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AN EMBEDDING OF COMPENSATED COMPOUND POISSON
PROCESSES WITH APPLICATIONS TO LOCAL TIMES'

By DavAR KHOSHNEVISAN
University of Washington

We present a Brownian embedding for a broad class of compensated
compound Poisson processes. Applications of this method are discussed for
a problem of level crossings, as well as Donsker’s invariance type of
principles. In particular, we give a central limit theorem for local times.

1. Introduction. Consider an integrable compound Poisson process { P(¢);
t > 0} with representation P(¢) = )Y9X,, where X, are ii.d. nonnegative
random variables with a common cumulative distribution function F and
{N(2); t > 0} is a Poisson process with mean arrival rate of 1, which is totally
independent of a-{Xj; J =1} Then Z(¢) = P(¢) — ut is an L'-compensated
compound Poisson process for u = EX;. In the next section, we propose an
embedding of the stochastic process Z in Brownian motion, that is, we shall
prove that on a probability space big enough to carry a Brownian motion B,
there exists a time-change o, such that one has the representation Z(¢) =
B(a,). Moreover, and this is the main motivation of this work, our embedding
yields strong estimates on the local times of a large class of pure-jump Lévy
processes. In Khoshnevisan (1990), we use these estimates to solve an open
problem on crossings of empirical processes.

Other authors have considered Brownian embeddings for Lévy processes.
See, for example, Monroe (1972), who develops a different embedding of Lévy
processes, which he uses to investigate the y-variation of sample paths.
However, none of these other embeddings seem to give sufficiently strong
estimates on local times to be useful for our applications.

The particular case where the X;’s are simply equal to one (i.e., a compen-
sated Poisson process) is of significant interest. Results of Révész (1982) imply
that in this case

(1.1) {#{s St:f;(ns)f 0 ;0 <t< 1} = (L%B);0 <t < 1},

where = denotes weak convergence in the usual Skorohod space D(0,1) and
L? is the local time of Brownian motion at zero. The same author uses a path
decomposition argument to obtain a similar result for zero-crossing of a linear

Recelved September 1989; revised May 1991.
'Work based in part on the ‘author’s doctoral dissertation at the University of California,
Berkeley, with partial support by NSF 87-01426.
AMS 1991 subject classifications. Primary 60J55, 60F15; secondary 60J75, 60F10, 60F17.
Key words and phrases. Compensated compound-Poisson processes, Brownian motion, invari-
ance principles, local times.

340

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Probability.

STOR

WWW.jstor. org



COMPOUND POISSON EMBEDDING 341

empirical process converging to local time of Brownian bridge at 0. The
question of whether or not the convergence in (1.1) can be extended uniformly
in all the levels was left open in Révész (1982).

As a corollary to some of our results in this direction, we prove that under a
mild moment condition on F (and hence on the underlying Lévy measure v)

Y
2= 0(2,)| = (B, L(B)),

where
y? = EXY;

Zn= {Zn(t);tZO} = {%;tz 0},

C(Z,) = {Ci(Z,); (x,t) € Rx[0,1]};
Ci(Z,) = #{s < t: Z,(1) = x);
#A = cardinality of set A;
L(B) = {L¥(B);(x,t) € R X [0,1]} = local time of B;
= denotes weak convergence.

This, in particular, can be used to solve the corresponding problem for
empirical processes. The latter has been an open question in this area. See
Shorack and Wellner (1986), for example. The solution to this problem will
appear in Khoshnevisan (1990).

Borodin (1986) has proved similar results (with slightly worse rates) for
random walks, using Skorohod embedding coupled with analytical methods.
. Our probabilistic method together with Skorohod embedding can be applied in
the random walk case, requiring less restrictive conditions on the moments
and yielding better rates of convergence.

This paper is divided into three sections. The next section describes the
basics of the embedding which are crucial to our strong invariance principle for
local times. The strong invariance principle shall appear in Section 3.

Finally a few words about the notation: Throughout this paper, we use a
generic constant, C (which may vary from line to line, and sometimes even
within a line,) when the constant value in question is independent of anything
interesting.

