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NECESSARY AND SUFFICIENT CONDITIONS FOR
ASYMPTOTIC NORMALITY OF L-STATISTICS

By Davip M. Mason! aND GALEN R. SHORACK 2

University of Delaware and University of Washington

It is now classical that the sample mean Y is known to be asymptoti-
cally normal with \/; norming if and only if 0 < Var[Y] < «» and with
arbitrary norming if and only if the df of Y is in the domain of attraction of
the normal df. Now let T, = n~!%c, h(X,.;) for order statistics X,,.;
from a df F denote a general L-statistic subject to a bit of regularity; the
key condition introduced into this problem in this paper is the regular
variation of the score function J defining the c,;’s. We now definearv Y
by Y = K(&), where ¢ is uniform (0, 1) and where dK = Jdh(F~1). Then
T, is shown to be asymptotically normal with Y norming if and only if
0 < Var[Y] < » and with arbitrary norming if and only if the df of Y is in
the domain of attraction of the normal df. As it completely parallels the
classical theorem, this theorem gives the right conclusion for L-statistics.
In order to establish the necessity above, we also obtain a nice necessary
and sufficient condition for the stochastic compactness of T, and give a
representation formula for all possible subsequential limit laws.

1. Asymptotic normality. Let X,., < --- <X, ., denote the order
statistics of an iid sample from the df F. Consider the L-statistics
n—m
T’nE Z cnih(Xn:i)’
i=k+1
where k, m > 1 are fixed integers, c,; are known constants and 4 is a known
function, all of which are specified by the statistician. If ¢ has a uniform (0, 1)
distribution, then F~1(¢) has df F. Thus we may assume that

1 n—m
(1'1) n = — Z cnzg(fn l)
ni—k+1
where g = h(F D and0< ¢, , < -+ <¢,., <1 are the order statistics of a

sample from the uniform (0, 1) distribution. [Division by n — m — k instead of
n in (1.1) requires only a trivial adjustment.] Our point of view is to suppose
that the statistician chooses rather smooth scores ¢,,; and then wants to know
for what functions g (or df’s F') asymptotic normality will hold. Asymptotic
normality is characterized in the present section. Analogous characterizations
of stochastic compactness with a representation of all poss1ble subsequential
limits appear in Section 2.
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1780 D. MASON AND G. SHORACK

The first general theorem on the asymptotic normality of L-statistics was
proven by Chernoff, Gastwirth and Johns (1967). They were concerned with
this problem in connection with optimal estimators of location and scale
parameters in parametric families of distributions based on L-statistics. A
large number of authors since then have studied the asymptotic normality of
L-statistics. A partial list consists of Bickel (1967), Shorack (1969, 1972),
Stigler (1969, 1974), Ruymgaart and van Zuijlen (1977), Sen (1978), Boos
(1979), Mason (1981), Singh (1981) and Helmers and Ruymgaart (1988).
Consequently, many sets of sufficient conditions now exist in the literature
which ensure asymptotic normality of L-statistics. If and only if conditions for
asymptotic normality of L-statistics have been obtained only for the highly
specialized cases of uniform rv’s by Hecker (1976) and van Zwet (unpublished
1974 Oberwolfach lecture) and exponential random variables by Eicker and
Puri (1976).

It is our aim to consider the purely probabilistic problem of finding neces-
sary and sufficient conditions for the asymptotic normality of statistics of the
form (1.1). Since the weights c,;, i = 1,...,n, appearing in (1.1) can be
arbitrarily chosen at each stage n, to determine the complete solution to this
problem is without a doubt hopeless. Thus to make the problem tractable, it is
appropriate to place some mild restrictions on how the weights are formed. To
begin, we will suppose:

ConprTiON G.
(1.2) g is a nondecreasing () left-continuous function on (0, 1).

Assume that:

ConbpiTioN C.

(1.3) cai/m=["" J(t)dt fori<isn
G-1/n

for some .

(1.4) J >0 with J continuous on (0, 1).

The reader should note from our proofs that it is a trivial matter to replace g
by g, — &, and J by J; — J, in the sufficiency statements below with g; and
J; that satisfy our assumptions.

The natural centering constant to associate with T, is

(1.5) po= [ I8 () db

/n
We then define the statistics -
| (1.6) S, =Vn(T,—n,)/0, and S} =vVn(T, - p,)/o}
for the o, and o* of (1.14) below.
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We use the convention that [° = Jia, 5y When integrated with respect to a
left-continuous integrator like dg, while [° = Jea,»; When integrated with

respect to a right-continuous integrator like dF. Also, in either case, /¢ = — [?
if a <b. Weuse f, and f_ for the right- and left-continuous versions of a
function fandlet Af=f,—f_.

We now define the key function K on (0, 1), with 0 < ¢ < 1 being a fixed
continuity point of g, by

t .
(L K(t) = j;Jdg so that dK = J dg with K(c) = 0
and K » and left-continuous.

In the sequel, for notational convenience we will always assume ¢ = 1 We
also assume that K is not the trivial zero function and thus K is the
left-continuous inverse of some nondegenerate df H. Hence if ¢ denotes a
generic uniform (0, 1) random variable, then

(1.8) K(¢) has the nondegenerate df H.

This is the fundamental random variable of this paper.
. For each 0 < a < b < 1, we agree that

K., (t) equals K(a), K(t), K(b)

1.9
(1.9) correspondingto ¢t <a,a <t <b,b <t,

and we then define

(110) ¥y, 5(8) = Koo(§) =~ EE3(8) = = [*(lez ~ £) dK ().

[It is easy to show that Y, ,(£) »,, Y — EY as a — 0 and b — 1, provided
ElY| < «.] Note that the statement

(1.11) Y., 0(¢) has mean 0 and variance o, ,)

always holds, where
2
(1.12) o?[a,b) = lef,,(t) dt — (flKab(t) dt)
0 0

(1.13) = [*[*(s At~ st) dK(s) dK(t).
a‘a
Since s At — st > 0, we see that ¢%[a,b) » as a 0 and b ~ 1. We now
define
o,=o0lk/n,1 —m/n), o(a) =ol[a,1 —a) and
of=0(1l/n).
Let B denote a Brownian bridge and note from (1.13) [contrast this with (1.10)]

C(1.14)
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that
(1.15) [’BdK = N(0,07[a, b)).

We also let B,,, n > 1, signify a sequence of Brownian bridges.

