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ONE-DIMENSIONAL STRATONOVICH DIFFERENTIAL
EQUATIONS!

By JAIME SAN MARTIN
Universidad de Chile and Purdue University

We consider one-dimensional stochastic differential equations of the
Stratonovich type:

dX, = Y o;(¢t,w, X,)odZ} + Y h,(t, w, X,) dA¥,
i k

where Z' are continuous semimartingales, and A* are continuous finite
variation processes. We extend the definition of the Fisk-Stratonovich
integral for a large class of coefficients o;, and under suitable conditions we
prove existence and uniqueness for that equation.

1. Introduction. The aim of this work is to give sense and to prove
existence and uniqueness for Stratonovich differential equations of the follow-

ing type:

dX, = Yo(t,w, X,) o dZ{ + L h;(t,w, X,) dA],
(1.1) i j

XO = XO?

where X, Z! are continuous one-dimensional semimartingales and A’/ are
continuous finite variation processes. Usually, it is assumed that o; is smooth
enough so o,(#,x, X,) is a semimartingale and the quadratic covariation
[o:(-, -, X),Z'] is well defined. Actually, we only need the existence of the
mentioned quadratic covariation plus the existence of the Itd integral
[¢ol(s, w, X,) dZE. Meyer [17] has proved that if o: R — R is the antiderivative
of a cadlag function ¢’ (right continuous with left limits), then [¢(X), Z] is the
limit of sums of the form Y(o(X, ) - o(X,INZ, - Z,), and this limit is
equal to [{o'(X,)d[X, Z],, even though o(X) is not necessarily a semimartin-
gale. This is the starting point of our work.

Now, I shall describe briefly how this paper is organized. In Section 2 we
introduce the class of functions o; we shall consider (we call this class Z.279).
In Section 3 we prove two important results: an extension of the time—occupa-
tion formula and a generalized It6 formula. At the end of Section 3 we extend
the definition of the Fisk-Stratonovich integral: [lo(s,w, X,)odZ,, where
o € /9. Moreover, we prove that [jo(X,)o dZ, can be consistently defined
for o just Lipschitz.

In Section 4 we prove the existence of a maximal and a minimal solution
(Theorem 4.14) of (1.1). Finally, in Section 5 we prove uniqueness for (1.1)
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510 J. SAN MARTIN

(Theorems 5.8 and 5.15). In the main theorems of Sections 4 and 5, we have in
mind that (Z1,...,Z") is a standard n-dimensional Brownian motion, but we
proved them in a more general situation, in which the structure of the
quadratic covariation [ Z?, Z/] is special. We decided to restrict ourselves to this
case because we are interested in considering equations like (1.1), where o; are
as general as possible. :

As a general reference for stochastic integration, as well as properties of
semimartingales, we refer the reader to Protter [20].

A bit of notation. Capital letters will usually denote processes; in particular,
U, X,Y, Z will be continuous semimartingales and A, C, F' will be continuous
finite variation processes. If a function f depends on (¢, w, x), then f(t,w, )
will represent the function x — f(¢, w, x), where ¢, w are assumed to be fixed;
similar interpretations can be made for f(¢,-,x), f(:,-,x), and so on.
f(t,w, x — ) denotes the left limit, that is, f(¢,w,x —) = lim, ,, f(t,w,y). In
a similar way we define f(¢, w, x+).

2. Preliminaries. We start with the definition of the class of functions
we shall work with. At the beginning we shall consider nonrandom functions,
and later on we extend the definition to random functions.

DerFNiTION 2.1. We say f € /2 (antiderivative of the class 2) iff f is
absolutely continuous and f’ admits a version in 9 = {h: R - R/h is right
continuous with left limits} (henceforth if A~ € 2 we say h is cadlag), that is,
f’ = hdx-as., for some h € 9.

For f<€ &2 we shall denote by f' the cadlag version of its derivative,
unless another version is specified. Now we give a useful result.

LemMmA 2.2. The following are equivalent:

(a) fe LD

(b) f is absolutely continuous and f' has a version which is the uniform
limit on compacts of functions of finite variation. That is, there exists a
sequence of functions (h,) of finite variation on compacts and a function h
such that Y A € R compact, sup, c ,lh,(x) — h(x)| =, _. 0 and f' = h dx-a.s.

(¢) fis continuous, and

h) —
f,+(x)=}13%f(x+z f(x)

exists at all points (we call it the right derivative) and it is cadlag.

Proor. The equivalence between (a) and (b) is deduced from the facts:
h € 9 iff h is the uniform limit on compacts of cadlag functions of bounded
variation on compacts, and every function of bounded variation is equal to a
cadlag function except at most on a countable set.
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© =0 By a well-known result [see Rooij and Schikhof [21], Theorem
15.3], since f'" is Riemann integrable over bounded sets, we have

f(x) = £(0) + foxf’+(u)du,

from which (b) holds.
(b) = (&) If f(x) = f(0) + [fh(u) du where h is cadlag, then

f'*(x) = h(x) and (c) holds. 0

An important property from the semimartingale theory point of view is the
following corollary.

COROLLARY 2.3. 79 is closed under composition.

ProoF. Let h and g be in &/7; then they are locally Lipschitz and so their
composition is locally Lipschitz. In particular, (h o g) exists a.e. We shall prove
that (h  g) has a cadlag version. Let R and & be the cadlag versions of A’
and g’ and let I(x) = A'(g(x)) - §'(x) which has left and right limits, so is
equal to a cadlag function except on a countable set.

Let ¢ € C; with support contained in [0,1] such that ¢ >0, and
Jop(w)du = 1. Define ¢,(u) = ne(nu) and consider f,(x) = [R(y)p (y —
x)dx. Then f, is continuous and

HORICIEY] MR - B len(y - x) dy,

which tends to 0 because /' is right continuous. Let
y
ha(y) = [ £u(2) dz;
0
then
[ 18 ()& (w) du = h(g(x)) = ha(8(0)),
because &, is C' and then (h, g)(u) = f,(g(w)) - §(u) at every point u at

which g is differentiable. Finally, by the dominated convergence theorem
(henceforth DCT), we conclude that

h(g(x) ~h(g(0)) = [ (&(u))g'(u)du,
from which [ is a version of (h o g). O
.x;/_@ is a rich class of functions and has the basic properties we need to get

general results in the study of Stratonovich differential equations. For exam-
ple, Meyer [17] proved that if f€ o2 and P, is a sequence of refining
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partitions of [0, ] with mesh (P,) tending to 0, then
L (F(Xo) = FE)) (e = 2.) 5 [ (X)X 21,
for X and Z continuous semimartingales, where the convergence is UCP

(uniform on compacts in probability).
In particular,

5 FL) 1K)

Pn 2 ( Si+1 - sl)

a— ff(X)dZ + ff(X)d[X Z],.

Thus the Stratonovich integral can be defined for f(X,). Notice that in
general, f(X,) is not a semimartingale (even for f € C'). For example, if B is
a one-dimensional Brownian motion, then f(B,) is a semimartingale iff f is
the difference of two convex functions (see Cinlar, Jacod, Protter and Sharpe
[6]).

We shall extend our class &/2 to a class which we shall call %22
(uniformly in &/2). In what follows we assume a fixed probability space
(Q, &, P) with a filtration (%), ., which satisfies the usual hypotheses.

DEFINITION 2.4. Let f: R, X QO X R — R. We say f € %9 if there exists
an adapted increasing and continuous process A, (A,_= 0), and a function g:
R, X Q X R - R such that:

g(+,+,x) is adapted and jointly measurable for every x.

g(s,w, - ) € &2 uniformly on (s, w), that is, there exists a
(2.1) sequence h,: R, X Q X R — R, such that (s, w, ") is of

finite variation on compacts, h,(:, ,x) is adapted and

jointly measurable and V ¢ and A(C R) compact we have
(2.1a) Sup sup |ho(s,w,x)|< o

n s<t,x€A
(2.1b) f thn(s, w, + )dA, is of finite variation on compacts;
0

og
sup ——> 0, where — is
s<t,x€A dx

the cadlag version;

n—ow

h ‘ ’8
(2.1¢) WS, w,x) — a(s,w,x)

21d)  [lg(u,w,0)]dAu < .
0 .

(22) f(t,w,x) = [8(s,w,2)dA, = [ g(s,w,x)dA, +g(0,w, %) A,.
0 o+

We shall use the notation f= g - A.
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REMARKS.

1. In the previous definition we can consider A to be increasing. In fact, if |[dA|
represents the total variation, then

t y A, A,
f(,W,x)—j;)g(S,W,x)l“del‘ sl

where dA,/|dA,| is the Radon-Nikodym derivative, which is bounded by 1.
2. If f, and f, are in 29, then f, = g, A, and f, = g, ' Ay, where (A,)
are increasing. Let A = A; + A,; then f; = (g, dA,/dA) - dA. That is, both
f; and f, can be represented with respect to the same increasing process
A.
3. If A, =1,_, and g(s,w, x) = h(x) € P, then f(s,w,x) =g A = h(x),
from which %279 > /9.

LEmMA 2.5. Letf € %D where f=g - A. Then:

@V sw, f(s,w,')e LD, in particular, 3f/dx(s,w, - ) has a cadlag
version.

(b) There is a sequence f,(s, w, x), a difference of two convex functions on x,
such that

of,

V¢, A(C R) compact, ssijlxpe/& g(s,w,x) — E(s,w,x) == 0,
where df/dx and df, /dx are the cadlag versions.
(©)
0f sag
a—x—(s,w,x) —/Og(u,w,x) dA,
and
f(s,w,x) =f(s,w O)+fxa—f(s w,y)d
3 ) b ) 0 ax ) ,y y
0+ [ dA, d
_f(37w’ )+'I(;j(‘)a(u7w’y) u @y
0+ [ dydA
_f(s’w’ )+j(‘)j(‘)£(u’w,y) y u
Proor.
(a) Take

gu(s,w,x) = g(s,w,0) + /Oxhn(s,w,y) dy,

Wl;ere h, is given by (2.1). Then g,(s,w, - ) is the difference of two convex
functions [because A ,(s,w, ) is of bounded variation]. If A ,(s,w,x) =
h,(s,w,x+), then I(s,w,x)=1lim, h,(s,w,x) exists and it is uniform in
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(s, x) on compact sets. Moreover,
g(s,w,x) =g(s,w,0) + fxl(s, w,y)dy
0

and I(s,w, - ) is cadlag.
By (2.1a), I(-,w, - ) is locally bounded and I(-, -, -) is measurable, so by
Fubini’s theorem we get

(s, w,x) =fos[0"1(u,w,y) dydAu+fosg(u,w,O) dA,
=f0xfosl(u,w,y) dAudy+fosg(.u,w,O)dAu

= [ [1(u, w,y) dA, dy + f(s,,0),
0“0

from which f(s,w, ) € 9.

