ¥ Ed(a,)1(S,, <t),

n=0

which may be viewed as a generalized renewal measure of (S, ),., with
random coefficients. The required result is given in Lemma 6 below. Observe
that

[MOES]
(2.20) Vi) = E( L ¢(aj)).
j=

Thus, the asymptotic behavior of V, (2) is linked to that of 7%(2). O
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LEMMA 6. Suppose p € (0,), ¢ € #Y,, a > 0, ultimately increasing and
EX[$(X7) < . Put v = Eo,. Then
th(2)
(a + yp~tt?

Furthermore, $(t)~'V; ((t,t + R)) is bounded in ¢ for each h > 0 and, if X L I8
nonarithmetic,

ast — o,

(2.21) V() ~

ho(2)

(2.22) Vo((t,t +h]) ~ —F

ast — o,
Assuming only u € (0, »),

(2.23) lim Elf%lﬁ

holds for all h > d, where d denotes the span of the distribution of X;.
Proor. Again we may assume w.l.o0. g that ¢ is everywhere i 1ncreas1ng and

satisfies (2.6). Let ®(¢) = t¢(¢), write 7+ for 77(¢) and note ¢~ 1+ - (vu)~1
a.s. We first observe that

L N ey o L e ()
Y(")‘cb(t) A T SR e A
-1
(2:24) ~ q,(,) L #(vi) ~ q,(t) aer [ s0m) dx
O(vr*) 1

(a + 1)r®(2) - (a + 1)ypstt as.ast =,
where Lemma 5, the regular variation property of ¢, the uniform convergence
theorem and Karamata’s theorem for such functions have been used; see
Bingham, Goldie and Teugels [(1987), Chapter 1]. (2.20) and (2.24) show that
uniform integrability of Y(¢), ¢ > ¢, > 0, remains to be proved. In the follow-
ing C € (0,%) denotes a generic constant which may differ from line to line.
Using (2.6), we have

Tt—1

(2.25) E’o ¢(0)) < 77¢(0,,) <C(r7¢(v7") + 77 ¢(lo, . — v7*]))

<C(®(vr*) + 1tlo,, — vrt|*TF)
for arbitrary £ > 0. By Lemma 5, ®(7%)/®(¢), t > 1 are uniformly integrable.
Choosing ¢ < a,
Ho v — vrt|*te

@(¢) ’
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are also uniformly integrable, because

Flate ™ o= vr

< —+ —m—m————
(t) - t teater2

to,+— v tlete

Namely, (*/¢)?, t > 1, are uniformly integrable for all p > 0 by Lemma 5 and

Bla+e)

g,+— vt
, t>1t,,

t1/2

are then uniformly integrable for some B > 1 and ¢, > 0 by Theorem 2 of
Chow, Hsiung and Lai (1979), noting that Eof“*® < » for some B > 1
follows from EX;¢(X;) < . This together with (2.25) yields the desired
conclusion and completes the proof of (2.21).

Now let p(¢, k) = inf{n 2 0:S, , -8, . >h,h€RandR, =S, —1
the so-called excess over the boundary. Observe that p(¢,h) =0 for h <0,
that it is independent of (%, S, ,) with the same distribution as 7*(h) for
h > 0 and that 7+ (¢t + k) — 7*(t) = p(¢, h — R)). If X, is nonarithmetic, so is
S and R, converges in distribution to a random variable R, say, which we
may assume independent of (S,,),, 5 o- It then follows that E7*(t — R,) = t/vu
for all ¢ > 0. These are well-known facts from renewal theory and may, for
example, be found in Asmussen (1987). We have further:

E¢(o,+)p(t,h — R,) <E

p(t,h—R,)
E ¢(ar++j))
(2.26) =0

= V;((tat +h]) < E(¢(af+(t+h))p(t’ h - Rt))'

Since p(¢, h — R,) < p(¢, h) for all ¢ > 0 and p(¢, k) has the same distribution
as 77(h) which in turn has moments of arbitrary order, we infer uniform
integrability of p(t,h — R,)?, t > 0, for all p > 0. Combining this with uni-
form integrability of
q>(0’,,.+)
®(t)

tZtO’