We seek a very broad class of useful J functions that includes all the
standard continuous o functions. Roughly speaking, if o is regularly varying
at 0 and 1 and fairly smooth, then our theorems apply. By allowing trimming
in (1.1), we are able to require J to be smooth and still include all the usual
examples. Specifically, we assume:

CoNDITION J.
(1.16a) oJ > 0is Lipschitz on any [§,1 — §] with 0 < § < 3;
there exist —o < p,, p; < © such that J(¢) = ¢t°ol (¢) and
(1.16b) 0 0
J(1 — t) = t”11(¢) on some (0, 8] for I;’s slowly varying at 0;
and
1,(t) = 71 (t)e(¢) with ¢; continuous and &,(¢) » 0 as
(1.16¢) "0, i = 0,1.
From the Karamata representation theorem [cf. de Haan (1970)], we expect
any common regularly varying J to satisfy (1.16c). Note that (1.16b, c) is
satisfied by any #%(1 — #)°, any (log; 1/£)*(log; 1/(1 — ¢))°, any product of such
functions and by the inverse normal df &~ .

ConpiTioN K.
(1.17) k, m > 1 are fixed.
(In Remark 3.2 it is explained how the case when % = 0 and /or m = 0 can be

treated.)
We now define [recall (1.8)]

(118)  T,=(/n) T K(£.) and &,= [ "/"K(t)ds,
i=E+1 k/n

(119)  §,=Vn(T, -m,)/o,

and

(1.20) Sy =vVn(T, - &,)/ 0}

THEOREM 1.1. Suppose the basic regularity Conditions G, J, C and K
hold. ‘
(i) (Standard scaling, or domain of normal attraction of the normal). We

hape )
0 < 0?(0) < @ifand only if Vn (T, — B,) -, N(0, r2)

(1.21)
+ for some 0 < 7 < wand some B,,.
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In such cases, r = 0(0) and, on a suitable space,
Vn (T, = p1,)/o(0)
Vr (T, - B,)/0(0) + 0,(1)

1
(1.22) —[0 B, dK/a(0) + 0,(1)

(1) T | K(&) - ['K(0)dt]/7(0) + 0,(1)
i=1 0

-4 N(0,1),
where the summation in (1.22) extends from 1 to n no matter what k, m > 1.
(ii)) (Domain of attraction of the normal). We have
(1.23) Vn (T, - B,)/A, =4 N(0,1)
for some A, > 0 and B,, if and only if the df H (recall K = H™?) satisfies:
(1.24)  Hisin the domain of attraction of the normal distribution .

Condition (1.24) also implies o,/0* — 1, 0,,/A, — 1 and
(1.26) S, =Vn(T, - u,) /0, = Vn (T, = B,)/0, + 0,(1) =4 N(0,1).

From part (i) of Theorem 1.1 it can be easily inferred that (1.24) holding is
equivalent to (1.23) holding for some 2 > 1, m > 1 and is also equivalent to
(1.23) being true for all £ > 1, m > 1. A similar statement also holds for

part (i).
There are many conditions known to be equivalent to (1.24), in particular:

(1.26) ¢[K%(At) + K2(1 - At)]/o?(t) >0 ast— Oforall0 <A <1.
(1.27) o(A)/o(t) > 1 ast—>0forall0 <A <1.

lim sup|®;,(c)l =0 foralle>0and:=0,1,

" (1.28)
with ®;, as defined in (2.1).

(1.29) t[Kz(t) +Kf(1—t)]/f1_tK2(s)ds—)O ast — 0.

(1.30) [

lyl>x

a!H(y)/fH< y2dH(y) » 0 asx — 0.
yl<x

The equivalence of (1.24), (1.26), (1.27) and (1.29) was first stated and proved
in S. Csérgd, Haeusler and Mason (1988a) (from now on denoted CsHM). That
(1.24) and (1.30) are equivalent is shown in Gnedenko and Kolmogorov (1954).
Equivalence of (1.26) and (1.28) is trivial. )

Mason and Shorack (1990a) establish versions of Theorem 1.1 and Theo-
rem 2.1 below in case £ and n — m are replaced by sequences %, and
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m,, where either 2, A(n —m,) > and (k, V(n —m,))/n > 0 or else
Vn(k,/n —a) - 0and Vn(m,/n —b) > 0 with0 <a <b < 1.

Theorem 1.1 will be derived from the much more general results presented
in the next section.

2. General limit laws. We now obtain probabilistic representations of all
possible limit laws of S, and S}.
Fix any a, —» 0 with 0 < a, < n, and let

K(c/n)/(Vnay), if0<c<n-a,,
K(1-a,/n)/(Vno}), ifn-a,<c;

the second case pedantically ensures ®,, is well defined. Define ®,, analo-
gously to equal —K, (1 — ¢/n)/(Vna}*) or —K ,(a,/n)/(Vn o*) according as
0<c<n-a, or n—a, <c. Note that the ®,, are ~ left-continuous
functions on (0, ) that equal 0 at ¢ = n/2. From (3.15), we have immediately
that lim sup,|®,,(c)l <1/ Ve (which — 0 as ¢ > ®) for ¢ > 1 and i = 1,2.
The cutoff at ¢ = 1 comes from our definition of ¢;*. For i = 0, 1, we will use
®, to denote a nonpositive, » left-continuous function on (0, ©). We will write
®;, »p @, if ®,,(x) - ®,(x) at all continuity points x of ®,.

(21)  @,(c) =

THEOREM 2.1. Suppose Conditions G, J, C and K hold. Then
(2.2) limsup |®,,(c)| < forallc>0andi=0,1
n

is necessary and sufficient for:

(2.3) Sy is stochastically compact.

Moreover, any possible subsequential limit random variable is of the form
(2.4) Vo, +7Z +V,,,

where for all x,y > 0 and —» < p < o,

hx) = [ dugy

(2.5) (yr+1 - ) /((p + 1)y?), ifp+ —1,

leg(y/x)’ ifP= _1’

and

(28) V= j::hpo(NO(x),x)dCDO(x) + /I;S’?hpo(k,x)dCDO(x),

(2.7 Vv, = —j:

1
m

ho(N(x), 2) d®y(x) = [S*h,(m, x) dd(x),

(2.8) Z=;,N0,1) and 0<7<1,
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and N? and N! are independent Poisson processes that are independent of Z
with S} denoting the event times of N* fori = 0, 1.

Note Remarks 3.1-3.3 at the end of Section 3 below.

