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ON THE SPECTRAL SLLN AND POINTWISE ERGODIC
THEOREM IN L~!

By CHrisTiIaAN HOUDRE

Stanford University

We obtain criteria for the SLLN to hold for processes which are Fourier
transforms of random measures. With this spectral approach, we also give
criteria for the pointwise ergodic theorem to hold, for some classes of
operators between L“-spaces, 1 < a < +«. These results apply in particu-
lar to contractions on L% Some random fields extensions are also studied.

1. Introduction. The criterion, obtained by Gaposhkin (1977a), for a
(weakly) stationary process to satisfy the strong law of large numbers (SLLN)
has had various extensions, in particular to second-order nonstationary har-
monizable processes [Gaposhkin (1977b), Rousseau-Egelé (1979) and Dehay
(1987)]. Outside of the L2framework, it has also been studied for Fourier
transforms of independently scattered symmetric a-stable (SaS) measures in
Cambanis, Hardin and Weron (1987). It is shown here that with a spectral
approach, neither the L%requirement nor any distributional assumption are
indispensable in establishing the SLLN. Only the harmonic representation
with respect to a bounded (in a sense to be made precise) random measure is
crucial. This is illustrated in the present work, where we obtain criteria for the
SLLN to hold for processes which are Fourier transforms of random measures
(with or without ath-moment conditions, 0 < @ < 2).

It is well known that stationary processes and unitary groups of operators
are intimately related, and so are the corresponding strong law and pointwise
ergodic theorem. This type of duality between operators and processes carries
over to our framework, although, in general, the operators are not shifts. It is
thus also the purpose of our work to obtain the pointwise ergodic theorem for
some new classes of operators between L*-spaces, 1 < a < +x.

We now give a brief description of the contents of this paper. In the next
section we set the stage. We introduce the processes under study and also
illustrate the scope of our approach with various examples. Section 3 is the
core of the paper, and ergodic properties of processes are developed. These
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1732 C. HOUDRE

results recover some classical strong laws and present new ones. In Section 4
we adapt our framework to operators to give a criterion for the pointwise
ergodic theorem to hold for some new classes of operators between L%spaces.
This also recovers some classical results. In the last section we discuss some
random fields generalizations.

2. Preliminaries. Let (Q, &, &) be a probability space. For 0 < a < +,
let LQ, &, #) [ L*(Z) for short] be the corresponding space of complex-val-
ued random variables equipped, for 0 < @ < +, with the (quasi-) norm
(& 1" =l - ll,, while on L% <) the topology is the one induced by conver-
gence in probability. Let Z(R) be the Borel o-algebra of R and let %,(R) be the
d-ring of Borel bounded sets. Let u denote a positive o-finite measure on R and
let as above LAR, Z(R), u) [LA(w) for short], 0 < B < +, be the correspond-
ing spaces of B-integrable functions. Finally, let C,(R) be the continuous
functions vanishing at « with the supnorm | |l. and let, throughout, K
denote a generic absolute constant whose value might change from one
expression to another.

We now introduce some terminology and results which either generalize
concepts in Houdré (1989, 1990a, b) or can be obtained from slight modifica-
tions of the results there. First, for 0 <a <2 and 2 < B < +x (resp. for
B = +), let Z be a continuous linear operator from LP(u) [resp. Cy(R)] to
L*(&). For such Z, using Lemma 2.1 below, we define [, fdZ via [, fdZ =
AP[y fdZ,. [This last integral makes sense for any f € Lf(u), when B < +,
and f Borel bounded when B = + . More generally, it exists for any f € L2(v),
where v is as in Lemma 2.1.] As defined, [, fdZ enjoys familiar properties, in
particular linearity, with furthermore APfy fdZ, = A [y fdPZ, = [n fdAPZ,.
For B < 4+, a process X: R —» L*(&) is said to be (a, B)-bounded (with
respect to w), if

X, = lm [* (1 - E)eitde(g) in L*(2),
A=+ S ) A

uniformly on compact subsets of R. For B = +o, LA(u) is replaced by Cy(R)
and X is (a,»)-bounded whenever X, = [ze'* dZ(¢). The finitely additive
random measure Z: #,(R) - L°(&) is then said to have bounded (a, B)-u-
variation, 0 < @ < 2, 2 < B < +. Moreover, for 8 = +x, Z is ¢o-additive on
#(R) [this can be checked by using, e.g., Lemma 2.1 below as well as the
results of Houdré (1990b)]. Finally, it is clear that a («a, 8)-bounded process is
L*-continuous (continuous in probability when a = 0) and that for B = +,
we also have L%boundedness. Furthermore, as in Houdré (1990b), but with
the additional requirement [, . lul “Pdu < +o, equivalent characteriza-
tions of L*-continuous («, B)-bounded processes can be given when a > 1.

To illustrate the scope and the applicability of our results, we now present
some typical and some less typical examples (we do consider the case « > 2 for
future considerations on operators, although for probabilistic purposes the
case a < 2 is the most interesting and furthermore contains « > 2.) For
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a = 2, (a,x)-bounded processes are also known as (weakly) harmonizable or
V-bounded and when £Z(-)Z(-): Z(R) X #(R) - C extends to a measure on
B(R?) they are (Loéve or strongly) harmonizable. For Z orthogonally scat-
tered, that is, £Z(A)Z(B)= 0 whenever AN B =, A, B #[R), (2,)-
boundedness is just weak stationarity. For 0 < a < 2, a typical example of
random measure Z is an independently scattered (isotropic) SaS with- finite
control measure, in which case Z induces a continuous linear operator from
C,(R) to LP(Z), p < a. We note that in the discrete-time case, u is finite [see
Houdré (1990a) and so («, 8)-boundedness, B < +, is contained in (a, ®)-
boundedness. A discrete-time orthogonal process X = {X,} with £1X,|*> < K is
(2,2)-bounded with respect to Lebesgue measure [see Houdré (1990a). By
taking independent zero-mean random variables which are L*-bounded, we
can get, via Rosenthal’s inequality, («,2)-boundedness, 2 < @ < +» (w.r.t.
Lebesgue measure). For examples of random variables exhibiting more depen-
dence, let o > 2 and let X: Z - L*(£?) be an L*bounded martingale differ-
ence process. Then, by Burkholder’s and Minkowski’s inequality, we have

N a N a/2
) piX,,| <K )» |pi|2|X3,»|
i=1 a i=1 a/2
N a/2
< K{ by IpiIZIIXfilla/z}
i=1