2. The embedding.

2A. The Poisson case—heuristics. In this part of Section 2, we shall
heuristically present the idea of the embedding for the Poisson process and the
rigorous (as well as more general) treatment proceeds in the next subsection.
Not only do we hope that this arrangement makes the material more easily
understood, but also the case of the Poisson process is the most important one,
mainly due to its applicability to the empirical process.
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Let {B(¢): ¢ > 0} denote a linear Brownian motion. Define the maximal
process: M(¢) = sup, _, B(s). The idea is to embed the jump points of a scaled
Poisson process in B and then use a time-change to embed the whole path.
To do this, let 7, = inf{s: M(s) = B(s) + 1}. Having defined 7, let 7,,, =
inf{s > 7,: sup, ., ., B(u) = B(s) + 1}. Define

Z(t)= sup B(u) ifr,<t<mt,.,.
TR<Uu<t

It then follows that Z(#) is an increasing process with downward jumps of size
1. So if one could manage to time-change Z, using the fact that 7,7, — 7,...
are ii.d. exponential random variables of rate one, it should not come as a
surprise that for some increasing process o(¢), —B(o(#)) is a compensated
Poisson process. Furthermore, since all the level crossings of —B(a(¢)) are also
those of — B, it then allows us in Section 3 to study the local time for —B(o(¢))
through that of B. The main idea here is to use the i.i.d. structure of large
excursions of B from level sets, much like Révész (1981), and then compare
them to those of B(o).

2B. The general case. Let v be a Radon measure on (0,») such that
v({0}) = 0, »(R) = v(R*) < « and

(A) w= f:xF(dx) < o,
(B) /0°°x2F(dx) = 4% <o,
(©) f0°°x4F(dx) < o,

where F(¢) = v((0,¢]/v(R).

Indeed in the current section, we only need to assume (A), but since (B) and
(C) are used heavily in the next few sections, we have stated them along with
equation (A). Now enlarge the probability space (if need be) so that we can
have the following all in one probability space: (i) Let V,,V,,... be an ii.d.
sequence or random variables, having distribution F defined above. Denote by
{£;; j=1,2,...} the corresponding filtration, that is, £, = o{V},...,V,}.
(ii) Let {B(#); t > 0} be a Brownian motion process totally independent of the
V’s, that is, for ©, = o{B(s); s < t}: @, is independent of L.

We are ready to describe the embedding. Define the stopping times:

70 =0,

Tip1 = inf{s >7;: sup B,— B = V}H}.

J
TiSr=<s$s

Also, define the auxilliary process S:

o

S(t)= Y, sup Bl{r; <t <7}

j=0T1,<s<t -
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We now start with some preliminary lemmas. Some of the ideas in the first
lemma have already been encountered in Williams (1977).

2.1 LEMMA. {S(‘T -) - S('T ); j = 0} is an i.i.d. sequence of exponen-
tial random varzables wzth rate w. Equwalently {ulS (1j41—) — S('T ), j = 0}
is an i.l.d. sequence of exponential random variables with mean 1.

Proor. Define, temporarily, the stopping times 7T, as
T, = inf{s > 0: B(s) > t}.
Since S(r, —) = SUp, < s <,, B(s), strong Markov property implies
P[S(r,—) >t +s]

=P| sup B(s)>t+s|=P|T,<7,, sup B(s)0(T,) >s]
O<s<m O<s<7m—-T;
=P[T, < 7]P[T, <7,] =P| sup B(s)>¢|P| sup B(s)>s
O0<s<T; 0<s<7;

=P[S(r, ) > t]P[S(r, -) > s].
Hence S(r, —) is exponentially distributed. Moreover, it is well-known that
there exists another Brownian motion B(¢) such that 8(0) = 0 and [see Revuz
and Yor (1989)]
IB(t)l = sup B(s) — B(¢).
O<s<t

Furthermore, 7; = inf{s > 0: |B(s)| = V;}. This gives us the distribution of
S(r, — ) completely, since by the above, for each n fixed,

E[ sup  B(s)| = E[|B(r, A n)|] + E[B(r; An)] = E[|B(7, An)]

0<s<t AR

by optional stopping. Here a A b denotes the minimum of the two numbers a
and b. This implies that E[sup, ., B(s)] = lim,, ,,, Elsupy ., 1, B(s)] =
lim,, .., E[IB(r; A n)|] = E[|B(7))|] = u, where the last equality follows since 7,
is also the first hitting time of +V, for B, and hence |8(7; A n)| < V|, so that
the use of dominated convergence theorem is justified.