The asymptotic normality result of Section 1 is useful for statistics. Proving
sufficiency is relatively straightforward. In order to show that Theorem 1.1 is
the best possible, we need Theorem 2.1. In fact, the proof of necessity in
Theorem 2.1 requires results slightly more general; see Propositions 3.1 and
3.2 below. We also require the following technical result.

ProrosiTiON 2.1. Suppose
(2.9) [ @¥(x)dx <o foralle>0 fori=0,1,

holds for a nonconstant, ~ , less than or equal to 0 and left-continuous ®. As
in (2.6), let

(2.10) V, = f:hp(N(x),x)dCD(x) + /];S"hp(k,x)dd)(x)

for —o < p < . Then V, is never a nondegenerate normal random variable
for any choice of —x < p < » and integer k > 1.

The proof of Proposition 2.1 is very technical and long and is not included.
For the proof, see Mason and Shorack (1990b).

REMARK 2.1. Proposition 2.1 in combination with Cramér’s theorem im-
plies that the random variable in (2.4) is nondegenerate normal if and only if
b, =P, =0.

REMARK 2.2. In Theorem 3 of CsHM (1988a) it is shown that any infinitely
divisible random variable W can be uniquely represented as

(2.11) W =; Vo + @o(S?) + 7Z + Vy; — ®(S]) +d,

where Z, Vy;, V;;, @, and @, are as in (2.6), (2.7) and (2.8) with p, = p; = 0,
0 <7 <wand —» <d <« The class of laws belonging to random variables
of the structure given in (2.11), where p, and p; can be arbitrary real
numbers, obviously forms a class containing the infinitely divisible laws. One
question that naturally arises concerning these laws is that of the uniqueness
of their representation in terms of the quantities ®,, ®,, p,, p;, 7 and d. Since
(except in the known case when p, =p; = 0) it appears to be extremely
difficult to write the characteristic function of these laws, to determine the
answer to this open question will undoubtedly be a formidable task.

-3. Proofs. We begin by introducing some preparatory material. The ac-
tual proofs begin following (3.18). For independent uniform (0,1) random
variables &, ..., &,, the empirical df G, and the uniform empirical process U,
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are defined by
G, (t)=n"' Y 1, ., and U,(t) =Vn[G,(¢) —¢t] for0<t<1.
i=1

M. Csorgd, S. Csorgs, Horvath and Mason (1986) (from now on denoted
CsCsHM) showed that on some probability space a sequence of pairs (U, B,,),
n > 1, can be constructed in such a way that

(3.1) “('Un -B,)/(I(1 - I))(I/Z)—V -1/n

1
in =0,(n7") asn-ow
for any fixed 0 <v < 1/4. Here ||hl = sup{lh(®)|: @ <t <b}). In fact,
Enty s Enny 1 = 1, will denote a triangular array of row independent random
variables and the U, of (3.1) is actually the uniform empirical process of the
random variables ¢,4,..., &,, in the nth row. Now the random variables £, .;
of (3.1) are actually of the form

(3.2) €ni = (77:(1) + +77?)/(77(1) + o +"72+1) =82/87,4
for iid exponential (1) random variables 7?. Thus

n n
nGu(t/n) = Xl com= 2 Yspeis,i/m
i=1 i=1

=N°(tS0,,/n) for0<t<n,

where N° is a Poisson process with interarrival times 1?,1J,... and arrival
times S?. Moreover, the construction (3.1) uses an analogous method to
construct the random variables 1 -¢,.,, 1 —¢&,.,_4, ... starting at the
right-hand end. This leads to an independent Poisson process N! associated
with the right tail; its arrival times are denoted by S}. Refer to CsCsHM
(1986) for a more precise description of this construction.

CsCsHM (1986) also pointed out how the above construction can be modi-
fied to obtain a single sequence of iid uniform (0,1) random variables
&1y ..y &yy - on which (3.1) holds with U, formed from ¢,,..., ¢,. However,
on this modified probability space, (3.2) is no longer valid.

In the proofs that follow, when we are dealing with L-statistics which we
claim have a Poisson component in their limiting distribution, we will assume
without comment that we are on the former probability space so that we do
not have to deal with a sequence of Poisson processes, and, on the other hand,
when considering L-statistics which we claim to be asymptotically normal, we
will assume without comment that we are on the modified probability space.

It is well known [see Shorack and Wellner (1986), page 419, for example]
that given & > 0 one can choose 0 < A = Ae < 1 so small that
G,(t) <t/A, '

forall0 <t < 1andG,(t) = At
"34 p forall ¢,.;, <t <1;and 51 6
(34) G,(t) 21— (1—1¢)/A, e/

forall0 <t <1landG,(¢) <1-A(1-1¢)

forall0 <t <¢,.,

(3.3)
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for all n > 1. Let A,, denote the set in (3.4) and let 1,, denote its indicator
function.
We also record the easily verified fact that

(3.5) P(a,/n<¢,,<1/(na,)) > 1 ifandonlyifa, — 0.

Let A’, denote the event in (3.5) and let 1}, denote its indicator function. Since
&ni=any+ - +m)/(ny + -+ +n,,,) for iid exponential (1) random vari-
ables 7;, we see trivially that M = M_ can be chosen so large that

(3.6) P(1/(Mn) <é,., <+ <é,.,<M/n)>1-¢/6

for all n. Let A", denote the event in (3.6) and let 17, denote its indicator

function.
Using (1.16) we have for 0 < ¢ < § that

J'(t) = pot*o~Ho(t) + tPoly(t) =t 7 (8)[pg + £(t)]
=707 (8)[ po + £o(2)].

From de Haan [(1970), page 21] we know that any function [ on (0, §] that is
slowly varying at 0 satisfies

(3.7)

I(rt)
I(t)

for all 0 <a < b. Thus for any 0 <A <1 and 8§ = §, > 0 small enough, we
have

(3.9) sup{|{(rt)/l(t)|: A <r<1/rand 0 <t <8} <M,

-1 >0 ast—>0

(3.8) sup

a<r<b

for some M, and hence
|J'(£*)| < MyJ () /t
for 0 < ¢ < 6 provided At < t* <¢/Afor0 <t <34.

We will write our proofs as though 6 = 1/2 in (1.16). This will allow us to use
the bound |J'(¢*)| < M,J(¢)/[¢(1 — ¢)] over the entire interval on frequent
occasions below. We thus save considerable notation. The case of the Lipschitz
condition on the middle of the interval is trivial by comparison. Note (1.16a).