N a/2
<K suPIIXn,-llﬁ{ h |pi|2} .
i=1

Again, X is (@,2)-bounded, for « > 2; hence, X, = [ _e'"¢dZ(¢), n € Z,
where again Z is ‘““dominated” by Lebesgue measure. To further illustrate the
scope of our framework, recall [see Cambanis, Hardin and Weron (1987)] that a
continuous 'in probability SaS process (1 < @ < 2) can be represented as
X, = [3f(t,7)dM(7), t € R, where M is a-stable Lévy motion. Hence, when
{[xUdIfCt, DI* d7)?/« dt}}/?> < +», we have (by Minkowski, Cauchy-
Schwarz and Plancherel) and for any 1 < p < a,
@ 1/a
d 'r}

py 1/p
} =K{f01‘ng(t)f(t,7) dt

) . 1/a
sK[RIg(t)I{folf(t,f)l df} dt

< I |g(t)|2}1/2{ [ fkt,f)l“df)m dt}

, 1/2
<K t ,
{fjeor)
and X is (p, 2)-bounded with respect to Lebesgue measure. It is clear that

{:f‘ng(t)Xt dt

1/2
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whenever f is a function of the difference of ¢ and 7, the above condition is
not verified. In fact, for such f no boundedness condition can be satisfied [see
Cambanis and Houdré (1990)]. However, since the corresponding process is
strictly stationary, the ergodic averages do converge. In ways similar to the
ones developed above, conditions for (p, B)-boundedness can also be obtained
for SaS random measure Z. Again, recall that a generic representation for
such Z is given by Z(A) = [ N(A,7)dM(7), A € B,(R), N(A,7) € L*R). In
particular, Z: #[R) - LP(#), 1 <p <a, is o-additive if and only if
N(-,7): #B[R) —» L%R) is o-additive. Furthermore, whenever N(dt, ) =
N(t, ) dt with [R([xIN(¢, 7)I* d7)?/*dt < +o, Z is (p, B)-bounded, 1 <p < a,
1/B + 1/y = 1 (the proof of this claim is essentially as above). In all these
examples, X and Z can be recovered from one another by the usual inversion
formulas.

Since a process X which is (@, B)-bounded is L%-continuous, it has a
(t, w)-measurable modification with almost surely locally integrable sample
paths and the averages o, X(w) = (1/2T)f% X, w)dt, T >0, w € Q, are
well defined. We then say that X satisfies the SLLN whenever
lim, . opX(w) =0 [limy_(1/@N + 1)Z)__yX,(w) =0 in the discrete-
time case], for almost all w [we will usually omit the reference to w, e.g., write
op X for opX(w)]. Of course, considering one-sided averages gives results
essentially identical to the ones presented below.

We now state a decomposition lemma which for « = 2 and B = + is just
one of the various forms of Grothendieck’s inequality. More details can be
found for 1 < @ < 2 in Houdré (1990b) [the extension to 0 <a < 1 can be
obtained by combining the factorization results and techniques of Maurey
(1974) with the results and techniques in Houdré (1990b)].

LEmMA 2.1. Let the process X be (a, B)-bounded, 0 <a <2 < < +x,
with _associated random measure Zy. Then there exist a probability space
(Q, B, P) with LAP) c LAP), a (2, B)-bounded process Y with orthogonally
scattered random measure Zy defined on (£, B, P) and a random variable
A € L?*/@=(P) such that X, = APY,, t € R, where P is the orthogonal
projection from LX) to LA P).

In Lemma 2.1, A can be chosen constant (a.s. &) when a = 2. Further-
more, since Zy is orthogonally scattered and also has finite (2, B)-variation,
there exists [see Houdré (1990b)] a positive measure v [finite when B = +
while given by dv = gdu, g € LF/®~3(u) when B < +] such that

2
— 2 :

(2.1) :f‘fRdeY = fRIfI dv

for all fe€ L%(v). The above v is a dominating measure (&|f fdPZy* <

APIPfIfP dv).

Whenever X is (e, B)-bounded, 0 < 8 < +o, Fubini’s theorem and the
defining boundedness property, as well as the condition [, 1lul Bdu < +o,
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give lim,_,, 0,X = Zx(0), in L&) (for 2 < B, Lemma 2.1 and
S > plul "B du < +o will also do it, while for B = +, the integral condition
is not needed). Hence, under these conditions the weak law of large numbers is
verified if and only if Z,({0}) = 0. However, it is well known that, even in the
stationary case, Zx({0}) = 0 a.s. is not a sufficient condition for the SLLN to
hold. Similarly, it is not because the dominating v in (2.1), is, say, the spectral
measure of a stationary process satisfying the SLLN, that the dominated X
satisfies the SLLN. After all, (2.1) is just a norm estimate. However, this norm
estimate is a strong ingredient in obtaining a criterion for the almost sure
convergence of the ergodic averages.

To conclude this section, we state another domination lemma, the proof of
which is in Rousseau-Egelé (1979) and which goes back to Gal and Koksma
(1950). First, we need some more notation: Given any integer p > 0, an
integer n > 2 such that 2? < n < 2P*! has a unique binary decomposition
n=2°"+1+ Zj?=lej2”‘j, where & = (¢4,...,¢,) € {0, 1}”. Hence, to any such
n, that is, to any sequence ¢ € {0, 1}”, we can associate the (finite) sequence

k
2P + 1+ ) 6,207, E=1,2,...,p,
ak(eap)= Jj=1

27, k=0.

With this notation and if a, is short for a,(e, p), we have the following
lemma.

LEmMA 2.2. Let {zj} be a sequence of complex numbers and let {tj} be a

sequence of positive numbers. Then, for anyp > 1,

n 2 p p ay 2
max Yoz < Xttt ¢, Yy Y oz |-
2P<n<2PT7|j=2r+1 k=1 E=1 (e,...,ep)€{0,1}% | j=as_1+1

3. The spectral SLLN. With the results of the previous section, our
approach in proving the SLLN follows classical paths, the first of which is
another lemma showing that we can reduce the problem to the dyadic subse-
quences. We prove our results only for the most interesting situation of
continuous-time processes; the discrete results are obtainable in an identical
fashion. Finally, throughout this section, and unless otherwise stated, (a, B)-
bounded is short for (a, B)-bounded with respect to the o-finite measure .,
0<a<2<pB< +w, with, furthermore, fﬂu|>1)|u|"3 du < 4+, whenever
B < +oo.

Lemma 3.1.  If X is (a, B)-bounded, then
lim max |0, X — 0, Xl =0 (a.s. £).