(see Lemma 5) we easily conclude that
¢(o,+)p(t,h — R,)
é(¢)

are also uniformly integrable. We do not give more details. It is furthermore
obvious that this remains true when replacing 7* by (¢ + k). Hence, the
above inequality gives boundedness of ¢(¢)~'V; ((,¢ + h]), for ¢ > 0. If X, is
nonarithmetic, then (¢(¢)~'¢(0,+), R,) converges in distribution to (,u, “ R,
as ¢t > o, and again this is true also with 7*(¢ + k) instead of = Conse-
quently, by uniform integrability, the extreme right- and left-hand sides in

, t>t,,



1240 G. ALSMEYER
(2.26) divided by ¢(¢) converge to
h
/.L_aET+(h - Rw) = V—/.Lm ast — x,

proving (2.22).
If only u € (0,») is assumed, then (2.26), Fatou’s lemma and Lemma 5
yield

S((tt+h E¢p(v)p(t,h — R h
liming 22 (B PRD e EECR ) _

t— o(t) - #(2) (vp)*

for all A > 0, provided X, is nonarithmetic. This proves (2.23).

If X, is d-arithmetic, then R, ; converges in distribution to a d-arithmetic
random variable R, satisfying E7*(nd — R,) = d/vu for all n € N,. Here
again R, is assumed to be independent of (S,,), . o- With this modification, the
above argument leads to

V;((nd))  d
lim inf -2 > ,
n—o d)(nd) (VM)OH-I
and this obviously implies (2.23) for d-arithmetic X;. O

The final lemma of this section is stated without proof, but may be easily
derived from Spitzer’s formula for maxima [see Chung (1974), Theorem 8.5.1.]
or by direct calculation [see Keener (1987), Lemma 2]. Recall that S, =
min, ., S,.

LEmMa 7. Suppose u € (0,®), let v = Eo, and h be a measurable, nonneg-
ative function. Then

o—1
(2.27) Eh(S,) = V—IE( ) h(sj)).

Jj=0
In particular,
(2.28) U(t) =vEV*(t —8S,) forallteR,

where U(t) and V*(t) denote the ordinary renewal functions of (S,), ., and
(8,,), = 0, respectively.

Note that (2.27) is indeed a consequence of (2.26), because by (3.1) below
with ¢ = 1,

o;—1
U(t) = E( Y V(e - sj)).
Jj=0

3. Proofs of Theorems 1 and 2. In the following we keep the notation
of the previous sections. So oy, 0y,... denote the strictly ascending ladder
epochs of (S,,), . o Whose increments 7, 7,, ... areii.d. with finite mean v, o_
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is the first weakly descending ladder epoch with associated ladder height S,
and S, = mlnn20 S,,. Furthermore, the definitions of 7(¢) in (1.4), r*(¢) in
(2.18) and of V; in (2 19) should be recalled.

A well-known technique from renewal theory [see Athreya, McDonald and
Ney (1978)] consists in splitting the random walk (S,,), . , into the cycles

{Sor- s Sort}s {80 Sp_ih-n. -

Doing so with regard to Uy, we obtain

Ope1—1
U(t) - ZOE( b ¢<j>1(sjs:f))
nx J=0,
Tae1—1
(31) = Z E( Z d’(o'n +j)1(S¢rn+j— ))
n>0 Jj=0

o —1
Y f ( Y #(k +J)1(Sjst—x)) Y. P(o,=k,8, €dx),
£>0"(0,%) )

which forms the basic identity for the proofs of Theorems 1 and 2 below. Let
us define

o;—1

(3.2) G(t) = E( Y (S, < t)), teR,
j=0

which is the distribution function of a finite measure with total mass Eo,;
being concentrated on (—, 0].

Proor oF THEOREM 1. (a) We show (1.6) = (1.5),(1.5) = (1.6) and finally
(1.5),(1.6) = (1.7), which obviously proves part (a) of the theorem. Without
loss of generality, let ¢ € /7, a > 0, and everywhere increasing on [0, ®).