It is shown in CsHM [(1988b), Lemma 2.1] that any quantile function K
satisfies

(3.10)

) aK?(a) + (1 — b)K?(b)
@11 AR P
and in CsHM [(1988a), Lemma 3.2] that
C lim sup'[”KZ(t) dt/az[a, b) <o
(3.12) a—>0,b-1"a
[1 is an appropriate upper bound if ¢2(0,1) = oo] .
Contrast (3.11) with (1.26). CsHM (1988b) also point out a Gnedenko and
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Kolmogorov (1954) result [see also Tucker (1971)] that

[°K(2) dt/(/sz(t) dt)l/z -0

(3.13)
asa — 0, b — 1 provided fle(t) dt = »,
0

Note that (3.11) gives for ¢ > 1 that
limsup |®,,(¢)| = limsupc~/2yc/n K(c/n)/oF < c™ /2,
n n

which - 0as ¢ — .

(3.14)

Thus if ®,,, =, , on some subsequence n’, then
(3.15) |@o(c)| <c™? forall e > 1.

Analogous results hold for ®,, and ®,. The choice of 1 in the definition of ¢
controls the cutoff point ¢ = 1 in (3.14).

Define G} by
(3.16) G} (t) denotes k/n, G,(t),1 —m/n
ast < gn:k’ §n:k <t< gn:n—m’ §n:n—m <t
for fixed k£, m > 1. Note that
(8.17)  |G}(t) —t| <|G,(t) —t| provided k/n<t<1-—m/n

and that

(3.18) |G*(¢) — G,(t)| < (kv m)/n for0<t<1.
Define
(3.19) r(t)=[" J(s)ds for0<t<1,
1/2
Fix integers k <!/ <r <n — m. Now
(3200  T(Lrl=n"'Yc,8(&.) = [ gdTI(G})
' I+1 ( n:l s Sn:r

=g(§nr)r(r/n) _g(gnl)r(l/n)

_ [Gﬁ(t)
[€n.1 5 €n:r)71/2

J(s) dsdg(t);
as soon as one notes that G, can replace G} in this identity since ¢,., <
£, <t<é,., <&, ._m, thisis just integration by parts. Also

RIMOLIO
—g(r/n)(r/n) +g(1/n)T(1/n)
+[l;'/ln];t/2J(s)dsdg(t).

(3.21)

— Ha(l/n,r/n)

(3.22)
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Scaling the difference by some norming constant A, gives, after some rear-
rangement, that :

S,(l,r]

\/;{Tn(l r] _I‘Ln(l/n’r/n)}/An

’/”/_[G “J(s) dsdg(t) /A,
l/n

(3.23) —[ /”F[G’ DJ(s)dsdg(t) /A,

+[’/”/_[G D(s)dsdg(t) /A,
fﬂ r
= Bn[l’ r) + an(l) - an(r)'
[Note that having G} in place of G, in (8.23) is important, since otherwise the

integral could be infinite in some cases.]
Most of the proofs of Theorems 1.1 and 2.1 will be contained in those of the

following two propositions.

Prorosition 3.1. Assume Conditions G, J, C and K hold. Suppose con-
stants A, > 0 and a subsequence n' of n exist for which

(3.24) (0 /A) D,y —>p (some @) asn — o fori=0,1,

and for some 0 < a < », we have

(3.25) o¥/A, > a asn — «.
(i) We have
(3.26) [ ®¥(x)dx <o foralle>0 fori=0,1;

and this implies that V,, and V,,, of Theorem 2.1 are well-defined random
variables for all k,m > 1.
(ii) There exist sequences l,, — © and r,, —  for which

(3.27) ly/n—0, r,/n—-0, ly/tw =0 asn — x
and

an’(k) + 0n,[k, ln’) 4 VOk’
_an’(n, - m) + on[n, - ln” n' — m) —d ‘7lm’
(3.29) 0,01, ry) -, 0, 0,[n —ry,n— L) -, 0

as n’ - o with V,, and V,,, as in Theorem 2.1.
(i) If n” is a further subsequence on which, for some 0 < 7 < o, we have

(3.30) o (r/m') /Ay = 1,
’ the’n, in addition to (3.28) and (3.29), we have

(831) bl ~ 1) = = [

(3.28)

1_ ., "
(/1 )Bn dK +0,(1) >4 7Z asn’ —

rp/n")
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with Z independent of V,, and V,,,; and hence

(3.32) Sk, —m] >, Vo, +7Z+V,, asn’ —> .

@iv) If T > 0, then the sequences specified above can be chosen so that
(3.33) o(ly/n")/o(ry/n") > 1 asn’ — .

(v) Also

(3.34) a = 01in (3.25) implies 7 = 0 and ®;(x) =0
’ forallx > landi=0,1.

(vi) Finally,

if &y =&, =0anda € (0,x),

3.35
( ) then T = a and we may suppose that " = n'.

ProposiTION 3.2. Assume Conditions G, J, C and K hold. (Recall that
k, m > 1.) Suppose constants A, > 0 and B, and a subsequence n' of n exist
for which, for some nondegenerate random variable W,

(3.36) V' (T, — B,) /A, >4 W.

Then (3.24) and (3.25) hold along some further subsequence n”. Furthermore
(8.37) W=, d +d(Vy +7Z +V,) with ®,, P, satisfying (3.26)

for some d > 0 and d' and with t, V,,, Z, V; as in Proposition 3.1. Moreover,
if =0, then at least one of ®, and ®, is not identically a constant. Also,
with cy > 0,

(3.38) - if im®;,(cg) = — foreitheri = 0 or 1 and (3.36) holds,
. then T = 0.

Toward establishing these propositions, let us first analyze the behavior of
0,[r,n —r) for r large, assuming that (3.25) holds on some subsequence n’'.
Using a Taylor series expansion and letting U*(t) = Vn [G*(¢) — ¢] gives

0.lron—r) = — ["UsJdg/A, - (1/2)n"1?
r/n

x [T MUy T (87) da(t) /A,
r/n

1-r/n 1-r/n
- - B, dK/A, — U, - B,)dK/A,
(3.39) [r/n / fr/n ( ) AR/
- [ - u,) dE /A,
r/n
» —(1/2)n 2 [T MU () (8) dg(8) /A,

r/n
= Zn(r) + ynl(r) + YnZ(r) + ’)’n3(7‘);
here ¢t} lies between G%(¢) and ¢.
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We next turn to consideration of the v, ;(r), culminating in (3.45)—(3.47).
Consider y,(r). Now