P+ 2P <pgortl
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Proor. Since, by Lemma 2.1, X = APY, and since ¢X = AcPY, it is
enough to show (as for stationary processes) that

lim max |0, PY — 0, PY| =0 (a.s.P).
P+ 2P cp coptl
As in the harmonizable case [strong or weak; see Rousseau-Egelé (1979) or
Dehay (1987)], and since

0 PY -0, PY = Y (9,PY — a;_, PY),
Jj=2P+1

applying Lemma 2.2 with its notation, we get

¢ max |o,PY — 0-2,,PY]2
2P <p <2P+1
(3.1) p P
< ( 2ty 1)( Y ¢,2 max  &lo, PY — o, PYP?|.
-1 k=1 [CIR. £,)€{0,1}*

To prove the result, it is enough to show that & max 2P <nx gp+1l0, PY — 05 PY|?
is the general term of a convergent series. Since X is («, B)-bounded, for any
T > 0, we have, using f{|u|>1}|u| d,u < +ox,

PY P[(SinTg) dZy(£)

o = — .

T R Tf Y

Hence, by (3.1) and (2.1), it is in turn enough to show that

sina,é sine,_,¢

a,é ay,_1¢

dV(f)})

To do so, and as for stationary or harmonizable processes, we divide R into
four pieces, {|¢] <2771}, {27771 < [¢] < 27PFR} {2777k < ¢] < 1), {I¢] > 1).
We then use the triangle inequality and proceed to estimate each one of the
resulting four sums. The estimates over the four different regions are similar
and so we just give the details for, say, the second and fourth regions, since in
this latter case the nonfiniteness of v makes the estimate different.

For the second region, since 27771 < |£| < 277** we have

Z(Ztk)(mk ||

(3 2) p=1 k=1 e€{0,1}*
< +o,

sina,é sina, &

2
<Kla, —ay_4*/la)_,l
aé ak¢1§

< K2(p=h2 /920 = K92k,
Using this estimate and taking ¢, = t*, 1 <t < 2, (3.2) with R replaced by
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27P71 < |¢| < 27P** is dominated by

© p
K thoko—2k d }
Z Z {‘/;2‘P‘1<I§|s2‘P+k} V(f)

p=1k=1
© p P . )
_KY Y2t Y oyl < g <27)
p=1k=1 Jj=p—k

© © Jjt+k
=K) v2@7 t<|gl <27} ) Y th2tk
Jj=0 k=1 p=max(j, k)
<Kv{0<l|gl <1} Y (B + 1)th27% < 4o,
k=1
since v is finite or o-finite.
For the first region, using

2

sina,é sina,_ (& 2 2 2 orn_
< Kl¢| |ak - ak_ll < K|¢| 2P —k)

a,é ay,_1¢

and proceeding similarly, the corresponding series is finite. The third series
can be estimated using

2

sina,¢ sina,_;¢ o
- <Kla, —a, 4/la,_lléa,_,| < K2?P~02727 /¢,

a,é a_1€

To estimate the last sum, we use

2

sina,é  sina,_ & <K/la,_,£l* < K277 /|¢]%,

aré ap_1¢
and proceeding as above, (3.2) with R replaced by {|£| > 1} is majorized by

© p
Kf lul2dv ¥ Y thok-2p
{lul>1} p=1k=1

2/B o
< K(f lul =P d,u) Y t427F < too,
{lul>1 p=1
since dv = gdu, g € L#/#~?(y) and using Holder’s inequality when 8 < +,
while v is finite for B = +. Thus, (3.2) is finite, and the result follows. O

We now state the main result of this section, a criterion for the a.s.
convergence of the ergodic averages.

"THEOREM 3.2. Let X be (a, B)-bounded with random measure Zx, and let
either X be L%bounded, a > 1, or let PY be L%-bounded. The following
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conditions are equivalent:

(i) Fora.a. w,limy_, ., o7 X(w) exists.
(i) Fora.a. w,lim,_, . Zy{l¢l < 27Pw) exists.

Under either condition, and for a.a. o, limy_,,, o0p X =lim, , .. Zy{|¢] <277}
= Z{oy. :
PROOF. Again, as in the L2-case (stationary or harmonizable),
(TTX= (O'TX - O'nX) + (O'nX - 0'2pX)
+(00 X — Zx{lEl < 27P}) + Zx{lé] < 277},
The middle parentheses are taken care of by the previous lemma. To show that
the third term tends to 0 a.s. as p — «, we show that
Y &|oysPY — PZy{l¢] < 277} < +oo.
p=1
But the triangle inequality, as well as (2.1), gives

f‘, Elogw PY — Zy{lél < 27P} 7

p=1
Kf: / sin 2P¢

<
p=1|uei<2n|  27€

To prove the result, it is thus again enough to show that both series converge.
We provide the details only for the first integral. Since

sin 2P¢ 2

2

dv(¢) + [

{I¢1=277}

sin 2P¢
2P¢

-1

dV(f)}-

2| £12
2p§ _'1 S-K2 ”fl,
the first sum is dominated by
KY 22”{ )y |§|2dv(§)}
p=1 * k=p (2_k_15|£|<2_k)

<K f‘, 221’( f‘, 272k p{27k"1 < g < Z‘k})

p=1 k=p

%) k
<KY 272p(27% 1 < g <27F) ¥ 2%
k=1 p=1

<Kv{0 < ¢ < 2‘1}(1 + ) 2‘2k) < +oo.

. k=1
Using
' 2

sin 27
d < K/2|27¢?,

2p¢
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the second sum can be estimated in a similar way. Hence,
lim (09, X — Zx{l£] <27P}) =0 (a.s. £).
p—>oo

For the first parentheses,

lop X — 0, X| < 11/2T — 1/2n|

fTXtdtl ‘

[ X,dt‘ +1/2T

+1 /2Tl | 'x,at
-T

Hence, whenever X is L*-bounded, we get
& sup lopX - o, X"

n<T<n+1
< Kn-%{f” dt}a + Kn‘“{fn+1dt}a + Kn“"{/_n dt}a
—-n n -n—-1
< Kn~™¢, a>1.