(b) It is enough to take f,(s,w,x) = f(s,w,0) + [§[sh (v, w,y)dA, dy.
(¢) This is an application of Fubini’s theorem. O

3. Fisk-Stratonovich integral. In this section we shall prove two im-
portant results, which will give us the basis for the definition of the
Fisk—Stratonovich integral in the following setting.

Given that X and Z are continuous semimartingales and f € %2, how
can we define [¢f(s,w, X,)°edZ? Our definition will extend the classical
definition (h € C?):

['h(X)edz, = ['h(X,)dZ, + S [h(X), 2.
0 0 2

For that reason, it is obvious that we need to give sense to the quadratic
covariation [ f(-, -, X), Z],. It turns out that we need a generalized version of
the time—occupation formula and a generalized Itd formula for a ‘“‘dense”
subclass of functions in 9.

LEmMA 3.1. Let X be a continuous semimartingale, X, = 0. Then there
exists a set /€ F of probability 0 such that V w € &Z°, VR, X A X R - R
measurable and bounded, ¥V t > 0,

(3.1) [f(s,w, X,) d[ X, X], = [ [f(s,w,0)L(a, ds) da,
0 RY0
where L(a,t) = L¢ is the local time of X.

Proor. We know that except on a set 7, of measure 0 the following
properties are satisfied:

(i) X is continuous.
(ii) [ X, X] is continuous and increasing.
(iii) L¢ is jointly continuous in ¢ and cadlag in a, and it is increasing in ¢.
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For any w € &/§ and for any f, measurable and bounded, both sides of
(3.1) are continuous in ¢.

By the usual time-occupation formula and the continuity of the processes
involved, we conclude 3 &€ &, &/> &, and P(&/) = O such that V w € &7¢,
VteR,, Ve de Q (rationals),

[l X.) ALK, X)o = [ 1 (@) L da.
Thus the random measures
w(f) = ftf(Xs) d[X,X], and v(f) = ftf(a)L‘}da
0 0

agree for w € /¢ over the intervals with rational endpoints. Hence p = v,
proving (3.1). O

Now we shall obtain a generalized It6 formula for fe %9, f=g"-A,
where g(s,w, -) is the difference of two convex functions. This result for
g(s,w, - ) C? was already obtained by Protter [20], Chapter 5, Theorem 18.

First, we introduce some notation. If g: R — R is a convex function, it is
well known, that the second distributional derivative is a o-finite measure u,
such that

VK<o, pu[-K,K]<w»
and
1
Vil <K, g(x)- —f lx — ylu(dy) = ax + b,
2/ g
- where a and b depend on K.
THEOREM 3.2. Letf€ XD, f=g - A with g(s,w, - ) a difference of two
convex functions, and let u(s,w, - ) be the second derivative as a distribution

(on compacts). Then, if X is a continuous semimartingale with local time L¢,
we have

¢ t Of
f(taw,Xt)=f(O,w,X0)+f g(S,w,Xs)dAs'i-/ —(S,w,Xs_)dXs
o+ o+ 0x

1 4
+ Efof.n(w — L) u(s,w,dy) dA,,

where

W

In order to prove this result, we need a couple of lemmas, which we shall
prove first. ’
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LEMMA 3.3. Let 0 <s <t andf: R? X Q - R be B(R?) ® F, measurable,
X a continuous semimartingale and v a signed measure on R, with absolute
variation |v|.

Assume

1/2

32 W= ([(FFr o) @) Lmwsy < 100),

that is, it is integrable with respect to X (see Protter [20], Chapter 4), a
condition satisfied, for example, if fis bounded. Then the following Fubini-type
result holds:

33 [ /s‘f(Xu,y,w) dX,v(dy) = [s‘[R (X, 5, w)r(dy) dX,.

Proor. This follows by the usual Fubini theorem for semimartingales
(Protter [20]) on taking the Jordan decomposition of ». O

LemMA 3.4. Assume u(s, w, dy) is a random measure such that u(-, - , dy)
is measurable, adapted, and there is a compact set K C R such that V s,
Ve BR), /K= uls,w, ) = 0. _

If (M), g is a cadlag process such that for z fixed, EM,/ %) has a
cadlag version, and for every compact A C R,

(3.4) sup|M,| € L*(P),
yeEA

and A is an adapted increasing and continuous process such that
[ [Iul(s, w, dy) dA, € L2(P),
0’k

then if t < z,

(3.5) E([O‘[R (s, w,dy) dA,

) ft/E (M| % Yu(s, w, dy) dA,.

Proor. Assume K = [a, b]; then |u|(s, wla, b]°) = 0. Consider £,(s, w,y) =
Lo, (SIZTEPMyp 1in oy 1, Where

Yiv1
‘@n={yo=a<yf< <yr,rlz(n)+1=b}
and mesh(&#,) — 0. Then f, >, .. 1 w0,:(8)M,, y € [a, b]. By the DCT,

- /:fan(s,w,y),u(S,w,dy) dA, — ffMy,L(s w,dy) dA,.
Since

lg,| s( sup M |[f|“|(s w,dy) dA ) e L'(P),

y€la, bl
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we conclude by the DCT for conditional expectations that

E(g,|% ) —== E(fotfRMy,u(S,w,dy) dA,| F )

in L' and a.s.
Now

g
).

E(g,|% )= LE(M,; |7 )fotfi’n”u(s,w,dy) dA,,
i Yi

B(g,l %) = E (fotZ.f g, (s, w, dy) dA,

i

- ZE{M [ (s w,dy) aa,

Since t < z, we have f(f[yy,:"“u(s, w,dy)dA, € Z. Thus

which converges a.s. to [{ /g E(M,|F)u(s, w,dy)dA,, because E(M|7,) is
cadlag.

Notice that both sides of (3.5) are continuous in ¢, so the null set involved in
(8.5) can be taken independent of ¢. O

COROLLARY 3.5. Assume w, A satisfy the hypotheses of the previous lemma
and (M?) is a process, jointly cadlag in y and continuous in v, such that for y
fixed, M? is a (&,)-martingale and for v fixed, M} satisfies (3.4). Then

t
N, = f fMgu(s, w,dy) dAs,
0’R
v > t, is a continuous martingale w.r.t. (<, ),

ProoF. Let v >t¢and v' >t and K c Rsuch thatV s, w, lul(s, w, K¢) = 0.
Then

IN, - N,| < sup| M7 - M| [ [lul(s, w,dy) dA,,
yEK 0’R

from which we conclude N has continuous paths. The martingale property is
an application of Lemma 3.4 and the fact

M? = E(M?|%, ), whichiscadlagin y. ]

Proor or THEOREM 3.2. By linearity we can assume that g(s,w, " )is a
corivex function. Moreover, we shall assume that there is a compact set A such
that

Vi, Vw, w(tw,A)=0.
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At the end of the proof we shall relax this hypothesis. We have
g(s,w,x) =a(s,w)x +b(s,w) + %flx - ylu(s,w,dy),

where

1
b(s,w) =g(s,w,0) — Eflyl,u(s,w,dy)

and
1
a(s,w) = g(s, w,1) — b(s,w) — 5f|1 — ylu(s,w,dy).

Since f=(a-A)x +b-A obviously satisfies the result, we can assume
without loss of generality that

1
g(s,w,x) = Eﬂx —ylu(s,w,dy).

In this way,
og 1
o (s,w,%) = o [ sign(x —y)u(s,w, dy),
where
. _ 1, u>0,
() ={_}" 428

Then dg/dx(s, w, - ) is the left-continuous version.
Let ¢: R - R, be C* with support contained in [— 1, 0], such that

| e(u)du=1.
Define
g5 w,x) =nf g(s,w,x +y)e(ny)dy.
Then g,(s,w, +)is C” and if x < x’,

c?gn © ag
W(s, w,x) = n'[_mé;(s, w,x +y)e(ny)dy

0 ag .
< nf_mg(s, w,x' +y)e(ny) dy,
‘because dg /dx(s, w, - ) is nondecreasing, so

&n 08,
—(s,w,x) < —(s,w,x').
ol )= o= )
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By the left continuity of dg/dx(s, w, - ), we get

08, og
Vs, w,x, E(s,w,x) - a(s,w,x) when n — oo.
Also, by continuity of g(s, w, - ), we obtain g,(s, w, x) — g(s, w, x). Consider
f, = &, A. We have

g © dg
n _ .3 e 17 _
ond " f_wc?x (s,w,v)¢"(n(v —x)) dv,
from which and (2.1a) and (2.1b) we conclude

3
n

dx

Vit>0,VY K(cR)compact, sup (s,w,x)| <o,

s<t,x€K

Thus we can apply Theorem 18 in Chapter 5 of Protter [20] to f,, = &, " A:

fi(tw,X,) = £,(0,w, %) + [ ‘g.(s,w, X,) dA,

tf, n
+j;)-$(s,w, X,)dX, + C!,

where
1

Cr=3

+0%f,, :
0?(s,w, X,)d[X, X],

1 . s62gn
= 5fofo—ax—z(u,w,xs) dA,d[X, X],.

Since 9%g,/dx? > 0, A, and [X, X], are increasing, we conclude that C/ is
increasing in ¢, for each n.

Let X =M + F be the canonical decomposition of X into a continuous
local martingale M and a continuous finite variation process F. By stopping
we can assume that X, [X, X], M, F, A and

[u(s,w,R) dA, < [ [ + 11 = yu(s, w, dy) dA,
0 0“R

= Z(Lt{g(s, w,0) + g(s,w,1)} dAs)

are bounded by K < . So
Y w, suplX,| < K, sup[X, X]; < K, A, <K.
t ¢

We.have that
af,

of
b—x—(t,w,X,) - a—;(t,w{Xt —) forallt
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and

% X.)dA
ax (u’w’ s) u

-
sjos
Snfosf:

n .o .s K
< 5 ) [ (e, w.R)dA, o(ny) dy < 5

of,
}E(s,w, Xs)

dA,

8,
P (u,w, X,)

d
g(u,w,Xs +y)'qo(ny) dydA,

Then by the DCT for semimartingales (Protter [20], Chapter 4, Theorem 32),
we have

s9f, sof
fog(u,w,Xu)qu—)jg)a(u,w,Xu—)qu,

uniformly in probability for s < ¢. By the usual DCT,
t t
[ &n(s,w, X,) dA, > [g(s,w, X,) dA,
0 0

[lg.(s, w, X)| < sup, o4 1)< x+1108/9x(u, w, x)IK + |g(s, w,0)l, which is dA,-
integrable]. Thus

t tof
f(t’w’Xt)=f(07w7X())+/g(s,w,Xs)dAs+/_—(S,w,Xs_)dXs—l_Ct?
0 0 Jdx

where C, is the limit of C;*, which exists because all the other terms converge.
Then C is a continuous, increasing and adapted process. In particular,
(¢, w, X,) is a continuous semimartingale.