[Vni(7) S”((Un -B,)/(I(1- I))(1/2)—u

x [T - )P dR (1) /A,
r/n

1-1/n
1/n

< 0,n ) (r/m) 2R = r/m) = (/) K (r/m)

+[UTRG(60 - )P de} /A,
r/n

< 0,(r ) {Yr/m (K(1 = r/n) — K(r/n)) /o3 ) (o} /A,)
(3.40)
1-r/n

1/2
(t(1 - t))—l—Zth} /A,
/n

+ op(n-V){[r;r/”m(t) dtfr

1/2
= Op(r_”)+0p(n_”){[ r/nKz(t)dt/(o,:")2} 0((r/n)‘”)J

1-—
r/n

X(0;/A,)

_ 1-r/n 2 172
= 0,(r ”)[1 R @t/ ](o:/An)

= 0,(r™") onthe subsequence n’' of (3.25),

using (3.1) in the second step, Cauchy—-Schwarz in the third step, (3.11) and
(1.13) in the fourth step and (3.12), (1.13) and (3.25) in the sixth step.
Consider v, ,(r). Now by (3.18) and then (3.11), (1.13) and (3.25), we have

[Yaal(r)| < [ L7 kv myne dK/o:]w:/A,,)

= O(r~"?) on the subsequence n’ of (3.25).
Consider y,,5(r). Set

AH(r) = =202 [ U0 (27) dg () /A, and

(3.41)

Yag(7) = Yna(r) — ¥53(r).
Recall (3.6) with r = M = M, so that r/n > ¢,., on A’,, and recall (3.4). Now
(3.39) and (3.10) give

CYD(r) = 1,1, [v8(r) |
(3.42)

<n72 [UO M0 ((1 - 1) de(2) /A,
r/n
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Using Fubini’s theorem gives

nlr) = B2 s Myn~2 [ K (1) /4,

= O(r~'/%) on the subsequence n’ of (3.25)

as in the previous paragraph. Given ¢ > 0 and r = M, as in (3.6), we find by
Markov’s inequality that on the n’ of (3.25),

P(ly$3(r)l = &) < P(AS,) + P(A,,) +e e, (r) <¢

for all n > some n, provided r > r..

(3.43)

Since by symmetry the same statement holds for y&(r), we get

(3.44) lim limsup P(ly,3(r)l = ¢) =0 forall & > 0.

n —ow

Combine (3.40), (3.41) and (3.44) to get

lim limsup P(ly,(r)l = &) =0

ro® i

(3.45) 3
for all € > 0, where y,(r) = Y v,;(r).

j=1
Now from (3.39) and (3.45) we get the representation
(3.46) O0.lr,n —1) =Z,(r) + v.(r)

with vy,(r) satisfying (3.45) and

(3.47) z,(r)= - [ "B, dK/A, =, ,(r)Z,
r/n

where 7,(r) = o(r/n)/A, and Z =, N(0,1).

Lemma 3.1. Suppose J(t) = t°L(t), where J > 0, —o <p <o, and L is
slowly varying at 0. Let )

[JJ(u/n) du
3.48 A(x,y) = —/—————
(3.48) (x,7) TG /m)
Then for all 0 < a < b < », we have A
, (3.49) sup |A.(x,y) —h,(x,5)| >0 asn > x,
a<x,y<b

where h (x,y) is as in (2.5).



L-STATISTICS 1793

Proor oF LEMMA 3.1. Now the sup in (3.49) is bounded by
" |[{L(u/n) — L(y/n)}u’ du]
a<x,y<b L(y/n)yp

b |L(u/n) — L(y/n)|
< ,67°) ["urd
<max(a™,b7) [urdu sup

-0 asn— oo,
The final convergence to 0 follows from (3.8). O

Proor oF ProroSITION 3.1. Recall (8.23) and (3.45)-(3.47). We now fix
integers 1 < k, m <l <r < n/2 and use (3.33) to write

S, = Vn (T, = #a) /Ay = Vn{T,(k,n = m] = po(k/n,1 = m/n)}/A,
(3.50)
=8,(k,1]+8S,(,r]+8S,(r,n—-r]
+8S,(n—-r,n-10]1+8S,(n—-1,n—m]
= {a,(k) +6,[k, 1)} +06,[l,r) +6,[r,n—r)+6,[n—r,n-1)
+{6,[n - l,n —m) —a,(n —m)}.
In the spirit of (3.24), note also (2.1), we define
(3.52) df(c) = (0F/A,)P,,(c) forc>0andi=0,1.
Consider the 6,[7, r) of (3.23) and (3.51). Recall (3.4) for 1,,.. Then for n’ as
in (3.24) we have from (3.23) and a change of variables that
[ REEOI(s)ds | dg(t)
Lballir) = =L [ [ 0 ]J(t) A

(3.51)

~ r[ nfSHt/ ™ (s) ds .
- = ]'ne_/; [ J(t/n) d(I)On(t)
_ r [PORE/ M (u/n) du .
(3.53) = _1”‘fz T ddt (1)
(3.54) =1,,[ h,(nGE(t/n),t) d®},(¢) + o(1) onw
l
(3.55) = Lo [ By (NO(8S0,1/n) V b, £) d®3,(2) + (1) onw
l
(3.56) = L[ [RpoNO(£8 2, 1/m) V B, 8) = B, (R, £)] dDF,(2)
l

+ lnS/;rhpo(k,t) d®* (¢) + o(1) onr,
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using Lemma 3.1 in step (3.54) (this lemma is applicable because the 1,,
multiplier leads to bounds a and b for this lemma), and using (3.3) in (3.55).
Next consider the a,(%) of (3.23) and (3.51). Recall (3.4) and (3.5). As in the

previous paragraph,

1,1, a,(k) = 1n81';efk/n[nfk/n'(:;)i()8) dsJJ( )jéiii)

n:k
nfi/ M (s) ds

k
= -1,
e ns./;fn:k[ J(t/n)

-1 71 /k fknGﬁ(t/n)J( u/n) du
M s 80,y J(t/n)

- 1,1, [S}?/Sm[ o(NO(8S0, 1 /n) V k,t)

~h,(k,t)] d®§,(t) +o(1) onn.
Thus [replacing I, r by %, [ in (3.56)] adding (3.56) and (3.57) gives
LT {an(k) + 6,[(k, )]}

lnel’;s{ [ S’?/Sm[ Ro(N°(88,.1/0) V By t) = hy(k,t)| dDF, (1)

on(t)

(3.57)

d®,(2)