It thus follows that
lim sup lopX~-0,X| =0 as. (£).
=% p<T<n+1
In a similar way, whenever PY is L2-bounded,
& sup lopPY - o,PY)®> <Kn2
n<T<n+1
and
lim sup lopPY —0,PY| =0 as.(Z).
no® p<T<n+1
Finally, (a, B)-boundedness via Lemma 2.1 gives lim,_, Zy{l¢] <277} =
Z ({0} in L*(Z?), and the result follows. O

REMARK 3.3. The extra L* or L®-bounded hypotheses are particular to the
case B < +o, and in particular for discrete-time processes they are always
satisfied. For B = +o, the exponentials are Z,-integrable; hence, PY, =
P[ge™ dZy()) and £IPY,)* < Kv(R) < +o. Theorem 3.2 can be restated as
follows: Let Z, = Z,{2 %! < |¢] < 27%); then by (a, B)-boundedness, the se-
ries ¥;_,Z;, p = 1, converges in L*(#) and its sum is Zx{l¢] < 277} — Z,({0D).
Hence, X satisfies the SLLN if and only if for a.a. o, lim,_, . X}_;Z,(w)
exists, and Zx({0}) = 0.

COROLLARY 3.4. Let X ={X,}, ., be an L*>-bounded martingale difference
process. Then limy_,, N™'XN_ X = 0 with probability 1.

Proor. From the estimates of Section 2, X is (2, 2)-bounded with respect
to Lebesgue measure. Hence, -

Y &lZx{lel <27 <K ¥ 172070 < 4o,

n=1 . n=1

The result now follows because Zx({0}) = 0. O
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COROLLARY 3.5. Let X satisfy the hypotheses of Theorem 3.2 and let its
random measure Z be independently scattered. Then X satisfy the SLLN if and
only if Z{0}) = 0

Proor. The Z, are independent and the convergence of the series in
Remark 3.3 already holds in L*(&). O :

In our framework, and if log denotes the logarithm of base 2, one of the
sufficient conditions given in Gaposhkin (1977a,b) or Dehay (1987) for the
strong law to hold in the stationary or in the weakly harmonizable, case,
becomes:

THEOREM 3.6. Let X be (a, B)-bounded, a > 1, with random measure Z
such that Z{0}) = 0 and let sup,.p &IX,|* < +o. If there exists a positive
measure v on (R%, Z(R?)) such that:

(i) ElZ(A)|" <v(AxA), Ac By(R),

1 a/2 1 a/2
.. loglog — loglog — dv(é,m) < +x
(i) f[(0<|§l,lnl<6)( & g|§|) & g|77’) v(&,7)

for some 6 > 0,

then X satisfies the SLLN.
Proor. To prove the assertion, it is enough to show that the sequence
Z{|£] < 277} converges to Z({0}) = 0 with probability 1, and to do so, we again

show that £|Z{0 < |¢| < 27P}|* is the general term of a convergent series. Our
proof is only sketched. First, for 27 < p < 29*1, we have

Z{l¢gl < 27P) = Z({0}) + Z{0 < ¢l < 27%} — Z{27P < ¢ < 27}
But, by (i) and (ii) above with g, any integer such that 272 < §, we have, if
={0 <l <277}

T slz(a)

9=4qo
< Y v(A,XA),)
q=4do
a/2

o a/2 1
- l N N
Lafl, ., (1°gl°g |g|) (l"g o8 Inl) av(ém)

f/;0<l£l, Inl <8}

Hence, lim, _, ., Z{0 < [£] < 221 =0 a.s. For Z{277? < |¢] <272, let B, =

IA

IA

a/2 1 a/2 o
loglog |§|) (logloglj’]—!) dv(é,m) Y ¢ < +oo.

9=9o
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{279 < |¢] < 27%-1}, where a, is defined as before, and let C, = {2~ 277 <
l¢] < 272"}, Applying Lemma 2.2 with ¢, = 1 [actually what 1s needed is a
slight extension of the lemma to cover the case 1 < a < 2; this can be obtained
by replacing the Cauchy-Schwarz inequality by Hoélder’s inequality in the
proof given for @ = 2 in Rousseau-Egelé (1979)], as well as (i) and (ii), we get

f‘; 5( max |Z{27P < |¢| < 2—2"}[“)

qa=q, 29<p<29+!

< iqa-l(i > cf|Z(Bk>|“)

a=q9 k=1 (g,...,¢,)€{0,1}*

IA
™
Q

i

© q ©
1( Y v(C, % Ck)) < 2 qv(C,xC,)
9=qo
a/2

1 a/2 1
= loglog 77 logl dv(&,m) < +o.
ff(o<|§l,|n|<5)( 0glog m) ( 0g og} }) v(€,m) 0

Hence, with probability 1,

lim max Z{2_" < ¢ < 2‘2q} = 0. ]
g= +° 29<p<29+1

REMARK 3.7. Starting with a discrete-time stationary process X such that
04, X diverges on an arbitrary set of positive measure [Menchov’s counterex-
ample ensures that X exists; see Alexits (1961), Chapter 2], the process
Y=AX, A eL?/C (), A>0, is a discrete-time (a, ©)-bounded process
such that 0,,Y diverges on the same arbitrary set of positive measure. In fact,
such Y can be chosen with absolutely continuous dominating measure dv(t) =
g dt, g € LY(] — =, w]) by also adapting the arguments in Gaposhkin (1977a).

From the above proofs, it is clear that the integrability condition
Jour> 1,IuI du < +ois not minimal. It is also clear that conditions (i) and (ii)
can be replaced by &1Z(A)I* < v(A), A € Z,(R) and ¥;_,(log p)*»{277~! <
|€] < 27P} < +o. When a = 8 = 2, for example, for Lz-bounded martingale
difference or orthogonal processes, our results are also not optimal, since the
rate of convergence can be improved. By techniques similar to the ones in
Theorem 3.4(ii) with an appropriate extension of the classical
Rademacher—Menchov theory, it can be shown that with probability 1,

1 N

lim X, (0) =0, e > 0.
N-= /(2N + 1) log3*¢(2N + 1) n=Z_N ()

For B = +® and a > 1, it can also be shown with the above techniques and
" as 'in Gaposhkin (1977a, b), Rousseau-Egelé (1979) and Dehay (1987) for
a = 2, that with probability 1, lim, _ (loglog2T) */%0;X = 0, the loglog
speed being the best possible. The various:necessary or sufficient conditions
given in the works mentioned above also admit a-counterparts.
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REMARK 3.8. By now, the reader might have wondered what happens in
the cases 0 < B < 2. Using, for example, the factorization results of Maurey
(1974), some partial results can be obtained: Replacing 2 by @ > 1 in Lemma
2.1, whenever a dominating measure v satisfies

Yov{27h i< ¢l < 2"3}0‘/y < +oo, l<a<y<B,
k=0

then Theorem 3.2 and its proof carry over (replacing & |* by &] - |* in the
proof).