Let " ={tf =0 <t} < --- <t =t} be a sequence of refining partitions
of [0, ¢] such that mesh #™ — 0. We shall omit the dependence of ¢, on n.
Then f(t,w, X,) — f(0,w, X,) = S{(n) + Sy(n), where

Sy(n) = Zf(tul, w, Xt,“) - f(ti’ w, Xtiﬂ)’
Sy(n) = Zf(ti’w’ X,,)—f(t,w, X,).
Since

Ly
f(ti+17w’Xt,-+1) —f(t,w, X;,y) = j; 1g(u?w?Xt,-+1) dA,,

i
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we have

Sin) - [ g(u,w, X,) dA,

< Zf:’“lg(u,w, X,) —g(u,w,Xtm)ldAu

l i

< sup
u<t,|lx|<K+1

a(u,w,x)

{sup sup |X, - Xul}(At -4y,

i ue(tirtt+l)

which tends to 0 as mesh " — 0.
Since g(s, w, x) = 3/lx — ylu(s, w, dy), we have

1 )
Sy(n) = 3 Zj(‘)tlfﬂ(lxtm -yl = IX, =yl = Ji(y,w))u(s, w,dy) dA,

1 e
+5 2[0 fRJi(y, w)u(s,w,dy) dA,
= Sy(n) + Soa(n),
where
J(y,w) = [ sign(X, - y) dF, + L7, — L.
t:— i+1 i

_By Fubini’s theorem,

1 by [t .
Su(n) = 5 L [ sien(X, - y)u(s,w, dy) dA, dF,

1 .
+ E,/;,/;@;(L%H - L{)lsstip,(s, w,dy) dA,

Sgo1(n) + Sage(n).
Using the DCT, we have
of of
_ tz+1_ _ t _r _
Syp(n) = th - (t,w, X,—) dF, - fo (. w, X,=) dF,.
By continuity properties of the local time,

1 o
San(n) = 5 [ [ (L = LY)u(s,w, dy) dA,.
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Thus we can conclude that S,,(n) converges to a continuous process, which
we call J,. So far we have proved

d
f(t,w,X,) = ft a—f(s, w, X,—) dM, + continuous finite variation terms.
o+t ox
On the other hand,

t t of
f(t,w, X)) = f(0,w, X,) + [ g(s,w,X,)dA, + [ —(s,w, X,~) dF,
0+ 0+ dx

1 ¢ y y
+ 5[Of[R(L, — L) u(s,w,dy) dA, + J,.
Thus, to finish the proof, we need to show that
t Of
J,—fwa(s,w,Xs—)dMs.

By the uniqueness of the decomposition for continuous semimartingales, this
is equivalent to proving that o/, is a local martingale.
Let

1 t
SZl(n)u = 5 Z/; [R(Hg+lAu - Htj:/\u)/*‘“(s7w7dy) dA37
where
HY = |X, -yl - [ sign(X, - y) dF, - L.
0+

By Tanaka’s formula for fixed y, (H? ., — H{  r.)lus¢, is a martingale. It
is also jointly cadlag in y and continuous in u. By Corollary 3.5, (Sy(n),), -,
is a continuous martingale, and

E((S21(n)u)2)

1 2
1 ;E{fot,fR(HgHAu - HY , ,)u(s,w,dy) dAs}

t

IA

1 :
_ZE{f [R(Hgﬂw —thiAu)z’u(s,w,dy)dAsf jRM(s,w,dy) dAs}

4 0 0

IA

K 4

— LE[[([H, Hlyine — [H?, B Joni)u(s, w, dy) dA,.

4 i 0 R

The last line is justified by an application of Corollary 3.5 to the process

(B ni = Hi na) = ((H? B i = [H?, HYJin)-

i+l N U
Using the definition of H?, we have

[H, H) = [ ‘sign(X, - y)*d[ X, X1, = [ X, X],.
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Then
sup  E((Sy(n))s) < EE(ftf[X,X],/.L(s,w,dy) dA,| < w.
neN,u<t “ 4 0'R

The sequence (S,;(n)) of martingales is UI (uniformly integrable). Since (J,) is
the UCP limit of S,,(n), then J, is a continuous martingale. '

Finally, we shall reduce the general case (1 not necessarily concentrated on
a fixed compact set) to the one just proved. Again we shall assume that X is
bounded by K (by stopping). Define

)
g(s,w,K+1) + 5(3,w,K+ 1){x — (K+ 1)}:

x=>K+1,
gx(s,w,x) = {&(s,w,x): x| <K+ 1,

g(s,w,—(K+1))+ Z—i(s,w, —(K+1)(x+ (K+1)):
x< —(K+1).

Then ug(s, w,dx) is concentrated on [—(K + 1), K + 1] and u(s,w, &) =
pr(s, w, &) if o< (—(K + 1),(K + 1)), from which the result follows. O

The definition of the Fisk—Stratonovich integral depends on the existence of
a certain quadratic covariation. For that matter the following result is essen-
tial.

THEOREM 3.6. Letf,h € %/, f=g A, h=1-A and X, Z be continu-
ous semimartingales. Consider a sequence (£,) of random partitions tending
to the identity, that is,

P={T¢=0<Tr<Tp< - <Th, <®a.s.},
where T, are stopping times, which satisfy

mesh(#,) = max (T, — T") -0 a.s.
13

n—w

and

Ty 7 ® a.s.

Define
Atn,if= f(Tl’il A t’ w, XTt‘l'f,_l) - f(T’Ln A t7 w, X;‘i")’

N, ko= R(Thy A tw, Zhs ) = R(T" A tw, Zhy).
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Then
of oh
t t 5 ¢ S — _
lZAn,ifAn,ih n-—oo /(;+ax(s7w’Xs )ax (S,w,Zs )d[‘X’Z]s

in UCP (uniformly on compacts in probability), where df/dx and dh/dx are
the cadlag versions. '

Proor. We can assume X and Z are bounded by y. Let (»*) be an
approximation of dg/dx such that:
(i) v*(s,w, - ) is of finite variation on compacts, and it is cadlag.

(i) V ¢, YV A(c R) compact,

sup sup |vk(s,w,x)l<oo a.s.
k s<t,xeA

and

= 0.

g
k

s,w,x) — —(s,w,x
ve( ) ax( )

lim sup
k s<t,x€A

In a similar way, ¢* is an approximation of dl/dx satisfying (i) and (ii).
Let

gh(s,w,x) =f(s,w, 0)+/ k(s w,y)dy
and
I*(s,w,x) =1(s,w,0) + [xfk(s,w,y) dy.
0

Define f* =g*-A, h* =1* - A. Then by Theorem 3.2 we have
Fr(t,w, X,) = £*(0,w, X0)+/—(u w, X,—) dX, + FF,

L OR*
RE(t,w, Z,) = h*(0, w, ZO)+f (u,w,Z,~)dZ, + HE,

where F* H* are continuous finite variation processes. Then

[F2C,w, X)), h* (- w, Z)],
a ’ oR*

+ (0, w, Xo)hk(O, w, Zo)
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and so
YA, A, R
i
(3.6) k k
d oh
ucCp t
5 [ -)— Z,~ z],.
n—o /(;+ é)x (S’w’Xs )ax (s,w, s )d[X’ ]s
Now

Z ASn,ifk ASn,ihk - Z Asn,ifAs;z,ih
i i

<| (80 f = 204 8 b+ (80,0 - 25 Y 5,
(3.7 L\ 2 5\ /2
< (S (S a0
N 1/2 ) 1/2
+(Z(Asn,ifk) ) (Z(Asn,ih - Asn,ihk) )
We also have
1/2 5\ 12
(Zesmy) " s (D@ - o 0]
(3.8) ‘ ‘

. 1/2
+ ( (43, k) ) i
i
We have the following estimates:
B, = A fr = f(T A s,w, Xip ) = F(T A s, w, Xiy)

—[ ATy A 5w, X ) = FHT A s, w, Xip)]

= /T‘ﬁl/\s{g(u, w, X;‘,"H) - gk(u’ w, X%inu)} dAu
0

- fOTinAs{g(u, w, Xin) — 8*(u,w, X;in)} dA,

= le'i1As{g(u, w, X.Tg',-'fu) - gk(u7 w, X‘Ts'l'fu)}dAu

T*As
+ [ e (o w, Xiy,) - 8w, w, Xiy)

—[g*(u,w, X35.) — g*(u, w, X3,)]} dA, .

1+1
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So
|8, f = 85 F* | < C(s, k) (Arp ns = Arpns)
+ C(s, k)| Xgn, — X3 |As,
where
C(s,k) = sup |g(u,w,x)—g*(u,w,x)l,

u<s,lxl<y

C(s,k) = sup |—(u,w,x)—vi(u,w,x)|
u<s,lxl<y dx

Notice that C(s, k) < C(s, k) - y. Then
sup Y (&%, ,f — &%, ; f*)’

s<t i

<M(t, k) + (C(t, k) A,) T (Kb, — Xbn)
where M(t, k) >, _,,, 0 and M(¢, k) does not depend on n. In a similar way,
sup ) (&3, ;h — Asn’ihk)2

s<t i

(3.9)

(3.10) \ \
<N(t, k) + (D(t,k)A,) X (Z5n, — Z1r)

1

where N(¢, k) =, _. 0, N(¢, k) does not depend on n, and

~ al
D(t,k)= sup |—(u,w,x)— & (u,w,x)

u<t,|x|<y ox ke
Using the same technique, we conclude
(3.11) sup ¥ (8%, F4)’ < F(2) + G(t) T (X, = Xbn)
s<t | i
where F and G do not depend on % or n, and
(3.12) sup ¥ (4%, h*)? < F(2) + G(t) T (Zhp, — Zp) -
s<t i

Finally, let

i oh
LM(f k) = sup| T &, f &5 b = [ oo (u,w, X,) 5o (s w, Z,) dI X, Z],

s<t
<Lkr 4+ LEm + L,
where
Lbm = sup| Y A, [ fAS b — XA, fRAS, R*
i i

s<t

Lg,n — Ln(fk, hk),

afk on*  af oh
ft(L—————]:—)d[X,Z]s.
o+\ dx Jx dx dx

L% = L% = sup
s<t
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For & > 0,
3 &
P[L™(f,h) 2 ¢] < Z‘,P[Lg«n > 5]'
i=1
Thus, for any £,

3
limsupP[L"(f,h) = ¢] < ) limsupP[Lf”” > %]

i=1 n
By (8.6) for k fixed, L%™ -, . 0 in probability. By (3.7) to (3.12) we get the
following bound for L*™:

(L") < p(t, k)

+ o(t, k){( ¥ (Xhn, - X;,)"’)l/2 + (Z(x;iﬁl - z;in)2)1/2}2,

i i
where p, ¢ are independent of n, and they tend to 0 a.s. as 2 — «. So
£ £
limsupP[L’{'” > 5] < P{p(t, k) + o(t, k) ([ X, X1 + [ Z, Z]}/z)2 > g}’

which tends to 0 as k& — ». Since L% does not depend on n, we get

€
limsupP[L"(f,h) = ¢] < limsupP[L’§ > g],
n k
which is 0 because L% tends to 0 a.s. O

The previous result shows the existence of the quadratic covariation be-
tween f(X) and h(Z), which allows us to define the Fisk—Stratonovich
integral of f(X) with respect to dZ.