(3.58) +fklhp0(k» t) d¢>’5n(t)} +o(1) onn

a.s. lne]',;ze{/: [hpo(NO(t) v k’ t) - hpo(k’t)] dq)O(t)

+[lhp0(k,t) dq>0(t)} +0o(1) onn,

by (8.24), under the (temporary) assumption that / is a continuity point of all
@, and @, noting that the jumps of N° a.s. miss the discontinuities of ®,
while ®f,, —»p, ®,. [In case the integers / and r in (3.51) are not continuity
points of <I>3n and ®,, we replace them by real numbers [ and 7 that are and
are within distance 3. We will not mention this point again, but merely take [
and r to be such continuity points.] Now that we have added «,(k) and
6,[%, 1) and passed to the limit, we can break the 11m1t1ng sum back apart to
observe that

L.l fa,(k) +6,[%, 1)}

(5.59) . {[ R, (NO(t) V E, t) ddy(t) +[ h,(k,t) dcbo(t)}

+0(1) onn'.
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Similarly we obtain in (3.56) that
(3.60) 1,,0,[L,k) = 1,,, [, (N°(¢) V &,£) dDy(t) +o(1) on n'.
l

Thus on the subsequence n’ of (3.24) we have under (3.24) that
an’(k) + Bn'[k’ l) _)p BO(k) + 60(k) + BO[k) l)

= f:’?hpo(k,t)(t) d®o(t) + [Skoh,,o(NO(t) V k,t) dy(t)

(3.61)
+[klhp0(N°(t) vk, t) ddy(t)

and

(3.62) 0,1,7) =, 80[1,7) = [lrhpo(NO(t) V k1) ddo(t).

Moreover, in case @, is constant, which by (3.15) must be zero, we have
(3.63) ay(k) +0,[k,1) >,0 and 6,[l,r) -, 0.
The obvious analog in the right tail is
0,7 -1, 0 —m) —a,(n—m) =, 0,[1,m) +8,(m) + By(m)

= ['h(N(0) V ) day(t)

(8.64) _[:h"‘(Nl(t) vV om,t)dd(t)

— [Snh,(m,t) dd,(t)
and "
(3:65) 6,[n —r,w —1) >, 0,[r,1) = —[lrhpl(Nl(t) vV m,t)dd(t).
It is also convenient to define
(3.66) Ao[l,r) = 85(1) + 8o[L, r) — 8,(r) = [;f"h,,o(NO(t),t) dd,(t)
and

(3.67) Ay[l,r) =8,(1) + 0,1, r) — 8,(r) = —/:’lhp‘l(Nl(t), t) d®,(t).

PROOF OF PART (i) OF PROPOSITION 3.1. Since our K is the inverse of a df,
Lemma 2.5 of CsHM (1988a) shows directly that under (3.25),

(3.68) [ ®2(x)dx < foralle>0andi=1,2.
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- We now note the expansion

h(x,8) = (¢t —x) — (p/2)(x — t)°t "1 (¢*/2)"

for t* between x and ¢.

(3.69)

We shall now show that

(3.70) Ay(k,»)= f:hpo(No(t) ,t) d®y(2t) is a well-defined random variable.
Sk

Now applying (3.69) to (3.66), intending to let r — « in the well-defined
random variable, we see from

8ok, ) = = [C[N(2) — 1] dg(t)

(3.71) _(po/z)[;[NO(t) — %1t /) T d Dy (8)

Dy = (po/2)Dg,

that it is enough to show that D, and D, are well defined when « is used for
their upper limits. Choose A = A, so small that P(A,) > 1 — ¢, where

(3.72) A,=[N°(t) <t/A, forallt>0andN(¢) = Az forall t > S?],

and let 1, denote the indicator function of A.. Now
lew. D “INO(2) — ] DACGC-D g (2):
LlispsDa < [ [N(2) — 2] 272 o(1);

and using Fubini’s theporem we see that this random variable clearly has a
finite mean and hence is a.s. finite. Letting ¢ — 0 shows D, is well defined.
That D, is a well-defined random variable follows from CsHM [(1986a),
Theorem 3].

ProoF oF PARTS (ii)—(vi) oF ProposiTION 3.1. All that is now needed is to
show that our expansions (requiring the new device of G¥) of the function I" of
(3.19) and, especially, our introduction and application of regularly varying
functions J to obtain (3.61) and (3.62), have allowed us to reach a point where
we can plug into the exactly analogous parts of the proof of the special case
J = 1 presented in CsHM (1988a). Let us now fix an integer s > 2. Note that
"1 <k,m<I<sl, with fixed integers k2, m, [, s. We now combine (3.23),
(3.46), (3.62), (3.65), (3.61) and (3.64) into (3.51), using the definitions (3.66)
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and (3.67) with r = sl to get, with appropriate remainders R,
S, ={a,(k) +0,[k, 1)} +6,[l,sl) +0,[sl,n—sl)+0,[n—sl,n—1)
+{6,[n—l,n —m) —a,(n —m)}
= {Bo(k) + 8o(k) + 0o[k, 1) + R ; ;}
+{00[Z, s1) + R} o} + {Za(s1) + vau(sl)}
"‘{91[1»31) + R}l,l,sl} + {31(’”) +8,(m) +6,[m,1) + R}z,m,l}
= Bo(k) + [8o(k) + o[k, 1) — 8¢(1)]
+[80(2) + 6,[1, sl) — 84(sl)] + 8o(sl)
+RY p Ryt Zy(sl) +vu(sl) + Ry, o+ Ry
+By(m) + [8y(m) + 6,[m, 1) — 8,(1)]
+[8,(1) + 641, s1) — 8,(sl)] + 8,(sl)
(3.73) = By(k) + Aok, 1) + Ag[l, s1) + 8o(sl)
+RY 4+ Ry o+ Z,(81) + va(sD)
+By(m) + Ayl 1) + AL, sl) +8,(sl) + RL, ,+ RL,

with the following relationships satisfied. First, we have

(3.74) R),,>,0 and R. ,—,0
by (3.61) and (3.64). Second, we have
(3.75) Ry 15—, 0 asn —>w,i=0,1,

by (3.62) with [, r equal to [, sl and by (3.65) with [, r equal to [, sl. Third,
we have easily that