(1.6) = (1.5). By using (3.1), the monotonicity of ¢, o, > n for all n >0
and Lemma 7, we infer

Uy(2) = 2 ¢(k)/ LGt -x) Y. P(o, =*,8S, €dx)

n=0
= — + = +(t —
@3 [, GU-0Vin) = [ V(- x)G(dx)
o —1
Y Vi(t-S;)| =vEV)(¢t—S.) = vEU}(t — S*),
j=0

where Uj(t) =L ,.,¢(n)P(S, <¢). Thus (1.6) implies EUS(¢t - S,) <
EV/(t - S ) < for all £>0. But (S,),., has nonnegatlve increments,
whence by Theorem 1 of Heyde (1966),

EUF(t - S,) < E(t — S,)é(t — S,) ast—
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and thereby E|S,|#(|S.|) < » follows. As a consequence, (1.5) must hold,
according to Theorem 3.
(1.5) = (1.6). Let £ > 0. Then

Y E

n>0

Tar1—1
Z d)(o-n +j)1(7n+1 > Eo-n))

J=0

(3.4)

IA

Z ETn+1¢(Un+1)1(Tn+1 > Ea'n)

n>0

= o[t oo em

n>0

IA

where o, > n for all n > 0 should be observed for the last inequality. Assum-
ing (1.5), thus Eo2¢(o,) < « by Theorem 3, one can easily check that the final
expression in (3.4) equals some finite value A = A(¢), say. Setting 7, = 7, A
(¢0,_y) for all n > 1 and ¢,(¢) = #((1 + a)t), we therefore conclude from (3.1)
for all t > 0,

’
The1— 1

U (t)y<A+ L E é(0, +7)1(S,,.; < t))
=0

n>0

J

Tn+1_1
(35) = A+ Z E( Z d)l/s(o-n)]‘(sa‘n+j = t))
Jj=0

n>0
= A+ vEV], (t—8,) < E(t - $%)dy,.(t - S*),

where the final asymptotic equivalence (<) in (3.5) follows by Lemma 6. Since
#1,.(¢) < ¢(¢), Theorem 3 gives again the desired conclusion.
(1.5),(1.6) = (1.7). Inequalities (3.3) and (3.5) together give

(3.6) vEV; (t - S4) < Uy(t) s A+ vEV}, (t-S,)

for all t€R and all ¢ > 0. Lemma 6, together with (¢,,.(2)/#(¢)) —
(1 + (1 /), yields

vVi(t—S,) 1
i e
td)(t) (a+ l)pf’“ a.s.ast 0,
Wi (t = Sy) . (1+ (i/¢)° e
t6(2) (a + Dpeit 25 F

Supposing w.l.o.g. that t¢, ,(¢) satisfies (2.6) in Lemma 1(a), we further obtain
Vd)l/e(t - S*) - (t - S*)‘l’(t - S*)
tp(t) td(2)

for all large ¢+ and some C > 0. Hence (1.7) follows from (3.6) and the
dominated convergence theorem.

(3.7) < C(1 + 1S, 16(1S4 1))
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(b) For decreasing ¢ € %, a € (—1,0], we obviously get (3.3) with re-
versed inequality sign. Thus, by (3.7) and Fatou’s lemma,

i U,(¢) 1
Tl tg(t) T (a+ Dt

Conversely, we have
7(2)—1

Uy(t) = E( Y #()) Er(t)¢(7(t)) ast— o,
j=0

1
(a+1)
whence, again by Fatou’s lemma,

I AG IS Ep(t)p(7(2)) 1
hﬂ?fm = hﬁglf (a + )td(t) (a+ sl

O

Proor orF THEOREM 2. We assume again w.l.o.g. that ¢ € A7, a = 0, is
everywhere increasing and that it satisfies (2.6) of Lemma 1.
(1.9) < (1.10). Since {M,, < t} = {r(¢) > n} for all n, ¢, we easily obtain

k-1
Uy(t) = X ¢(n)P(7(¢) >n) = X P(r(t) = k)( Z=:O¢(n))

n=0 k>1
(3.8)
Er(2)¢(7(2))
ar1 o R RP(r() = k) = =2
Thus, by Theorem 3, U, (¢) < » for all ¢ > 0 iff (1.9) holds.
(1.9),(1.10) = (1.11). Applying Fatou’s lemma to (3.8) yields
U/ (¢t 1
lim inf s (1) > -
t—o  tP(t) (a+1p*