Under appropriate distributional assumptions, Corollary 3.5 can be ob-
tained by different methods. A case at hand is the class of stable (or infinitely
divisible) harmonizable processes. To that effect, we now present such results
using a beautiful argument due to Rosinski. It was shown to us at a time when
we could neither prove nor disprove the result below by the methods presented
above.

THEOREM 3.9. Let X be a continuous in probability ‘‘harmonizable’” SaS
process with control measure m. Then X satisfies the SLLN if and only if
m({0}) = 0.

Proor. Since X, = [ge'® dZ(x), t € R, is harmonizable SaS, it has a
LePage-type decomposition [see Rosingki (1990)], that is, there exists a process
Y on (U, %', #') such that X =_ Y, where .2 denotes equality in law;
furthermore,

Yt = E gkR(Tk’ gk)eitgk = feitx le(x)’ t € R’
k=1 R

where the series converges a.s. &’'. The three series ¢, 7,& are mutually
independent, the ¢,’s form a sequence of i.i.d. random variables with law
m, = m/m(R), the 7,’s are arrival times in a Poisson process with rate 1, the
g,’s are Bernoulli random variables with Ffe, = 1} = ${¢, = —1} = 1/2 and
finally R: R*X R - R™ is given by R(u, s) = s/u'/® Now, if M, denotes Z,
conditioned on the ¢,’s and 7,’s, then, as shown now, M, is a second-order
independently scattered measure. First, Z(R) = £} _,¢, R(7,, ¢,), where this
last sum converges a.s. (¢?'); hence,

SIM(R)[* = kz |R(my, &) [° < +o.
) =1

Second,

&(e BB (1, £,)) = ];[ cos R(74, &) Lt xp (ér)

=I1 I;[ cos R(7y, &)t xp (€r)s
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since the B,’s are disjoint (x_is the indicator function of the set B,) and the
¢, ii.d. Hence, M, is a second-order independently scattered measure and by
Gaposhkin’s result, Z{o;X; > M({0})} = 1, where X,(¢) = [re'™ dM(x).
Now, Fubini’s theorem and independence give #'{o;Y —» Z,({0})} = £ ® 9
® Plop X, = M,({0D} = 1 [note too that whenever Z,({0}) = 0, Ml({O}) = 0]
Finally, #o;X — Z({0})} = 1, and the result follows. O

We end this section (see, however, the next section for related results on the
existence of the ergodic Hilbert transform) with a result which, once more, has
its stationary counterpart in Gaposhkin (1977b). This theorem related a.s.
(C, r)-convergence with the corresponding a.s. (C, 1)-convergence, that is, the
SLLN. It is stated only for the more familiar Cesaro sums; small adjustments
will give the continuous case, while other classical summability methods can
also be analyzed by the same approach. Recall that the Cesaro means of order
r > —1 of a sequence {X,} are given by o X = (A})"'Ll_ AN, X, where
Al =(r+1Xr+2)---(r+n)/nl

THEOREM 3.10. Let X ={X,},., be (a,®)-bounded, 0 < a < 2, and let
r>1/2. Then X satisfies the SLLN if and only if with probability 1,
limy o8 X =0.

Proor. It is clear (via Lemma 2.1) that the o X converge to Z({0}) in L.
Thus, the theorem is equivalent to showing that {o} X} converges to 0 if and
only if lim,, _, ., Z(|¢] < 27P} = 0 a.s. This follows from the methods presented
above combined with the estimates on the (C, r)-kernels obtained in Gaposhkin
(1977b), Theorem 6. O

4. The pointwise ergodic theorem. In this section we now turn our
attention to operators and introduce first some definitions which parallel the
corresponding notions for processes. We replace our probability space
(Q, B, P) by a o-finite measure space [also denoted (Q, &, &)], and we extend
the range of a beyond 2 and assume that 1 < @ < 4+, while throughout the
section we also take 1 < B8 < + o, Furthermore, u is as in the previous section,

and, in particular, [, . lul P dp < +o.
Let B(L*) be the algebra of bounded linear operators on L*(&) equipped
with the strong operator topology and let || - || denote the usual norm on

B(L*). Throughout, let T: R —» B(L*®) also be an operator function, that is, let
T be bounded (sup,|Tgll, < K, g € L(¥?)) and measurable (¢ - T'g is
strongly measurable). Since T is bounded, [ f(¢)T'dt is a well-defined
- Lebesgue-Bochner integral for any f < LY(R). Recalling that for g < +
(resp. B = +=), || llg is the norm of LA(u) [resp. on Cy(R)], we have the
following definition.
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DEFINITION 4.1. An operator function T is (a, 8)-bounded (with respect to
w) if there exists K > 0 such that

fRf(t)Ttdt“ <Kl flg,

for all fe LA(w)’ = {fe L'R): fe LAw) [ f< LYR) when g = +.

A function E: #,(R) — B(L?*) is called an operator measure whenever it is
finitely additive and a spectral measure if in addition it is multiplicative, that
is, ECA N B) = E(A)E(B), A, B € %,(R). The relation between operator and
spectral measures is easy to draw: An operator measure is a spectral measure
if and only if it is (commuting) projection valued [this can be proved as in
Helson (1986)]. For any g € L*(#), E, given by E_(A) = E(A)g, A € %,(R),
defines a finitely additive L*-valued set function. So, we have the following
definition.

DEFINITION 4.2. An operator measure E has finite (a, 8)-variation if for
every g in L), [l E |l = sup{ll E,lI(A): A € B,(R)} < +, where

sl}.
B

The integral [, f(¢)dE(£) of the scalar function f with respect to the
operator measure E of bounded («, B)-variation can now be defined as the
element of B(L®) for which ([ f(¢) dE(¢))g = [ f(é)dE (), g € LY(P),
where this last integral (w.r.t. the random measure E,) is defined as before.
For E of bounded (a, B)-variation (8 < +®), any f in L#(u) is integrable with
respect to E, while for B = +x, the Borel bounded functions are also E-inte-
grazble). Moreover, |l f(§)dE(E)glla < E Nl Ifllg, for f& LP(u) and g €
L«(&).

With the above definitions we can state our first result.

: {Ai}];]

a

N
INE,II(A) = sup{ 2 a;E(A)
i=1

N
C %,(R) partition of A, a; € C,| Y. @;Xa,
i=1

THEOREM 4.3. An operator function T is continuous and (a, B)-bounded if
and only if there exists a (unique regular) operator measure E with finite
(a, B)-variation such that T'=lim, . [*,e* dE(¢) [in B(L®) with the
strong operator topology], uniformly on compact subsets of R.