(3.716) 8,(sl) >, 0 asl—o,i=0,1,
as suggested by (3.70). Fourth, we have
(3.77) 0m}a;lxllA,-(h, 1] = Ay (h,»)| =|A;(l,®)| >, 0 asl—>w»,i=0,1,

by trivial observations based on (3.70). Fifth, we have
(3.78) A;(l,sl) »,0 asl—>®,i=0,1,

by an easy argument based on (3.70). Equations (3.74), (3.75), (3.76), (3.77),
(3.78), (3.47), (3.45) of this paper correspond to equations in CsHM (1988a)
bearing the numbers (2.24), (2.26), Lemma 2.6, (2.25), (2.27), first result in
Lemma 2.10, second result in Lemma 2.10. Because we have reduced our
problem to a complete analog of the CsHM (1988a) problem, we can now claim
" our' conclusion from their conclusion. The conclusions (3.34) and (3.35) are a
bit harder to locate in CsHM (1988a); they correspond to the last sentence of
their Theorem 5 and their equation (1.4), respectively. [As a help to under-
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standing, we merely mention that the introduction of the terms in (3.29) was
essential to make the central term and the tail terms independent.] O

We note that

not all CsHM (1988a) results carry over, since their limiting

(8.79) random variable only corresponds to ours when p = 0.

PROOF OF PrOPOSITION 3.2. Let W, = Vn(T, — B,)/A,, so that W, -, W
by hypothesis.

Cast 1. limsup|®,,(c)| < = for all real ¢ and i = 0,1. Then on some
further subsequence n” we have by Helly-Bray that &, —», (some ®;)
for i = 0,1. Thus Proposition 3.1 implies that on a further n” we have
S* 5, Vo+71Z+V, with ®, and @, satisfying (3.26). But W, =
(a* /A )S* + Vn(u, — B,)/A,. Thus the theorem on convergence of types
implies that on n” we have that o;f/A, converges to some positive d and
Vn(u, — B,)/A, converges to some real d’. Thus (3.37) holds. Also (3.24) and
(3.25) hold on n”. Suppose 7 = 0. If both ®, and ®, are constant functions
(necessarily 0), then W would be degenerate. Since W is not degenerate, both

®, and P, cannot be constant.

Cask 2. lim ®;,(c,) = — for some n" and c, with i = 0 or 1; suppose
i =0 for deﬁnlteness Note that by (3.15), 0 < ¢, < 1 since lim sup|®;,(1)| < 1
by (3.14) with ¢ = 1. Using the integration by parts of (3.23), we now write

St=ae = [0 [0 (5) dsdg (1) /o7

/n
(3.80) — [V ] e “’J( ) dsdg(t) /o*
én:
[; '"/”\/_fG‘ Mo ) I(s) dsdg(t) /o
(3.81) = 0,[k,n —m] +an(k) —ay(n—m).
Using (3.39)-(3.47) shows that
(3.82) 6,[k,n —m] = 0,(1).

We next prove that

lim llmlan(Ia (k) <M) >0

(3.83) M—e n
[and the same result for a,(n — m)].

On the set C, =[¢,. , > k/n] which has liminf P(C,) = P(S, > k) > 0, we
. have

la, (k)| = [:/":nfk’“/:‘J(s)dsdg(t)/(\/ﬁa:) -



L-STATISTICS 1799

Thus (3.83) holds. [Our proof of a version of (3.83) trivialized when we changed
to the present definition of C,, as suggested to us by L. Vilharos.]

Lemmas 2.9-2.11 of CsHM (1988b) in fact establish, in the context of our
notation, the following result: If 6,[k,n — m) = O,(1), the random variables
a,(k) and «,(n — m) are asymptotically independent, the «, of (3.81) both
satisfy (3.83) and W, = (0,[k,n — m) + a,(k) — a,(n —m) — B,)/A, = 0,(1)
all on n” for some constants A, > 0 and B,,, then we may conclude that along
n’, both

oya,(k)/(ay VA, =0,1) and
a;‘:an(n - m)/(a,’," 4 An) = Op(l)
The required asymptotic independence of our «,(%) and «,(n — m) is a special
case of Satz 4 of Rossberg (1967) and the other requirements are shown in
(3.82), (3.83) or hypothesized; thus (3.84) holds from this CsHM result.

Let D,, =[£,.5, < c¢/nlfor0 < ¢ < ¢, < 1 and note that liminf P(D,_,) > 0.
Now on the event D,, and the subsequence n” we have for all n large enough
that

(3.84)

0,(1) - o la, (k) . fk/”ank/"J(s) dsdg(t) oy

o¥ VA, c/n  “k/n \/;a': of¥ VA,

_ fk{

c

orJ(u/n)du) dK(t/n) of
fk J(t/n) } Vno* oFf VA,

*
a-n

(2] s

*
n

(o¥VA,)

n

> (some &)|P,,(c)l

These inequalities obviously forces
*

i ——O-n "
(3.85) lim sup( (o VA )|‘I’0n(c)| <wonn’ forall0<c<c,<1

and hence for all 0 < ¢ < o,

which when coupled with |®,,(c,)| = ® on n” gives

0-: "
(3.86) A -0 onn’;
this is just a statement that (3.25) holds on n” with @ = 0. Applying
Helly selection we get that on a further n”, both (3.24) and (3.25) hold for
i = 0. A repetition of the above argument provides a further n”” on which
(0}/A,)®,, >p (some ®;) for both i = 0,1. Thus Proposition 3.1 gives
Vn (T, — u,)/A, =4V, + V, on a further n"”, with ®, and ®, satisfying
- (3.26) and with 7= 0. Hence by the convergence of types of theorem,
Vn(u, — B,)/A, - (some d’') on n and W=, V, + V, +d’. Now this W
would be degenerate if ®, = ®, = (Constant). Since W is not degenerate, at
least one of ®, and @, is not constant. O~
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Proor or THEOREM 2.1. Suppose (2.2) holds. Then every n’ has a further
n’ on which ®;, », @, for i = 0,1. Thus (3.24) and (3.25) hold on n” with
A, =0 and a = 1. Thus on a further n” on which (3.30) holds, we have
(3.32) with A, = o;*. That is, S} -, V,, +7Z+V,,, on n” with 0 <7< 1,
necessarily. Thus (2.3) and (2.4) hold.