DeriniTION 3.7. If X and Z are continuous semimartingales and f, h are
in 279, we define [ f(X), h(Z)] as
[£(X),h(Z)] $ 7 x,—) Z,-)d[X,Z
FX) (2= [ (5w, X, =) 7(s,w,2,-) d X, Z],

+ f(0,w, Xg)h(0,w, Z,)

(3.13)

and
¢ ¢t Of dh
(314) [F(X),h(2); = [ -(s,w, X,=) 5o (s,w, Z,-) dI X, Z],.
That is, [ f(X), h(Z)]° is the continuous part of [ f(X), h(Z)], andis 0 at ¢t = 0.

Notice that even though f(X) and h(Z) are net necessarily semimartin-
gales, the quadratic covariation [ f(X), h(Z)] is well defined, and moreover it is
a limit of sums in the sense of Theorem 3.6.

* The quadratic covariation between f(X) and h(Z) also satisfies the
Kunita—Watanabe inequality

(3.15) |[£(X),h(2)],| < (LF(X), F(X)])"*([n(Z), h(2)],)"".
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Now, we shall prove that in (3.13) [or (3.14)] we can replace df/dx(s, w,x — )
by df/dx(s, w, x). More generally, we have the following lemma.

LemmMmA 3.8. Let X, Z be continuous semimartingales and f, h be in %</ 9.
If

fuls,w,x) = [ g.(u,w,x)dA,
0
and
ho(s,w,x) = fsfx(u,w,x)dAu,
0
where
g
V(u,w), )\{x:g"x(u,w,x);ég;(u,w,x)}=0

(A is the Lebesgue measure and dg /dx is the cadlag version), and similarly for
l,. Then

LA(X), k(2] = [ fuls, w0, X)hols, 0, 2,) d[ X, Z]..

Proor. Let

I, =

[ {ftsiw %) - i’f(s,w,xsﬂ}%(s,w,zs—)d[X,Z]s |

1, is a continuous process with paths of bounded variation. We shall prove
that I, = 0 a.s. By the Kunita—Watanabe inequality, we have

(- Zf axns] [ oo

but

2

1/2
d[Z, Z]s) ,

2
/t( - iIf) d[ X, X],
ot dx

s ad 2
= [t ([ g.(u,w, X)) — g(u,w,Xs—)dAu) d[ X, X],

o*\“o

*70

a 2
<a,f [t(g"x(u,w,Xs) - a—f(u,w,xs—)) dA, d[ X, X],

tot [ g 2
A [ |&(u,w,X) - =(u,w, X,~)| d[X, X],dA,
& 070" . dx

¢ ig 2
=AJ L‘}(X)(gx(u,w,a) —‘a(u,w,a—)) dadA,.
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The last equality is due to the occupation—time formula. For each (u, w)
fixed,

ig
/\{a:gfx(u,w,a) # a—(u,w,a—)} =0
x

[0g/dx(u,w, - ) and dg/dx(u,w, - — ) differ at most on a countable set], from
which I, = 0. By a similar argument we have

J, = -0,

[t f:c(s’ w, Xs){%(s’ w, Zs_) - ﬁx(s’ w, Zs)} d[X’ Z]s
ot dx

from which the result follows. O

Since
af sag
0—x*(s,w,x—) —foa(u,w,x—)dAu

and
g ig
{x. Bz(u,w,x) * a(u,w,x—)}

is countable, we have that in (3.13) [or (3.14)] we can replace df/dx(s, w, X;— )
by df/dx(s, w, X,).

DerFINITION 3.9. Let X and Z be continuous semimartingales and f &
/9. Then we define the Fisk—Stratonovich integral as

[(s,w, X)0d2,
0
(316) = [F(s,w, X dZ, + 5[ (X), 2]
o 2
1 .9
[ X 2 5 [ o ) dUX.2),

One is tempted to define the Fisk—Stratonovich integral to be the last line of
(8.16), for all functions f such that the right-hand side makes sense. There are
two objections to this. First of all, in general, we would not have that the
Fisk—Stratonovich integral is the limit of sums of the type

S;ypw, X, )+ Hw, X
(3.17) ) flois,w ; s '){Zsm -Z,).
E] Pn

Second, the last term of (3.16) could depend on the particular version of df/dx
we have chosen. For example, let f(¢,w,x) = |x — B,(w)|, where B, is a
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one-dimensional Brownian motion. Then the cadlag version of df/dx is sign(x
— B,), where

. 1, >0,
Slgn(u):{—l, Z<0

but
t0f t9f
J 75 (s:w B dIB, Bl =t # ~t= ['—(s,w, B,~)d[B, B],.

Notice that f¢& %79, because for x fixed, f(-,w,x) is not of bounded
variation.

One can define the Fisk—Stratonovich integral for f(X,), when f is abso-
lutely continuous (and does not depend on ¢ w) whose derivative f’'e
L3 (R,d)), as

t t 1 t
(3.18)  [f(X)edZ, = [(X,)dZ, + 5 [ f(X)X, 2],

where f’ is any version of the derivative of f. There are two things to verify.
First, the last integral in (3.18) exists for any version of f’, and second, the
integral does not depend on the version of f’ we use.

Let us prove first that (3.18) makes sense for any particular version of f'.
In fact,

‘/"t*f,(XS) X 2l = (/ot( f’(Xs))zd[X’X]s)1/2(f;d[z,zls)1/2

1/2
< ([(r@zao da| " (12,21)""

We know that V a > X* = sup, _,IX|, L;(X) =0, and sup, LY X) < » a.s.
(L, is cadlag). Then

[rx) dx, 21,

1/2

" 1/2
s(supL‘;(X)[Z,Z]t) {fi’(*(f’(a))zda} <o as.

The same sort of technique proves that (3.18) does not depend on the
version of f’ we use. The problem is that we do not know if [{ f(X,)°dZ, is
the limit of sums of the type (3.17). For that to happen, we feel that some
regularity of f’ is needed. It seems that something like ““ f* must be Riemann
integrable over compact sets” is enough.

From now on we shall assume that df/dx(s,w, - ) is the cadlag version
unless we specify what version we are using.
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4. Existence. In this section we shall prove that under certain conditions
the Stratonovich differential equation (4.1) has a strong solution.

dX, = Y ot,w, X)odZi + . hy(t,w, X,) dA",
(4.1) i=1 k=1

where Z! are continuous semimartingales, and A* are continuous finite
variation processes (henceforth CFV).

That is, there is a semimartingale X, with continuous paths which satisfies
(4.1). We shall say that X, is strict if and only if X, is adapted to the
augmented right-continuous filtration (G,) associated with

&, = U{XO’ (Zsi)’ (A};)’(Ui(s’ ’ ’x))’ (hk(s’ ’ ’x))’ s<tix€ R}'

If o =V,o and N ={A e o: P(AX1 — P(A)) = 0}, then G, =
(N,>:%,) VN.

Since we are working in one dimension, we also expect to find a maximal
and a minimal solution. In the It6 case, Barlow and Perkins [3] have a nice
result in this direction. Moreover, in this paper there are two ideas very
important for us. First is the LT condition (which I shall explain in a moment)
and a way to approximate the coeflicients o;, h, to obtain a sequence of
solutions, of these approximated equations, which will tend to the minimal
solution of (4.1).

DEerFINITION 4.1. The function n: R, X O X R — R is said to be:

(a) Uniformly Lipschitz (UL) if:

@@ n(-, -, x) € L = {adapted processes, left continuous with right limits}.

In(s,w,x) —n(s,w,y)l

G e s 0D nGw)
s<t,x+y Ix -y |

(b) Uniformly Lipschitz on compacts (ULC) if it satisfies (i) but (i) is
changed to

< k(t,w) < .

(ii")
| S, w,x) — s, w, I
V ¢, A(S R) compact, sup n( Ijt — ;l( y) <k(t,w,A) <o,
(x,y§§f\><A
x#y

where in both case k(-, - ) and k(-, -, A) can be chosen increasing and in L.

(¢) Locally bounded if

V ¢ > 0, A(< R) compact, sup |n(s,w, x)| k(w) <« as.

s<t,x€A

Tl;e following lemma is an important tool and can be found in Le Gall [14]
and Barlow and Perkins [3] for more general coefficients, but for only one
driving semimartingale Z.
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LEmMMA 4.2. Assume X! and X? satisfy

(4.2) dX; = Yo,(t,w, X})dZi +dV}, i=1,2,
J

where Z7 are continuous semimartingales, V/ are CFV and o, are ULC
functions. Then

LYX'-X*)=0 forallt>0a.s.
This result motivates the following definition (see Barlow and Perkins [3]).

DEFINITION 4.3. Consider (Z'), a finite family of continuous semimartin-
gales. Let 0;: R, X QO X R —» R be #® B(R) measurable (here & is the pre-
dictable o-field), such that for any continuous process Y, oi(t,w,Y,) € L(Z?)
(it is integrable with respect to Z’; see Protter [20], Chapter 4), for example, if
o; is locally bounded or if oy(:,-,Y) € L. Then we say o = (0;,...,0,) €
LT(Z',...,Z") iff for any X' and X? continuous processes satisfying (4.2),
LAX'—X*)=0forall t>0as.