For the reverse inequality, let ®(¢) = [{¢(x) dx which is increasing, convex,
an element of /7, ; and satisfies ®(¢) ~ t¢t/(a + 1) as t — . We obtain

Opy1—1
> E( )y ¢(1)1(M,,st))

nx=0 Jj=o,

Y E

n>=0

~

ast — »,

Uy (1)

Opi1—1
(s, <) & 4,(,-))
j=o,
(3.9) i
< E( Y (7t () > n)f "o(x) dx)

n=0

- E( Y 1(r*(t) > n)((0,41) — ‘1’(%)))

n=0
= E®(0,+,) < ®(vET' (1)),

where Jensen’s inequality and Wald’s identity have been used for the last
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inequality. But E7*(¢) ~ (vu)~'t by the elementary renewal theorem so that
lim su Us (1) < lim /1) = !
PP e(t) Cime (1) (at Dptt

which completes the proof of (1.11).
(1.12) = (1.9). Similar to (3.3), we obviously have

Uy(t +h) — Uy(¢)
> vEV; ((t — Sy,t +h —S,]) foralltcRand h > 0.

Thus, by (2.23) in Lemma 6, for A > d, the span of the distribution of X;, and
for all sufficiently large ¢,

Uy(¢ +h) — Uy(t) = CE,(t - 8,),

(3.10)

where C > 0 denotes a suitable constant. Consequently, (1.12) implies
E¢(]S 1) < » which in turn implies (1.9) by Theorem 3.

(1.9) = (1.12). Let £ > 0 be arbitrary, ¢, ,, be as in the proof of Theorem 1,
V* be the ordinary renewal measure of (S, ), ., and I = (¢,¢ + h] for some
t€Rand A > 0. Then

Tn+l_1
Z E Z ¢(an +J)1(S_] € I’ Th+1 2 6an))
n>0 Jj=0
Tn+1_1
<)Y E #1/e(Tns1) ) l(Srr..+jEI))
n=0 Jj=0

(3.11)

o—1

/(o,oo)E(d)l/S(al) JEO 1(S;el-x)

V*(dx)

< CEo1¢,,.(0)

o—1
= E(¢1/s(0'1) ;0 V+(I - Sj)

for some C > 0, where uniform boundedness of V* on intervals of constant
length has been utilized for the last inequality. Now, setting 7, = 7, A (¢0,,_;)
for all n > 1, we further obtain by a sinsilar calculation as in (3.5),

Uy(t + h) — Uy(t) < CEoy¢,,.(0y) + Y E

n>=0

The1—1
4’(0'" +.j)1(Sa'n+j € I))
i=0

J

3.12
( ) < CEoy¢,,.(0y) + Y E

n>0

Tpe1—1
'Z() ¢1/e(0n)1(san+j € I))
j=

= CEoy¢(oy) + vEVy, (I-S,) forallt=0.

Using Lemma 6 and Theorem 3, it is obvious now that the right-hand side in
(3.12) is finite iff (1.9) holds.
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(1.9),(1.12) = (1.13). Inequalities (3.10) and (3.12) together show that un-
der (1.9), inequality (3.6) persists for bounded intervals, that is,

(3.13) vEVH(I-8S,) <UyI) <A +EV;(I-S,)

forall t€ R, h > 0 and £ > 0 and with a constant A which does not depend
on t. Thus, (1.13) follows from Lemma 6 and by a similar discussion as after
(3.6). We do not give the details again.