Suppose (2.3) holds. Assume (2.2) fails; that is, lim , ®;,(c,) = —o for some
¢y >0, with i = 0 or 1 and some n'. According to (2.3), we have (3.36) on a
further n”, with A, = 0¥, and hence (3.24) and (3.25) with A, = ¢ hold on
n”. Thus ¢ = 1 in (3.25). Obviously now lim, ®,,(c,) = — for i =0 or 1
gives us a contradiction of (3.24) at ¢, on n” and hence (2.2) must hold. O

ProoF oF THEOREM 1.1, PART (ii). Suppose (1.24) holds. Set ¢ = 1/(2n) and
A = 2c in the equivalent (1.26) to obtain (1.28). Now set A, = ;¥ in Proposi-
tion 3.1 and note that (3.24) and (3.25) hold on n with ®;, = ®, = 0 and
a = 1. Now every subsequence n’ has a further subsequence n” on which
(3.30) holds, with 7 = 1 by (3.35). Thus (8.30) holds on the original »n with
7= 1. Thus S} »,; Z by (3.32). Note also that by (3.28) and (3.29) on n,

S: = on(rn’n - rn) + Op(].)
= _fl—r,,/"Bn dK /o,y + 0,(1) [by (3.31)]
r,/n
3.87 —r
G —fl Y™, dK/a +0,(1)  [by (3.40) with r, for r]

r,/n

(1/‘/;0}?‘) 'il Yv[r,,/n,l—r,,/n)(gi) + Op(l) [by (110)] .

This is also the limiting form of S*.

Suppose Vn (T, — B,)/A, =, Z as in (1.23); that is, (3.36) holds. Thus for
every n’ we have (3.25) and (3.37) on some further n”, where ®, = ®;, = 0 by
Proposition 2.1. That is, every n’ has a further n” on which ®,, -, 0 for
i =0,1. Thus ®;, -, 0 for { = 0, 1. This is (1.28), which implies (1.24). O

ProoF oF THEOREM 1.1, PART (i). Suppose 0 < 0%(0) < . Then {K2(t) +
K2(1 —#)] - 0 since [(K%(t)dt <o with K » and K(}) = 0. Thus with
®,,(c) = K(c/n)/Vn —> ®y(c) =0 for all ¢ >0 and &, (c)=K,(1 —
c/n)/Vn - ®(c) = 0 for all ¢ > 0. That is, (3.24) and (3.25) hold on n with
A,=1 &,=@, =0 and a = 0(0). Thus every n' has a further n” on which
(3.32) holds, with ®; = &, = 0, with 7 = a = 0(0) by (8.35), and hence with
limiting random variable ¢(0)Z. Thus (3.32) holds on n with limiting random
variable ¢(0)Z.

' Suppose Vn (S,(k, m] — B,) -, 7Z with 0 < 7 < . That is, (3.36) holds on
n with A, =1 and W = 7Z. Thus every n’ has a further n” on which (3.37)
and (3.25) hold, with a = 0(0) the obvious limit of ¢;¥ and with &, = ®, =0
by Remark 2.1. Thus (3.35) gives 7 = o(0).
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In such cases we use (3.87) to write

(T, = ) /0(0) = = [ 77", dK /a(0) + 0,(1)

r,/n

(3.88) = = [V, dK /o (0) + 0,(1)
k/n

—follUn dK /(0) + 0,(1)

(3.89) \/Z[(l/n)fY(gi) —EY | +0,(1).
1

Now (8.88) holds since each of the two bits added has a variance that goes to
zero because o(0) < «. O

REMARK 3.1. We now simplify our expression for V,. We see, most easily
from (3.59), that some algebra yields

V, = [;:hP(N(x),x)dtb(x) + [kskhp(k,x)dd)(x)

(3.90)

=AV, +V, ;.
Thus we obtain the formal series (it is rigorous with a finite upper limit)
(3.91) Ve= L AV,

i=k
so that including one more order statistic adds one more term to the series.
Unfortunately, in this formula & = 1 corresponds to starting the sum in the
T, of (1.1)at 2 + 1 = 2. Moreover our proof only establishes this for 2 + 1 > 2.
That is, we had to trim at least one order statistic from each tail in order to
guarantee that the extreme terms were finite.

REMARK 3.2. Had we considered instead
1+ 1-F

Y cng(bns),  wh= [ TI(0)g(t)di

no g a,

(392) T

and

of =ola,,1-d,), wherea,=%/(n + 2)and
a,=k/(n+2)fork, k' >1,

then the identity (3.23) would have been

S,’f(l,r] _ _[r/(n+2)\/;/'6n(t)J(s)dsdg(t)/An
l/(n+2) t

. (3.94) _ /; YD) po J f’;‘(”J(s) dsdg(t) /A,

(3.93)

+ [ 60 (s) dsdg(t) /A,,
én:r r/n
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where
(3.95) G (t)=(i+1)/(n+2) for &,,,<t<¢,.;,,and0<i<n+1.
This would have led to (leaving off the 0 — subscript)

ap(k) + 0,[k,7) > V¢ = [ [h,(1+N(2),8) = h,(k,1)] dd(t)
(3.96) S
+ [(hy(k, 1) dO(2)
k

along appropriate subsequences, as is easily seen from (8.54) and (3.57).
Observe that

Vi = fsrf:rNu" dut™"dd + fkrftu” dut=*d®
k

| k

[ e du)(fks"t—P dcb(t))

k
—(fk+1fk+1updut_p dCD(t)) + V£
t

k
(3.97) = AV} + V...
Again,
(3.98) V,= Y AV}, validfork > 1,

i=k

so that including one more order statistic adds one more term to the series.
Happily, in this formula % = 1 corresponds to starting the sum in the T, of
(3.92) at k£ = 1. Furthermore, the corresponding proof for T,* establishes this
for £ > 1. Thus, no trimming is needed in this version. [We acknowledge that
the uniqueness proof of Proposition 2.1 needs to be modified for this T)* case.
However, the above format makes clear that it carries over. Moreover, the
sufficiency for normality in the new case of £ > 1 under the condition of this
present paper is worked out in detail in Shorack (1972). We choose the
formulation of Theorem 3.1 in order to readily apply the needed uniqueness
result from Mason and Shorack (1990a).]

REMARK 3.3. We note that if K corresponds to a stable random variable in
D(a) for 0 < a < 2, then in the representation
K(t) = —[68, + o(1)][¢"Y/*L(¢)- and
(3.99) (%) [0+ 0(1)] (%)
K(1—-t)=[8 +0(1)]t"/*L(¢) ast— 0,

wé have

2
(3100) o) = | 5 tYPVL()[8F + 6% + o(1)] %,
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so that for ¢ > 0, we have

0',;“(1) () g a S Yy d
—,,.(c —»—1/ - = —/———=c¢ /% an
o, 2 /62 + 62

U,Z"(D () 2-a 8, iy
—®,,.(c) » — c /e

o V72 ezt
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