In this context Lemma 4.2 can be expressed in the following way: If
0. € ULC, then o € LT(ZY,...,Z").

The LT condition has very interesting consequences (see Barlow and
Perkins [3, 4]). For us, the most important thing is that (4.1) is stable under
maximum and minimum operations, as has been noted in the former cited

paper.

LEmMmA 4.4. Let 0 € LT(Z',...,Z"), h,(-, -, ) measurable, h,(:," ,x)
adapted and h, locally bounded. Let X' and X? be two solutions of (It6),

dX, = Y o;(t,w, X,) dZ} + Y h,(t,w, X,) dA%,
(4.3) J k

Xo = Xo’

where Z7 are continuous semimartingales and A* are CFV. Then
(X' Vv X?), = max{X}, X3} and (X' A X?), = min{X]}, X2} are solutions of
4.3).

Proor. By Tanaka’s formula and the LT condition,

1
X!vX2=X}+ ]Ot1(xsz>xsl, d(X} - X1) + FLY(X' ~X?)
=X, + ¥ [{o(s,w, X2) + 1 A dz;
0 - (S, W, Ag (X2> X} 0}'(3)} 5
J

+ 2 [{ha(s,w, X2) + Lixas gy Ay ()} A%,
k70
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where Ag;(s) = o;(s, w, X2) — o,(s, w, X}) (analogously for Ah,). Thus

X}vXE=X,+ ¥ [o(s,w, X! v X2) dz}
J 0

+ ¥ [ha(s,w, XE v X2) dAL,
k"0
from which the result holds. O

The next result is without doubt the most important tool we use to prove
existence for (4.1). This kind of result is called a comparison lemma, and it is
used frequently in the theory of ODE and also in stochastic differential
equations (see Barlow and Perkins [3]).

We need to introduce the following partial order.

DEFINITION 4.5. Let m,y: R, X Q X R —> R be two functions; we denote
n <*yif
V (s,w,x) 3 6 > 0 such that if |x — y| < 8, |x —y'| <& and
s<s'<s+39,
then
(s, w,y) <y(s,w,y).
LEMMA 4.6. Let (M?) be a finite family of continuous local martingales
and (A*) be a finite family of continuous increasing processes. Assume

o= (0y,...,0,) € LT(M',..., M™) and o, are locally bounded, (h)),j =12,
are measurable, adapted and locally bounded with h}, <*h2. If X/ satisfies

dXj = Zoi(t,w,th) dM;} + Ehi(t,w,th) dA*, Xj = X{,
i k
and X§ < X¢, then X! < X? forallt > 0 a.s.

Lemma 4.6 is a minor improvement of Proposition 3.5 in Barlow and
Perkins [3], and its proof is essentially the same plus a localization argument.

COROLLARY 4.7. Assume M' are continuous local martingales, A* are CFV

(with total variation |dA*|), o, are UL, h, are measurable adapted and there
exists a UL function f, such that |h,| <*f. If X, XV and X satisfy

dX, = Yo(t,w, X)) dM} + Y h,(t,w, X,) dA*, X, =X,,
i k .
(U) dX! = Yo(t,w, XF)dM;} + f(t,w, X7 )Y [dA*, XU =XU,
i ) k
(L) dXF= Yo (t,w, XF)dM; — f(¢t,w, XE) Y IdAY,  XF=XE,
i k

and X§ < Xg < XY, then XF <X, < XV forallt>0 a.s.
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Proor. Note that equations (U) and (L) have unique solutions, because
the coefficients are Lipschitz. To prove the corollary, it is enough to notice that
X satisfies

dX = Lo dM' + Thyd(A) — Thyd(4%)

and
|hyl <*f= —f<*+ h,and +h, <*f. |

An interesting implication of the comparison lemma is the nonexistence of
explosion times for (4.1) under linear growth, which we shall prove in Corol-
lary 4.11.

DEFINITION 4.8. A measurable function 2 =R, X QO X R — R is said to
have linear growth if there exist processes K and H such that:

(i) H,K € L, K is increasing, and

Gi) |h(s,w, x)| < K(s, w)lx| + H(s, w).

DEeFINITION 4.9. We say the Itd equation (Z, are continuous semimartin-
gales and A* are CFV)
(44) dX = Y o(t,w,X,)dZ} + Y h,(t,w, X,) dA, X, = X,,

has an explosion time, if there exists a process X taking values in R such that
if S, = inf{t > 0: |X,| > n}, then X, , g has continuous paths, satisfies

t . t
Xt/\Sn = XO + E'/;)a.i(s’ w, Xs)1|Xs|sn dZ; + ZLhk(sa w, Xs)]‘|X3|Sn dAI;
i k

and P[lim, S, < ] > 0. S =1lim, S, is called an explosion time for (4.4).
Notice that (4.1) can be written in the form of (4.4). In fact, (4.1) is
equivalent to

. 1 do; .
(4.5) dX, = Yo, dZ + Ez‘,qa—fd[zzzq + Y h, dA*.
i i,J k

THEOREM 4.10. Ifin (4.4), o, € UL, h, are measurable, adapted and they
have linear growth, then (4.4) does not have an explosion time.

Proor. Without loss of generality we can assume that Z’ are continuous
local martingales. Since (% ,) have linear growth, then there exist K € L and
H e 1 such that

VE, |hy(s,w,x)| <K(s,w)lx|+H(s,w).

Define f(s,w,x) = (K(s,w) + Dlx| + H(s,w) + 1. It is easy to see that
lhyl <*f and fe UL. By Corollary 4.7, X}, s <X,, s <X[, 5 (we have
taken Xt = X, = XY), where X and S, are as in Definition 4.9.
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Since equation (U) and (L) have coefficients in UL, they do not have an
explosion time (see Protter [20], Chapter 5, Theorem 7). Thus (4.4) does not
have an explosion time, either.

Using the relation between the Stratonovich equation (4.1) and the Itd
equation (4.5), we get the following corollary.

CoROLLARY 4.11. The Stratonovich equation (4.1) does not have an explo-
sion time if 0, € YA 9D, d0,/9x(s, w, - ) are bounded and h, are measurable,
adapted and have linear growth.

If 0, € 2/9, but do,/dx are not bounded, the previous result does not
hold in general as is shown by the following example. For ¢ > 0 consider
dX,=X}*¢-dB,, X, =1, where B is a one-dimensional Brownian motion,
B, = 0. A solution of this equation (up to the explosion time) is, by It6’s
formula,

X,=(1-¢B) ", t<S=inf{t>0:B,=¢1.

Since, P(S < «) = 1, this equation has an explosion time.

Now, we shall concentrate on the main theorem of this section, which gives
us sufficient conditions for the existence of a solution for (4.1). For that matter
the following lemma, which can be found in Barlow and Perkins [3], is very
useful.

LEmmA 4.12 (Approximation lemma). Let h: R - R be a lower semicontin-
- uous function bounded by M. Then if f,(x) = inf {h(y) + nlx — y|} — 27", we
have the following:

@DV, f(0l <M+ L.
(i) £ (x) ~ h(x).
(i) Y x,y, If(x) — f,(»)| < nlx — y| (Lipschitz).
(iV) fn < *fn+l‘

(v) If h is continuous at x and x,, = x, then f,(x,) = h(x).
Notice that we do not assume that £ is left continuous.

Proor. Only part (v) is not proved in the cited paper.
By definition, f,(x,) < h(x,) - h(x), then limsup f,(x,) < h(x).
On the other hand, V n 3 y, such that

fu(x,) = h(y,) +nlx, —y,l —2™—n"1

Since f, are uniformly bounded, we conclude limsup, nlx, —y,| <o =
¥, X, )
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Finally,
liminf f,(x,) > liminf A(y,) = h(x),
from which lim £,(x,) = h(x). O

The last definition we need in this section is the following.

DEFINITION 4.13. A measurable subset D of R? is said to have content 0 if
D, = {s: (s,y) € D} has null measure for every nonatomic measure on R,
except for a set of Lebesgue measure 0 of y € R.

Any countable subset D of R? has content 0. Also if A is a countable subset
of R, then D = R X A has content 0, but R X A is not countable.

THEOREM 4.14. Consider the Stratonovich equation (4.1), where (Z?) are
continuous semimartingales, (A*) are CFV and

@l o;e 299,i=1,...,n.
(a.2) If d0,/9x(s, w, - ) is the cadlag version, then

vt sup =y(t,w) <o a.s.

s<t,x€R

do;
—(s,w,x
Pl CAED

(a.3) D(w) = {(s, x): do,/dx(s,w, - ) is discontinuous at x} has content 0
a.s.inw.

(b) h,(-, -, %) is adapted, h,(s,w, ") is continuous and h, has linear
growth.

©[Z,Z7]1=0,i+j.

Then (4.1) has a unique minimal strong solution X (resp. maximal X).
That is, if Y is any strong solution of (4.1), then X, <Y, forallt>0 a.s.
(Y, < X,). Moreover, X and X are strict solutions.

Proor. To avoid cumbersome notation, we shall denote, for example,
o(t,w, X,) by 0(X,), where it is convenient and there is no possible misunder-
standing. By part (c), (4.1) can be written as

| do; L
aX, = To(X) M + 3 T (o | xotar,

+ Loy(X,) dC/ + Lhy(X,) dA},
i k

where Z! = M? + C' is the canonical decomposition of Z! into a local continu-
ous martingale and a CFV process C°. Since +o;, + h, satisfy part (b), we can
regtrict our study to the following It6 equation:

1 dot o
(4.6) dX = Yo, dM' + 5Ecrigc—aL[M',Ml] + Y b, dF*,
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where now F'* are continuous increasing and adapted processes, and b, satisfy
part (b).
Define the following version of do;/dx:

do; do; .
96 E(s,w,x—) A E(s,w,x), if o;(s,w,x) >0,
13 .
E(s,w,x) = 90

i aoi .
— -)VvV — : .
e (s,w,x—) py (s,w,x), ifo(s,w,x)<0
It is easy to see that d¢4; /ax( s, w, - ) has left and right limits, and

A(w) = {(s x): (s w,x) # azi(s,w,x)} c Dy(w).

Define

~

1 a0,
pi(s,w,x) = Soy(s,w, x)—(s w,x).

Since o0; = g; - A, we have

do;

i sagi
—a(s,w,x) = /(; E(u,w,x) dA,,

do; ig.
a—x‘(s,w,x—) =/:ai;(u,w,x—)dAu.