(b) It is not difficult to see and will not be spelled out further that our
arguments proving (1.10)-(1.12) for increasing ¢ can easily be extended to
decreasing ¢ € %, a € (—1,0], provided u € (0,). Validity of (1.13) in
this case has been shown by Kalma (1972). Surprisingly, we have not been able
to find a simple argument for this in the spirit of our proof. Some further
comments on this will be given in the following section. O

4. Further conclusions and discussion. A great number of random
variables which arise in the study of random walks with positive drift are
closely related to X; concerning their moments. This has been proved for the
standard case [¢(¢) = t*, a > 0] by Janson [(1986), Theorem 1]. Combining his
calculations with our results, one can easily extend his results to the classes
RY,. We will not do this here. Recalling relation (3.8), we directly infer from
Theorem 2 the following extension of Theorem 2.3 by Gut (1974).

CoroLLARY 1. Suppose p € (0,%) and ¢ € #7,, a > 0, to be ultimately
increasing. Then

Er(t)é(7(¢))
o t(2) -

—a—1

(4.1)

holds iff EX7 $(X7) < oo.

Considering first passage times
T(t) =inf{n > 1: S, > tf(n)}, t=0,

with curved, continuous and ultimately increasing boundaries f such that
lim, . x7!f(x) = 0, Gut (1974) has shown that equivalence of (2.1) and (2.4)
for ¢(¢) = t*, a > 1, remains true with 7(¢) replaced by T(z). This follows
simply by squeezing T(¢#) between two first passage times with horizontal
boundaries. As a consequence, one may use Theorem 3 to extend Gut’s results
to general ¢¢(¢) with ultimately increasing ¢ € #7,, a > 0. We omit further
details. Let us finally state one further extension in this respect where we do
not even need one of our theorems. Janson [(1986), Theorem 3] has proved for
the last exit times £(¢) = sup{r > 0: S,, < ¢}, ¢ > 0, that

ElS;|* <~ forallt >0« E(X{AX;)" ' X;< .

A check of his proof shows that again we have the following extension.
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COROLLARY 2. Suppose u € (0,®) and ¢ € RV, a > 0, to be ultimately
increasing. Then the following assertions are equivalent.

(42) (XA X3)(Xi A X5) X3 < o
(4.3) E¢(1S;y)) < forallt>0.

We conjecture that equivalence of (1.5)-(1.7) holds also for ultimately
decreasing ¢ € #7,, a € (—1,0]. However, we have not been able to prove
this. In order to provide a lower bound for U,(#), one is tempted to merely
proceed as in the case of increasing ¢ and reverse the inequality signs. Thus,
for proving necessity of (1.5), that is, EX; ¢(X;) < =, one must verify (3.5)
with reversed inequality sign. Unfortunately, the constant A arising there has
been shown to be finite by just assuming the validity of (1.5), which is now no
longer available. So one has to look for an alternative inequality. Even though
we have tried a number of such different estimates, they surprisingly all failed
to give the desired result. For the same reasons we have not been able to
conclude (1.13) from (1.9) by our methods in the decreasing case.

For a < —1 the situation is qualitatively different, as one can see from the
results by Kalma (1972) and Maejima and Omey (1984). Namely, in this case
Ud,(t) is bounded and there is regular behavior of (t¢(t))_1U¢(t) as t - x,
connected to the tails of X; rather than X;. This becomes clear if one
observes that the related moment for 7(¢), which is still E(r(£)D(7(¢)) /t$(2)),
has 7(¢) in the denominator now, so that convergence of this moment requires
a small probability [compared to ¢(#)"!] of early stopping. This in turn
depends on the tails of X; as one can easily see.

As a further question of theoretical interest one may ask for necessary and
sufficient conditions for the finiteness of U,(¢) in the case where u is infinite
or does not exist, but with finite Eo, then, so that (S,), . , remains transient.
Even though one can still use the techniques in Section 3 from renewal theory,
one has to first find a substitute for Theorem 3 which is obviously heavily
based on the finiteness of w.
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