'PrOOF. Let T be continuous and («, 8)-bounded, then for any g € L&),
{T'g}, g is an (a, B)-bounded L*-continucus process. Thus [Houdré (1990b),
Theorem 3.2; actually Theorem 3.2 there is stated in terms of the triangular
kernel, but the proof carries over to the step kernel case], there exists a
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(unique regular) random measure Zg with finite (a, B)-variation such that

T'g = Akmm e dZ, (&) in LY(2),
uniformly on compact subsets of R. Moreover, [|Z, |l <K and Z,(A)l,
Kllgll,, for every A € #,(R). Hence, E: #,[R) - B(L"‘) defined via E(A)g =
Z,(A), g € LX), satisfies all the stated requirements. For the converse, let
Tt =lim, , ., [*,e* dE(¢) in the strong operator topology, uniformly on
compact subsets of R. Then, again [Houdré (1990b), Theorem 3.2] and for any
g € L), (T g}teR is strongly continuous with, moreover, || [, f(¢)T ‘g dtll.
< WE,IIfllg. O

REMARK 4.4. Since L*(&?) is weakly complete, it has been possible to
replace the relative weak compactness of the sets {|l [ f()T g dtll: | fII g <1,
fe LAR)Y (f € LYR) when B = +x)}, g € L&), by their boundedness. For
B = +to, E can be defined on #(R) and is also o-additive (in the strong
operator topology). Hence, by dominated convergence and since the exponen-
tials are E-integrable, we have lim, _, .. [*,e'* dE(¢) = [pe'* dE(¢), t € R,
and this recovers a result of Kluvanek (1967). For « = 2 and 8 = +®, T will
be called harmonizable and strongly harmonizable whenever €E (- )E () can
be extended to a complex measure on R2.

CorOLLARY 4.5. Let T be continuous and (a, B)-bounded with associated
operator measure E. Then T is additive, that is, T'** = T'T* forall t,s € R,
if and only if E is multiplicative.

Proor. Let E be multiplicative, then for any simple functions f; and f,
with bounded support, [ f;fs dE = [ f1 dE [ f5 dE. By (a, B)-boundedness,
this equality can be extended to compactly supported Borel bounded functions,
since they can be uniformly approximated by simple functions. It thus follows
that

T = lim [ e+ dE(¢)

A— +oo0 —A

lim [ eit azE(g)[A et dE(¢)
- —-A

A—> 4

lim [* e dE(¢) lim [ ei*¢ dE(¢),
Ao to d) A=t S

since each individual limit exists, Hence, T''** = T*T'¢. For the converse, since
" T'*s = T'T* and since via Lemma 2.1, the (truncated) exponentials are dense
in the corresponding spaces of v-square integrable functions, we have for any
smooth f; and f,, [pfifedE = [pfidE [gfy dE. Thus, the same result
follows from any Borel bounded f; and f,, and this proves the corollary. O
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For a = 2, when E is orthogonal projection valued, that is, when for every
A € #B)(R), E(A) is Hermitian, T is not only additive but also unitary,
namely, T!T** = T*T* = I (I is the identity operator), while the martingale
difference case corresponds to operator measures whose values are differences
of increasing orthogonal projections.

In general, and in contrast to unitary operators, («, B)-bounded groups T (T
is additive with T°® = 1) are not shifts. This can be seen as follows: Let
X ={X,},cz be a discrete-time (a,)-bounded process, 1 <a < +», X, =
/™. e'"® dZ(6), and let Z be of bounded variation. Then, for any trigonometric
polynomial P, ||/™_P(8)dZ(®|. < [T ,IP(6)| dIZ|(8), where |Z]| is the total
variation measure. It is then not difficult to see (as proved below) that X has a
well-defined shift if and only if the following condition holds: If for some P,
/™ P(6)dZ(O)ll, = 0, then [7_|P(6)|d|Z|() = 0. But for

dz(9) = Z{X]—W,O](o) - X]o,w](a)}do,

where Z € L¥(&), Z + 0, this cannot happen unless P = 0. To prove the
above claim, that is, to verify that the shift is a well-defined operator, we need
to show that the stated condition and Getoor’s (1956) (C,) condition are the
same. Recall that X satisfies (C;) [actually in Getoor (1956) the condition is
given for @ = 2 and so in terms of the covariance] if for n,,n,,...,ny € Zand
Py, Psy- -, Py € C such that |23 ,p, X, lla = 0, then [E{_p, X, . pnlle =0
for all m € C. Let (C,) be satisfied and let P be a trigonometric polynomial
such that ||/™_P() dZ(0)ll, = 0, then |I/™_e'™°P(6) dZ(6)|l, = O for all m €
Z. Hence, by the uniqueness of the Fourier transform and since Z has
bounded variation, PdZ = 0 = |P|d|Z| and (™ _|P|d|Z| = 0, which gives one-
half of the equivalence. Now if ||[/™ P(8) dZ(6)|, = 0 implies

[" IP(8)|d|ZI(6) = 0,
we ﬁnally have

[ e™P(8)dz(0)| < [ |e™°P(0)]dIZI(0) =0,
and Getoor’s (C,) condition is verified.

After these preliminaries, we can now state the main result of this section.
Again, we say that T satisfies the pointwise ergodic theorem whenever for any
g € L&) the averages o3Tg = (1/28)[5;T'g(w)dt, S >0, w € Q, con-
verge a.e. (&) with, of course, in discrete-time the integral replaced by
1/@2N + DIV _yT"g(w) or by 1/N)LN-1T"g(w), when T™ is only de-
fined for nonnegative powers, with in either case 7° = I. The only discrepancy
between the result below and Theorem 3.2 is in the case a > 2, where for
existence purposes [see Houdré (1990a)] we do require a < .

" THEOREM 4.6. Let T be (a, B)-bounded with either 1 <a < 2and 2 < B <
‘4o, 0or 2<a< +oand a <B < +», 0ora=1and B= +x, and let g €
L*(P). Then T satisfies the pointwise ergodic theorem if and only if
lim, ,,, Ef0 <[l <27"} =0 a.e. &, where E is the representing operator
measure of T.
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Proor. For 1 < a < 2, the proof is exactly as in Theorem 3.2 (Lemma 2.1
continues to hold for o-finite measures). For 2 < a < », since & is o-finite,
there exists Y > 0 (a.e. &) such that d %, = Yd & is a probability measure
and W —» Y~ /*W is an isometry from L*(%) to L*(&,). But since L*(#,)
L%(&,), the L%results of the previous section give

1 s _
: -1/ t — : -1/a -n
lim Y1/ f_ST gdt= lim YVE(lEl <27 (ae. Pp).