From this, p,(‘,w,x) is continuous at s when o(s,w,x) # 0, but if
o(s,w,x) = 0, then p,(-,w, x) is obviously continuous at s. It is not diffi-
- cult to see that p,(s,w, ) is lower semicontinuous and moreover
liminf, , , p,(s, w,y) = p,(s, w, x).

In the first part of the proof, we shall consider (4.6) where we have replaced

do;/dx by d6,/dx and we made the extra assumption:

~

. ) . a6,
(4.7 M [M', M), F* o,b,, — I are uniformly bounded by C.

As a consequence, VY s >0, x € R, Ip,(s, w, x)| < C%2/2. Consider
pi(s,w, x) = inf.{p,(s,w,y) + r|Y — x[} — 27" and b;(s, w, x) in the analogous
way. By the approximation lemma and the definition of p] (resp. b;), we have
the following:

1. Vs, x, lpl(s,w,x)| < C’" and |bj(s,w,x)| <C’; C'=(C%/2 Vv C) + 1.

2. pi(s,w, ) 7 p(s,w, - ); by(s,w, ) 7 b,(s,w, )as r — o,

3. pi(+, -, x) are adapted and |p](s, w, x) — p{(s, w, y)| < rlx — y| (the same is
true for bp).

4. pz <* r+1 and br *br+1

5. If p, (s, w, * ) is continuous at a [in partlcular if o(s,w,a) = 0]land x, — a,
then p] (s w, x,) = p(s, w, a).
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Since b,(s, w, - ) is continuous, we have
bi(s,w,x,) > b,(s,w,a).
Consider the equation

dYt= Zoi(t)w)y;) thi+ Epzr(tywa}’t) d[Mini]t
(4.8) + Y b (¢, w,Y,) dF},
k

Yo = Xo.

Since all the coefficients of (4.8) are Lipschitz, this equation has a unique
strong solution Y,”, which turns out to be strict by Picard’s iterations.

By the comparison lemma, for fixed ¢, Y,” is increasing in r. Let us call
X, =1lim, Y <o Take Z] =Y, —Y,, which is also increasing in r. By
Doob’s maximal inequality, we have

2 foo)
E(sup [‘a,.(s,w,Y;) dM )54E(f o2(Y))d[ M, M*],| < 4C3.
¢ 0 0
Also,
¢ k 2 "n2n2
E| sup fp,;(s,w,Y;) dFk| | < (C)*C
t 0
and
¢ . |2 2 o
E|sup|[pj(s,w,¥7) d[ M, M'],| | < (C")’C?,
t 0
from which

E( sup|Zt’|2) <C"<®»  (C”independent of r).
t
We conclude, by the monotone convergence theorem, that
B(sup[(X, ~ Xo) v 0] <=,
t

from which X, < « for all ¢ a.s.
The next step is to prove that X is a solution of (4.6) with do;/dx replaced
by 44, /9x. Again, by Doob’s maximal inequality and the DCT,

roo

2
E(sup )—>0.
t

[o(s,w,¥7) aMi ~ ['o,(s,w, X,) dM;
0 0
Then, for some subsequence, which we assume is the whole sequence,

5w 0 a.s.

sup| (s, w, ¥7) M~ ['o(s,w, X,) dM;
t 0 0
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By the DCT, applied w by w, we have

sup| (b5 (s, w, ¥,") dF¥ - [bu(s,w, X,) dF}
¢ 0 0

< [ 1Bi(s,w,Y)) — by(5,0, X,)|dFF —52 0 as.

r—oo

The only thing left to prove is
?f”"’(s’ w,Y;) d[ M, M'], > tzfo‘pi(s, w, X,) d[M*, M'],.
We have
=X, + ¥ [lo(Yy)aMi + T [op(Y)) dF} + T [pi(Y) dIMY, M),
;70 % °0 ; 70

Since Y", S; and S, converge, then S; has to converge. Let us call G, that
limit. Then if ¢ <¢,

|Gt - thl =

tim ¥ ['9!(s, 0, %) d[ M, M), < C'T ["d[M!, M1,
roo; i Ut

from which we conclude that G, is continuous and has paths of bounded

variation. So far we have proved

(49  X-X+L[ (X)) dM;+ L [ by(X,) dF} + G,

Then X, is a continuous semimartingale. By the monotonicity of Y,” in r,
we can conclude that Y, — X, uniformly on compact sets (Dini’s theorem) for
every w.

Define Df = {(s, x): p/(s, w, - ) is discontinuous at x and |o,(s, w, ¥)| > a >
0}. Since D"‘ c D;, we conclude that D"‘ has content 0.

From now on, we denote D“ as D“ and D; as D. In particular, D“ = {x:
p(s,w, ) is d1scont1nuous at x and |oy(s, w, x)I >a >0} Let D= Ua>0D"‘
then D, = U, D = {x: p(swx—)#p(swx+)andcr(swx)=#0}1s
just the set of x € R where p,(s, w, - ) is discontinuous at x. We have D c D.
Let

1= B [15:(%) alar’, 17, ) < (2) ([ )02 ataat 1)

By part (c) and (4.9), we have o(X,)d[M‘, M'], = d[X, M'],. Then, by the
Kunita—Watanabe inequality,
1/2

I<

- 1/2
E(/(; lﬁg(gs)oiz(s’w’ X,) d[X’ X]s) :
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If we use the occupation-time formula (Lemma 3.1), we get
1/2 - 1/2
I<s— {E(ijO 15¢(a)o?(s,w,a)L(a,ds) da)} ,
where L(a, s) = L% X) is the local time of X. Thus

3/2

I<

w 1/2
(EfRfo le(a)L(a,ds)da) .

a,2

Since L(a, ds), as a measure on s, is diffuse for every a and D has content 0,
we have

ffwle(a)L(a,ds) da=0 as.,sol=0.
R70

In particular, P{w: u{s: X, € D2} = 0} = 1, where u; is the random mea-
sure associated with [M*, M*], from which we conclude P{w: u{s: X, € D} =
0} = 1. So there exists a set &€ & with P(&/) = 0 and for every w € &7°,

p{(s’w’yvsr) ——“)pi(s’w’)_(s) dl-"i(s)_a'e'

r—oow

By the DCT we have
[0 (s,w,2) dLME M), > ['pi(s,w, X,) LMY, MY),.
0 0

Then we have proved that X satisfies (4.6) with d5,/dx instead of do;/dx.
We shall prove now that X is a solution of (4.6).
For this to happen it is enough to prove that for fixed ¢,

~

[ 4. 2 X doi X.)d[ M}, Mi 0
fo o-ia (s,w, X,) — (Ui%)(s,w,_s) [M', M*],| = a.s.,

J, =

because of the path continuity of <J,. By the Kunita—~Watanabe inequality, we
have

P T X,)d[ X, M!
t 0 E - ax (S’w’_s) [—’ ]s

. 1/2
a6;

. co\1/2] rt do;
S([Ml’l‘/”t)/(fo(ax dx

) (S,w’ Xs) d[X’ X]s)

— ([M, Mi]t)1/2(40.2fRf0t108(a)L(a,ds) da)l/2 =0 as.

Assume Y is any solution of (4.6). Then it is a solution of (4.6) where do;/dx
is replaced by d6;/dx. By the comparison lemma, Y,” < Y, for all ¢ > 0, from
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which X, <Y, for all £ > 0. Then X is the minimal solution of (4.6), and since
it is the limit of strict solutions it is also strict.

To relax condition (4.7), we proceed, as usual, by localization. s

The maximal solution is obtained in an analogous way, by approximating p;,
and b, from above (which can be done by approximating, from below, —b, and
a suitable version of —p;). O

ReMARK. Condition (a3) is automatically satisfied when o; does not depend
on s (homogeneous case) or when oy(s,w, - ) is C'. Moreover, we have the
following corollary.

CoroLLARY 4.15. Consider (4.1), where o; satisfies (al) and (a2) and
da;/dx(s,w, - ) is continuous, and h, satisfies part (b). Then (4.1) has a
unique minimal solution X (resp. unique maximal solution X) among the
strong solutions, and X, X are strict.

Proor. Now (4.1) can be written as

o1 do; -
ax, = To(X,)dz}+ 5 T (o |(X,) dl2', 2,

i

ax

1 do; .
+= Z (o-z_J)(Xs) d[Zl7ZJ]s + th(Xs) dA};
25 k
This is of the form of (4.6) in the previous proof. Then, by the same

approximation used in that proof, the result holds. O

5. Uniqueness. Our goal is to give conditions for strong uniqueness. We
shall attack this problem from two different sides: the first one via Girsanov’s
theorem, and the second one through a change of variables on the state space
to remove the drift oo’. Let us consider the stochastic differential equation:

dX, = Y o,(t,w, X,)dZ} + Y. b,(t,w, X,) dA*,
i k

(5.1)

X, =X,
on a certain filtered space (Q, %,(%), P). We assume Z' are continuous
semimartingales, A* are CFV, b,(-, -, - ,) are measurable functions and o; are

Z® #R) measurable functions. We shall assume that b,(-,w, ) and
o+, w, - ) are locally bounded. Remember that % is locally bounded if
V ¢,V A( < R) compact, sup  |h(s,w,x)| < .

O0<s<t,x€A

DEeFINITION 5.1. We say that (5.1) satisfies the strong uniqueness property
if for any two continuous processes X, and Y, defined on Q, adapted to (%)
and verifying (5.1), X = Y holds (i.e., X and Y are indistinguishable).

Since we are interested mainly in strong solutions, we introduce the follow-
ing weak version of weak uniqueness.
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DEFINITION 5.2. We say that (5.1) satisfies the weak™ uniqueness property
if for any two continuous processes X, and Y, defined on (, adapted to (%)
and verifying (5.1), -£(X) = Z(Y) holds, where .Z(X) is the law that X
induces on path space C([0, «), R).

THEOREM 5.3. If ¢ =(0y,...,0,) € LT(Z',...,Z"), then weak™ unique-
ness and strong uniqueness are equivalent for (5.1).

Proor. It is clear that strong uniqueness implies weak* uniqueness. For
the converse assume that X and Y are two (continuous) solutions of (5.1). The
LT condition implies that X V Y and X A Y are also solutions; then .Z(X Vv
Y)=A(XAY)andso XVY=XAY, from which X=Y. O

In the previous section we have obtained strict solutions for the Stratonovich
equation. For that reason the following definition is useful for us.

DEFINITION 5.4. We say that (5.1) satisfies the strict uniqueness property if
there is at most one strict solution.

Lemma 5.5. If (5.1) has minimal and maximal solutions (among the
strong solutions) which are strict, then the three notions of uniqueness are
equivalent.

Proor. We shall prove weak™ = strong = strict = strong = weak ™,

Denote by X and X the maximal and minimal solutions. If weak* unique-
ness holds, then -#(X) = .Z(X), which implies X = X, and then there is at
most one strong solution. The second implication always holds, because the set
of strong solutions contains the set of strict solutions.

Let us prove now that strict = strong. If X is any strong solution, we have
X < X < X, but X = X because strict uniqueness holds. Thus strong unique-
ness holds. The last implication is always true. O

When (Z!,...,Z") is an n-dimensional Brownian motion, we can consider
another notion of uniqueness.

DEFINITION 5.6. Let B be an n-dimensional Brownian motion and A =
(A%, ..., A™) a vector of CFV processes. Consider the It6 equation

dX, = Z‘Ti(t’ X,) dBti + Zbk(t, X,) dA?»
(5.2) i k
X, =Xy,

where o;, b, are #(R?) measurable (they do not depend on w), and (X,, A)is
independent of B. We say that (5.2) satisfies the weak uniqueness property if
given that (Q, &, (%), P, B, A, X,, X) and (0, ¥',(F), P', B', A, Xy, X) are
two solutions with -Z(X,, A) = £(X|, A), then A (X) = Z(X").
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Lemma 5.7. If o; and h, are nonrandom ULC, then weak uniqueness
holds for (5.2).

PrOOF. Assume that (Q, &, (%), P, B, X,, X) and (0, &', (%),
P', B', Xj, X') are two solutions. Take ¢ a C§(R) function with support on
[-(n + 1D,(n + 1)] such that ¢ =1 on [—n,n]. Consider g,(s,x) =
o,(s, x)p(x) and h,(s, x) = b,(s, x)p(x). Then

(5.3) dZ,= Y gi(s,Z,)dB: + Y h, dA*, Z,=X,,
i k

has a unique strong solution Z on (Q, %,(%#), P, B, X,) and a unique strong
solution Z’' on (¥, ¥',(%,), P, B’, X|)) (see Protter [20], Chapter 5, Theorem
7), because the coefficients are uniformly Lipschitz. In particular, Picard’s
iterations converge to the solution of (5.3). Consider

L(W), =X, + ¥ [g(s,W,) dBi + ['h,(s,W,) dA".
i “0 0

If WO =X, W™ = L(W™~D), we have W™ —,.p Z. By induction it is easy
to prove that Z(W™) = _Z(W'™) and so .A(Z) = #(Z'). We conclude that
L(XT) = A(X'™), where T, = infl{t: |X,| > n} (similarly for T). By assump-
tion T, », ., as. (respectively T, » ), because X is a solution of (5.2).
Thus A(X) = Z(X’'). O

ReMARk. Obviously, weak uniqueness implies weak* uniqueness. The next
result is a uniqueness theorem for the Stratonovich equation in the Brownian
case.

THEOREM 5.8 (Uniqueness). Let B = (B! ..., B") be a n-dimensional
Brownian motion defined on the filtered space (Q, #,(%,), P). Let o; be a
nonrandom function in %29 and b, a nonrandom function which satisfy:

do;
(5.4) Vi, VA(CR) compact, sup |[—(s,x)|=vy;(t) <o,
s<t,x€A ox
and
(5.5) b, are ULC.

Consider the Stratonovich equation:

(5.6)  dX,= Yot X,)odB} + Lb,(¢, X,) dA}, X, =X,
i 2 .

where (X,, A%, ..., A™) is independent of B.
Then strong and weak uniqueness hold.

Proor. Since o = (0y,...,0,) € LT(B!,..., B"), then weak* uniqueness
and strong uniqueness are equivalent. Moreover, weak uniqueness implies
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weak* uniqueness, so it is enough to prove weak uniqueness. By conditioning
on (X,, A',..., A™), we can assume that (X,, Al,..., A™) are nonrandom.
Assume (Q, &, (%), B, P, X) is a solution of (5.6). Then

Z, = exp _gfot,‘;_‘;(s,xs) dB: - —f z‘,(—(s X)) ds}
is a martingale (see Karatzas and Shreve [13], Corollary 3.5.13). Fix ¢ > 0 and
define
BX(A) =E(1,2,) forall Aec %, s <t.
By Girsanov’s theorem, the process defined by
W (X) = (WN(X),..., W (X)),

where
i i sﬁo‘i
WS(X)=BS+/Oa(u,Xu)du, s <t

is an n-dimensional Brownian motion on (Q, &, (%), _,, PX). Under PX, X
satisfies

dU, = Y. 0,(s,U,) dWi(X) + Y. b,(s,U,) dA*, s <t U,=X,.
i k

If we repeat this procedure with another solution (¥, ¥',(%,"), P', B’, X'),
we end up with the existence of another Brownian motion (W(X ) A deﬁned
on (U, F', (%), .., PX) such that under PX, X' satisfies

dv, = foi (s, Vo) dWi(X') + Zbk(s, V) dA;,  s<tVo=X

We have that (Q, &F (%), _,, PtX, W(X), X) and (@, &', (%), ., P¥,
W(X'), X') satisfy the same Itd equation, which has ULC coefficients. Then by
Lemma 5.7, the law induced by X (under PX) is the same as the one induced
by X'. Since Z7! is o(X, W(X)) [resp. Z' ! is o(X’, W(X'))] measurable, we
conclude V ¢, Z((X,), _,) = -£Z(X.),_,), from which the result holds. O

We summarize the existence and uniqueness results in the following theo-
rem.

THEOREM 5.9 (Existence and uniqueness). Let B a n-dimensional Brown-
ian motion. Assume that, in (5.2), o; are nonrandom and:

(a) Sup <t, xeRIao'i/ax(S, x)' = ’Yi(t) < .

(b) D; = {(s, x): d0;/9x(s, - ) is discontinuous at X} has content 0.
(c) b, are UL.

@ (X,, AL, ..., A™) is independent of B.

Then there is only one strong solution which is also strict.
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The proof of Theorem 5.8 was based on Girsanov’s theorem which allows us
to remove the drift o; do;/dx, but this can be done only in the context of an
n-dimensional Brownian motion. To obtain a general result on uniqueness, we
shall remove the drift o; do;/dx by a change of variables on the state space R.
To this end we write the following definitions.

A function f defined on I = [a, b] is said to be in &Z2(1I) iff

f(x), ifzel[a,bd],
f(x)={f(a), =x<a, is in 9.
f(b), x> b,

In a similar way f is said to be Lipschitz on I, if f is Lipschitz.
Ifa<b<cand fe Z9(a,b)), g € LI[b,cland f(b) = g(b), then it is
not difficult to prove that

f(x), x € [a,b],
&(x), x € [b,c],

belong to &Z9(a, c]). A similar result holds for Lipschitz functions.

h(x) =

DEFINITION 5.10. We say that o € &/ satisfies hypothesis A iff for every
{ € 2= {x: o(x) = 0} there exist: § > 0, a function F defined on I =[{ —§,
{ + 8] and a constant ¢ > 0 such that:

(Al) F'e &Z9(I) and F'(x) > c on I.
(A.2) If F" is the cadlag version of the second derivative of F, then

h = F"0% + go'F' is Lipschitz on I.

Note that F: I —» F(I)is one toone. (F!Y € &/2(I)and 0 < (F~1y <c¢™ L.
In particular, F~! is Lipschitz on I and it is a difference of two convex
functions (on I).

In Appendix A we shall give some sufficient conditions for hypothesis A.
- Roughly speaking, hypothesis A is a regularity condition for o on the set of
zeros of o. This regularity will be enough to guarantee uniqueness for the
Stratonovich equation:

(5.7 dX,=o(X,)odZ, + Y b,(X,) dA%, X, =X,
k

where as usual Z is a continuous semimartingale, b, are Lipschitz and AF are
CFV.

REMARK. If o > 0 (or o < 0), then o satisfies hypothesis A. This condition
appears in several works when uniqueness of SDE is studied; for example, see
Le Gall [14]. Also, see the work of Mackevicius [15] in this direction, in the
Brownian case. )
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LEMMA 5.11. Let S be a finite stopping time [i.e., P(S < ©) = 1] and
e Fg with P(&) > 0. Consider the Stratonovich equation:

(5.8) X,=Y+ [ To(X,)dz, + ¥ [T Tb(X,) dAL,
S S

where Y € Fg, 0 € &/ with o' bounded, b, are Lipschitz and A* dre CFV.
If X, and X, are the maximal and minimal solutions of (5.8) under P, then
they are also the maximal and minimal solutions under R(-) = P(-|/).

Proor. Notice that under R, Z is still a continuous semimartingale and
(A*) are CFV. Also, X and X are solutions of (5.8) under R. Assume V is the
maximal solution of (5.8) under R (the existence of V is guaranteed by
Theorem 4.14).

Take W, = V1_,+ X,1_,.. Since &/€ F#; we have under P:

Vi,= Y1M+f V)1, 0dZ, + 2[ bu(V, )1, dAE
and
X1,=Y1,.+ [S” X,)1y.0dZ, + Zj X, )1y dAE.

Thus W, is a solution of (5.8) under P. So we can conclude V, < X, R-as.,
and then X is the maximal solution of (5.8) under R. In a similar way X is the
minimal solution of (5.8) under R. O

LemMmA 5.12.  Assume the conditions of the previous lemma hold. Take
T =inflt > 0: X, > X,} and 2= {x: o(x) = 0}. Then:

@ T>0a.s.on{Ye& 2}
(i) if o satisfies hypothesis A, then T > 0 a.s. on {Y € 2}.

Proor. (i) Notice that {Y ¢ 2} € F. If P(Y &€ @) = 0, then part (i) holds
trivially. If P(Y ¢ 2) > 0, we can apply Lemma 5.11 to get that X and X are
the maximal and minimal solutions of (5.8) under R = P(- /Y & @). Take
n =d(, ) = 1nf{E Y — ¢l >0 R-as., and 8 = /3. Define 7 = inf{z > 0:
IX Yl > 6 or |X, — Y| > 8}. By continuity we get that 7 > 0 R-a.s. Also
d(X,P)>8fort <7and d(X,,Q) > for t <.

Consider
fx 1

Y(w)o'(u)
F(w,Y(w) +9), x>Y(w) +9,

F(w,Y(w) —9), x <Y(w) —8.

Then dF(w, x)/dx = 1/0(x) has only one sign on I =[Y —§,Y + 4], so it is
one to one. Also in that interval ¢~! is Lipschitz, from which F(w, - ) is the

du, Y(w) -6<x<Y(w) + 9,

Fw,x) =
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difference of two convex functions. Also, F(-, -) is %5 ® B measurable, and

2 oF
5x—2-(w,x)02(x) + o(x)o’(x)a(w,x) = 0.