S—-ox

This last equality gives the result. O

REMARK 4.7. For @ = 1 and B8 < +=, and in similarity to Theorem 3.2, an
added L%-boundedness assumption on the dilation part of T will also give
conditions for the a.s. convergence of the ergodic averages. For 2 < a < +,
the very nice Lemma 2.1 does not hold. In fact, for 8 = +, the dominating
inequality (2.1) becomes

[raE,| < ngna( [ dv

[see Pisier (1986), page 69; the result there is actually not given for R but for a
compact space and also not for operator measures; however, the version stated
above can be easily obtained]. Hence, no direct (i.e., via studying ©&| - |*) proof
of the theorem seems likely. We remark too, that when u is Lebesgue
measure, and for 8 < +x, the pointwise ergodic theorem is always satisfied.

For operators between Hilbert spaces, Theorem 4.6 has the following inter-
esting particular cases.

1/a+e
) e>0

COROLLARY 4.8. Let T be either a bounded invertible linear operator on
LA(P) with sup, ,IIT"|| < +« or let T be a contraction, that is, let ||T|| < 1
and let g € LA P). Then there exists a o-additive (on %#(] — m,w]) operator
measure E such that T" = [T _e""dE(), n€ Z or n >0 when T is a
contraction, and T satisfies the pointwise ergodic theorem if and only if
lim, , ,,Ef0<[|{ <27} =0 a.e . Moreover, the (C,1) and (C,r),
r > 1/2, almost sure convergence are equivalent.

Proor. For both cases, we use the results of Sz.-Nagy. When T is invert-
ible with sup,, . ,lIT"|l < 4+, T is similar to a unitary operator [see Sz.-Nagy
(1947)], that is, there exists a unitary operator U and an invertible Hermitian
operator @ such that T = Q@ 'UQ. Hence, we have for any g € L% &),

2 2

N N
Y a,Tg|| <IQ°UANQIP Y a,U"g
n=-N 2 n=-N 2
‘=Kf Y a,e| dlEgl?
. ~Tln=-N
N 2
<Klgl3sup| ¥ a,e|,
0 [n=-N
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and the group T is (2, ®)-bounded. In other words, invertible T’s such that
sup, < 7lIT"l < + are exactly the Fourier transforms of the o-additive spec-
tral measures from %(] — m, 7)) to B(L?) [the (2, ©)-bounded defining prop-
erty trivially gives sup, . ,IIT"|l < +]. Of course, E = @ "'FQ, where F is the
spectral measure of the unitary group and E is projection valued. When T is a
mere contraction, it has a unitary dilation [see Sz.-Nagy and Foias (1967) or
use Lemma 2.1], that is, T" = PU", where U is unitary on L*(&) > LA(&)
and where P is the orthogonal projection from L2(P) to L%(<). Hence,
T"=P[" _e"® dF(9) = [T _e'"® dPF(0), n > 1. Again it follows that E = PF,
but this time E is not projection valued but rather positive definite operator
valued. Combining these observations with the previous results, we get the
corollary [for T a contraction, the sinc kernel has to be replaced by
(e'N% — 1) /N(e®® — 1), but estimates and methods completely analogous to the
ones used in the bilateral case give the result]. To get the rest of the statement,
it suffices to proceed as in the proof of Theorem 3.10. O

Our next result shows that on Hilbert space, when studying the ergodic
averages of contractions or of invertible operators such that sup, . ,IIT"|l <
+ oo, only the unitary ones really matter.

COROLLARY 4.9. Let T be either a contraction on L*() or an invertible
operator such that sup, c,IT"|| < + and let U be any associated unitary
dilation or similarity. Then, for any g € LX),

N-1 N-1
Al’im (1/N) Y. Trgexists (a.e. ) ifand only ifl\l,im (1/N) Y Ug
>0 n=0 e n=0

exists (a.e. P).

Proor. For g, h € LA P),
&(E,] - 27*,27"[h) = &(PF,| — 27",27"[&) = &£(F,] - 27",27"[ Ph)
= &(F) - 27,27"[R).
So, on LA(#),E,]1 - 27",27"[ and F,] - 27",27"] coincide. O

REMARK 4.10. We do not know how the above results relate to Akcoglu’s
(1975), de la Torre’s (1976) or Stein’s (1970), page 87, ergodic theorem, that is,
we do not understand why for T positive (Tf > 0 whenever f > 0) the
condition lim, _, ., E{0 <[] < 27"} =0 ae. is always satisfied. A better
understanding (a characterization?) of the effects of positivity on the spectral
measure is certainly the key. to this problem. Unfortunately, Theorem 4.6 does
" not give much information about, say, the ergodicity of the isometries in
L&), a + 2. As already mentioned, it is shown in Cambanis and Houdré
(1990) that the class of moving averages of Lévy motion (for which the shift
exists and is an invertible isometry) and the (a, ©)-bounded class are disjoint
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[the results in Cambanis and Houdré (1990) continue to hold for shifts T such
that sup, < ,IT"|l < +«]. Isometries and more generally power-bounded and
invertible power-bounded operators on L*(&?) do admit another type of spec-
tral representation [see Berkson and Gillespie (1987)] which for « = 2 corre-
sponds to (2, ©)-boundedness. This spectral representation will certainly help
to study the ergodicity of such operators on L*(#), a # 2. For processes
whose unilateral (resp. bilateral) shift is a well-defined contraction (resp. such
that sup, <, lIT"ll < +x), the above result strengthen weak laws obtained in
Getoor (1956). Finally, if the finite positive measure u,(A) = £(E,(A)g) =
&(F,(A)g) is absolutely continuous with density in Lt +£(H) then the ergodic
averages converge.

It is clear that there are various potential extensions and generalizations of
the above results. First, the results of Gaposhkin (1981) can be extended (via
the methods used above) to give when T is, say, (@, ©)-bounded, a > 1, or a
strongly continuous one-parameter contractive semigroup or a uniformly
bounded group on L? the following: T satisfies the local ergodic theorem if
and only if lim, ., E{|¢l > 2"} = 0 a.e. &. Other extensions include, for
example, the p01ntW1se ergodic theorem or the local ergodic theorem
for “pseudo” Hermitian operators [see Kluvanek (1967)], more generally for
operators for which some kind of spectral representation with respect to a
nonorthogonally scattered operator measure holds. This is the case for the
operators of the class C,, p > 0 [see Sz.-Nagy and Foias (1967)], or more
generally for operators Wthh are similar to contractions. Except for random
fields, to which our last section is devoted, we only state another result for
which the passage from unitary to (a, ®)-bounded, o > 1, is rather safe.