In what follows we denote F(x) instead of F(w, x).
By It6’s formula we get

W, - F(X,) = F(Y) + [S“dzu

(5.9) s+tby(F~Y(W,))
A T UA)]

Also W, = F(X,) satisfies (5.9). Since this equation has coefficients locally
Lipschitz, we have W; = W,, 0 <t <7, from which X, = X,, 0<t<r and so
T>7>0 R-as.

(ii) Assume P(Y € @) > 0. Since C, = 2(N[—n,n)) is compact and o sat-
isfies hypothesis A, we have for every { € C, there exists §({) > 0 such that o
satisfies certain properties on I, = [{ — 8({), { + 8({)]. By compactness of C,
there exist {;,...,{, € C, such that

dA* for t<r.

p
C.c UI, wherel,=1,.

If P(YeI,) > 0, define R, = P(- /Y € I,). By Lemma 5.11, X and X are the
maximal and minimal solutions of (5.8) under R;. Let §;, F;, c;, h; be given by
hypothesis A, and define p; = (§; A 8({;))/2 and consider

= inf{t > 0: |X, — Y| = p;/3 or IX — Y| > p;/3}.
If W,=F(X,)), W, =F(X,), 0 <t <7;, then they satisfy

U= F(Y) + [ Ste(U) dz, + ¥ /. St .(U,) dAk
k

+ [0, dz, 21,

where g(x) = F/(F 'x)o(F~'x), f,(x) = F'(F 'x)b,(F~'x) and [(x) =
h,(F~'x). These coefficients are Lipschitz on [{; — p;, {; + p;] and so W, = W,,
0 <t < 7, from which the result holds. O

REMARK. If X and X are the maximal and minimal solutions of dX, =
o(X)odZ, + T,b,(X,) dA*, X,=X,, and S is a stopping time such that
Xg = X; as., then Xg_, and Xg,, are the maximal and minimal solutions of

S+t S+t

X, = Y+f o(X,)dzZ, +Zj by( X,) dA% .



548 J. SAN MARTIN

THEOREM 5.13. Assume o € &9, o satisfies hypothesis A, o' is bounded
and b, are Lipschitz. Then (5.7) has a unique strong solution which is also
strict.

ProoF. By Theorem 4.14, (5.7) has a maximal and a minimal solution X
and X respectively (which are also strict). Consider 7 = inf{z > 0: X" > X},
and define S, =7 A n. Then XS = Xg . By Lemma 5.12 and the remark
preceding thls theorem, we conclude that T = inf{¢t > 0: Xan >Xs , }>0
a.s., which implies that 7 > n a.s. Thus 7 = » a.s. and so X = X is the unique
strong solution of (5.7), which is also strict. O

Our purpose now is to generalize the previous result to the equation
dX, = Y o(t,w, X,)odZ} + Y. b,(¢, w, X,) dA%,
(5.10) i k
Xo = X,,

where we shall assume that b, are ULC, (A*) are CFV, (Z°) are continuous
semimartingales, which satisfy the extra assumption

O [

)

where G, is an increasing continuous process and «; > 0 a.s.

DEFINITION 5.14. Assume o; € 9. We say that ¢ =(0y,...,0,) €
UA(Z1,...,Z") if there exists a measurable function F: R, X O X R - R,

such that

oF oF
(5.12) —(s,w,x) € wAD, — >0,
ax dx
9%F
(5.13) - —Z &050 + 53 Laof € ULC.

An important case where o € UA(Z1,...,Z") is when L, a,(w)o*(s, w, x) > 0,
which is the analog of the case o2 > 0. In this situation take

t e ra(w)g(u,w,2)o(u,w, z)

F(t,w,x) = — 2
(t w, x) '/;)'/;) (Ziai(w)aiz(u’w’z))3/

dzdA (w),

where o; = g, * A. It is not difficiilt to verify that h = 0.

TueoreM 5.15. If, in (5.10), o, € UA(Z,...,Z"), b, are ULC and (Z,)
satisfy (5.11), then strong uniqueness holds.
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Proor. Since F/dx € A X% we have

oF s
%(s,w,x) = foc(u,w,x) aDb,,

where D is increasing continuous process. If X is a solution of (5.10), then
Y, = F(¢, w, X,) satisfies (by the generalized It6 formula Theorem 3.2) -

t taF
Y, = F(0,w, X,) + [sz/(s,w,xs) dD, + foa_x'(s’w’Xs) dX,

L poF X,)d[X, X
+5 [ (5w, X)) dIX, X],,

where
F(t,w,x) = ftj{(s,w,x) daD,
0
and
K(s,w,x) = fxC(s,w,y) dy.
0
Now,
Y, = F(0,w, X,) + ['#(s,w, X,) dD,
0
tBF i 1 80’i b
+j;£{;oi dzZ:! + 520,.5% dG, + %‘,bk dAs}
1 ., 0°F g
(5.14) +§/0—5x—22i‘,a,.a,. dG,,
o1
th = F(O7 w7X0) + Z/tYi(SawaYs) dZsl + _ftTI(S, w, Ys) dGs
i 70 27
+['o(s,w,%,)dD, + T [Nu(s,w,Y,) dAE,
0 0
where

oF
yi(s,w,y) = (a—x-o,-)(s,w,F‘l(s,w,y)),'n(s,w,y) =h(s,w, F l(s,w,y)),

p(s,w,y) =*}£/(s,w,F—1(s’w’y))’
and
oF »
A(s,w,y) = (abk)(s,w,F (s, w,y))

for y € F(s,w,R). F~(s,w, - ) is the inverse function of F(s,w, - ), which
exists because of (5.12), and & is given by (5.13).
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Since F~1, 9F /dx, 0;, h, % and b, are ULC, the Itd stochastic differential
equation (5.14) has coefficients which are ULC and so strong uniqueness holds
for it. Then (5.10) has at most one strong solution [here we have used the fact
that F(s,w, - ) is one to one]. O

CoroLLARY 5.16. If, in addition, (0;) and (b)) satisfy the hypotheses of
Theorem 4.14, then (5.10) has a unique strong solution, which is also strict.
COROLLARY 5.17. If 0 € XD has linear growth and satisfies:

(@) D = {(s, x): 90 /0x(s, w, - ) is discontinuous at x} has content 0,
() 02> 0, and
(c) b, are UL, then

dX = o(t,w, X,)° Z, + L. b,(¢, w, X,) dA*,
k

X, = X,
has a unique strong solution, and this solution is strict.
CoroLLARY 5.18. Let B = (B!,..., B") be an n-dimensional Brownian
motion and (A*) a finite family of CFV processes. Assume 0; € A9 and

they have linear growth. Also assume that D, = {(s, x): d0./dx(s,w, ) is
discontinuous at x} has content 0, and b, are UL. If ¥,0%(s,w,x) > 0, then

dX, = Y o,(t,w, X,)odB} + Y b,(t,w, X,) dA¥, X, = X,,
i k
 hasa unique strong solution, which is strict.

APPENDIX

We shall give sufficient conditions for hypothesis A, which is important in
the uniqueness problem.

DerFINITION A.l. Let o € &/9. We say o satisfies hypothesis B iff V ¢ €
P={x: o(x) = 0} there is a 6 > 0 such that if I, =[{,{+ ] and I, =[{ —
8,,], then for i = 1,2:

(a.1) oo’ is Lipschitz on I,, or
(a.2) There exists a Lipschitz function g; defined on I, such that

ro. d
pi(x) = Jiedu) du g;((l;)) -

is well defined, p; € &792(I;) and p,(x) > ¢ > 0 on I;. Without loss of general-
ity we shall assume p,({) = 1. Note that g({) = 0.
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Examples of functions satisfying hypothesis B:

I. If o' is locally Lipschitz on @, that is, for every { € @ there exists a
8 > 0 such that o’ is Lipschitz on [{ — 6, { + 6].

II. IfV { € @ thereis a 6 > 0 such that for i = 1,2, oo’ is Lipschitz on I,
or there is a Lipschitz function g; such that:

(@3) Vxel, lglx) — o'(x) < lo(x)p(x);

(@4) If r(x)=o(x) - [fg(u)du, then V x €I, Ir(x) < (o(x)?p(x),
where ¢ is bounded on I; and Vx € 2N I;, ¢(2) = lim, _, , ¢(x) = 0.

Case II is more general than case I. In fact, it is enough to consider o such
that 0(0) = 0 and o' satisfying:

x, xe[0,1]N U [27"-0b,,27"),
n>0
o) = (T +ah e U2 -b,27,
1, x>0,
O, x <0,

where b, satisfies [Z . _p(u + u*)du = 276" Such a o’ is discontinuous in
any nelghborhood of 0, so it does not satlsfy case I, but it is not difficult to
prove that o satisfies case II.

A sufficient condition to have (a.3) and (a.4) is the following: For any { €
assume there is a 8 > 0 such that ¢’ is continuous on I =[{ — §,{ + 6],
o'(¢) # 0 and there is a Lipschitz function g such that

lo'(x) — g(x)|

= 0.
x—>{ lx — §|

For example, if o is twice differentiable at { and o'({) # 0, then the previous
condition holds with g(x) = o'(¢) + o"({)x — {).

ProrosiTION A.2. Hypothesis B = hypothesis A.

Proor. Let { € 2 and take 8 given by hypothesis B. If oo’ is Lipschitz on
I;, take p; = 1, otherwise take

J;78i(u) du
S e

. = KD,
pi(x) (%)
Define
p(x) = pi(x), xel,
Pz(x); x EIZ‘

Since p,({) = py(¢) = 1, then p € ZD(I) where I = I, U I,. Consider F(x)
= [#p(w)du, then F is C', F' =p € &/2(I) and F' > c > 0 on I. Let F" be
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the cadlag version of the second derivative of F. Define
h=F"o0?+ F'od'.

If oo’ is Lipschitz on I, but not on I,, we have

b= oo’, onl,
" \gy on I,
Since g,({) =00'({) =0, h is Lipschitz on I (remember that g, is
Lipschitz). If oo’ is Lipschitz on I, then A = oo’ and again A is Lipschitz on
I. Finally, assume that oo’ is not Lipschitz on I; and I,. In this case

g, only, e
h = where g; is Lipschitz on I;.

82, on I,

Since g,({) = g5({) = 0, then A is Lipschitz on I. In any case h is Lipschitz
and so hypothesis A is verified. O
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