For unitary operators Jajte (1987) gave a spectral criterion for the existence
of the ergodic Hilbert transform. More generally, we have the following
corollary [with the abuse of language of using (a, ®)-bounded for the operator
instead of the group].

COROLLARY 4.11. Let the operator T be (a,©)-bounded, a > 1 [resp. let T
satisfy the hypotheses of Corollary 4.9 (when T is a contraction, T™" has to be
replaced by T*" = [T _e~"°dE(9), n > 1)] and let g € L(P) [resp. g €
LAP). Then limy . Yoo \nnT"8/n exists ae. &, if and only if
lim, E{2"<§<0}—E{0<§<2P} 0 a.e. #. Moreover,
llmN_,m(l/N)Z T "g exists for allg € L*(P) [resp. all g € LA P)), a.5. 2P,
if and only if th_,m Yo<im<nT"8/n exists for all g € L) [resp. all
g € LAP)), a.s. Z.

Proor. The first part of the statement follows by combining the methods
presented above with the estimates on the corresponding exponential kernels
obtained in Jajte (1987). The rest of the statement also follows by the methods
devised in Jajte (1987). O ’

It is clear that the same method gives a necessary and sufficient condition
for the existence of the stochastic Hilbert transform whenever X is (a,®)-
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bounded, 0 < a < 2, namely limy _,.,, X ., < x X,,/n exists a.s. & if and only
iflim, ., Z{—-277 < ¢ <0} — Z{0 < £ <277} = 0 a.s. &. The continuous case
can also be obtained in a similar way.

5. The spectral SLLN for random fields. We assume to the end of this
paper that the standing assumptions on a, 8 are identical to the ones made in
Section 3. However, u is now defined on #(R™) with also [, 1I¢| Pdu < 4.
It is easily seen that the univariate (a, 8)-boundedness definition given in
Houdré (1990b) carried over to the case of fields X = {X,}, .=, in fact, even to
the LCA framework. Essentially, as in Houdré (1990b), X is («, 8)-bounded if
and only if

A A l&,1) .
X, = lim P [T = == |etut
CA=Ou ‘//\ '[A ( A )

Ap) = o=y —An 1

. (1 _ '-‘ii')f dZ(k,...,,) in L(P),

m

uniformly on the compacts, where Z: Z,(R™) — L°(<) has finite (a, 8)-varia-
tion. The multidimensional version of Lemma 2.1 continues to hold.

LEMMA 5.1.  Let the field X be (a, B)-bounded, 0 < a <2 < < +, with
associated random measure Z,.. Then there exist a probability space (Q0, &, F)
with LA P) cA(P), a (2, B)-bounded field Y with orthogonally scattered ran-
dom measure Zy defined on (Q, B, #) and a random variable A €
L22/@=a(P) such that X, = APY,, t € R, where P is the orthogonal projection
from LA P) to LA P).

Again, since Y is a homogeneous field, there exists a positive measure v
(finite for B = +®) given by dv = gdu, g € LP/®~2(u) on R™ such that

[t ar)

(5.1) l

/R fdZy

2

for all fe L%(v).

For fields, averaging is always more delicate than for processes. Through-
out, we follow Gaposhkin (1977a), denote by |A | the volume of A, and study
the averages,

1
0, X(w) = mprX(t,w) dt, p>0, weq,

where X(¢, w) = X(¢,,¢5,...,¢,,), dt =dt,; dt,,...,dt,, and where the A,

’ m?
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satisfy the following three conditions:

(i) For each p, A, is a bounded convex body containing the origin.
() For 0 <py<p <p, A, cA,and (A, —1A,D/IA,| <K(p' — p)/p.
(iii) There exist two positive constants K; and K, such that the length
d(p) of any chord of A, passing through the origin satisfies K;p < d(p). < Kp,
p=py> 0.

It is clear that n-dimensional spheres of radius p with center at the origin
satisfy the above three conditions. This is also true of n-dimensional cubes
centered at the origin with side of length p. Rectangles which do not flatten
out also satisfy these conditions. We finally say that X satisfies the SLLN
whenever lim _, .. o X = 0, with probability 1. For ¢ € R™, we see || =
(€2 + €24 -+ +£2)'72 and then we have the following result.

THEOREM 5.2. Let the random field X be (a, B)-bounded with random
measure Zy, and let either X be L*-bounded, a > 1, or let PY be L?-bounded.
Then X satisfies the SLLN if and only if for almost all o, lim,,_, .., Zx{|¢| <
27 w) =

Proor. The proof requires only adjustments from the univariate results
and so will only be sketched. Again,

0,X=(0,X-0,X)+ (0,X — 090 X) + (090X — Zx{l¢| <277})
+ Zy{l¢l < 277},

Using condition (ii) as well as arguments similar to the univariate ones, we
easily see that sup, ., ., .1 €10,X — 0, X|* < Kn™“ or that

sup &lo,PY — o, PY® < Kn"2.
n<p<n+1
Hence, with probability 1, lim, . sup, ., ,+1l0,X — 0, X| = 0. For the third
bracket, let

— zt'§

where ¢ - & = Y7 ¢,&;, then clearly a-2pX Jrm K 9p(€) dZ x(£). Since (ii) and
(iii) give |K (&) = 1< K27|¢| whenever |¢] < 2-7, and [K,(¢)| < K/(27|¢)
for |£| = 277, breaking R™ into {|¢] < 27P} and {|§| > 27P}, we get, using
Lemma 5.1, ©3 _ &0, PY — PZy{[¢] < 27P}|? < +w. Hence, for almost all o,
lim, ., 09X — Zy{l¢l <277} = 0. For the middle bracket, we note that
Lemma 2.2 (with its notation) continues to hold, we apply Lemma 5.1 and we
also break R™ into four pieces: {|¢] < 271}, {27 P71 < |¢] < 27PFF} {27PHF <
|€] < 1},{l¢] > 1}. Now, using estimates obtained in Gaposhkin (1977a), Theo-
rem 6, and proceeding as in the proof of Lemma 3.1 leads to four convergent
series from which the result follows. O
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REMARK 5.3. The requirements on the A ’s are just set to ensure that the
kernels K, do satisfy the right estimates and so, for any average for which
such estimates hold, Theorem 5.2 continues to be true. It is also clear that
Theorems 3.6 and Theorem 3.9 as well as the corollaries of Section 3 admit
multidimensional versions and that as in Gaposhkin (1977a), the sequence
{277} can be replaced by more general sequences
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