This implies that S(r, —) is exponential of rate w. As to the rest of the
statement, the following Markovian argument (and a standard induction
method) proves the independence:

P[S(ry=) = S(71) = my, S(7, =) = m]
=P[S(r, =) =my, S(ry— 7, =)o0(ry) = m]
= B(1{S(r) = ml}_P[s”(T2 — =)o 0(ry) = myle, )
= E(1{S(r, =) = my}Py [ S(75 —) = m,))
=P[S(r1 =) 2 my]|P[S(ry =) — 8(ry) = my).
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The statement about the identical distributions follows from stationarity of
the increments of Brownian motion. O

Defining
'\IfOE s \PHE ZV], N(t)E Z\P“]l{TJSt<Tj+1}
i=1 Jj=0
and
(2.1) A(t) = N(¢) + S(2),

we prove the following elementary lemma:

2.2 LEMMA. The following both hold, with probability 1: (i) The map
t — A(t) is increasing. (ii) t — A(¢) is continuous.

Proor. For (ii), observe that the only times when A can possibly be
discontinuous are 7,’s, since those are the jump times of both N and S.
However for any k, N(r,) =¥, =%!V, and S(7,) = B(r;), and finally,
S(r, =) =sup,, <5<, B(s). Since from definition S(r, —) — S(r,) =V,,
continuity of A follows. Part (i) follows easily from (ii). In other words, (i) says

that A compensates N. O

Let o be the right continuous inverse of A(#), that is,

(2.2) o(t) = o, = inf{s: A(s) = nt}.
Now define the process Z(t) as
Z(t) = S(0,).

Observe that: (i) t - Z(¢) has jumps at times (1/u)A(7)), j = 1,2,..., so that
the interarrival times are exponential with mean 1. (ii) Between its jumps,
t — Z(t) has slope u. Hence, replacing Z by —Z and B by — B, we have:

2.3 PROPOSITION.  The process P(t) = Z(t) — ut is a compound Poisson
process with positive jumps of size according to the Lévy measure v.

This gives an embedding of an L!(P)-compensated compound Poisson
process Z with expected arrival rate 1 and Lévy measure v, in Brownian
motion, in terms of a time-inhomogeneous time change; this process can be
written as

Z(t) = P(t) + ut

for {P(t); t = 0} as in the above proposition.
3. A strong invariance principle. In this section, we show that under

mild conditions, the embedded process of the previous section is close to the
underlying Brownian motion process. This is well-defined through the means
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of weak convergence. Furthermore, we shall get rates of convergence that are
similar to Skorohod-type of embeddings. To do this, we shall need some
preliminary lemmas:

3.1 LEMMA.  For the construction of Section 2,

sup |r, — nty? = O(\/n log log n) a.s.

O0<t<1

Proor. First of all, note that the arrival times, 7,,79 — 7,,... are i.i.d.
random variables. Also, since {t2 — 6¢B(¢)? + B(t)*; t > 0} is a mean-zero
martingale [see, for example, Revuz and Yor (1989)], for each fixed positive k:

Et?1{r, <k} + EB(7,)*1{r, < k} = 6Er,B(7,)’1{r, <k}
= Er21{r, <k} + EV{1{r, <k}
< 6y/Er?1{r, < k}EV}

by an application of the Cauchy-Schawrz inequality. So by solving for
Er?1{r, < k} and letting k& — o,
Er? <36EV} < .

At this point, the law of the iterated logarithm implies

T, —nEr = 0(\/n loglog n )

Let B be the Brownian motion process introduced in the proof of Lemma 2.1.
Then since B2%(t) —t is a mean zero martingale, the same stopping time
argument as in the proof of Lemma 2.1 shows that

2
Er, = E|B(m,)|° = E| sup B(s) - B(ry)| =E[V?]=v%

O<s<m

Since with probability 1, sup,.,., B(s) — B(r) =V;, by definition. The
lemma follows without the supremum over ¢, from the usual law of the
logarithm. To put the supremum, just use Polya’s theorem, since everything is
increasing, and the identity map ¢ — ¢ is continuous. O

From now on, we shall implicitly assume the construction of the previous
section, unless specifically mentioned.

3.2 LEmmA. With probability 1:

sup |A(nt) — pwy 2nt| = O(y/n loglog n )-

0<t<l1

ProoF. Since A(r,) is a sum of n ii.d. exponential random variables of
mean u, it follows that

(3.1) A(7,) —np = O(Yrloglogn ).
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Define the right-continuous inverse p, of 7, as usual, that is, define
p, = inf{s > 0: 7, > s}.
From Lemma 3.1,
(3:2) n — p,y* = O(yn Toglog n ).
Therefore, applying this to (3.1),
A(n) = pan = O(V/p, Toglog p,,) = O(yn Toglog n ).
This and (3.2) together prove
A(n) —npy=? = 0(Vnloglogn),

which is the lemma without the uniformity. By usual arguments, this com-
pletes the proof. O

3.3 REMARK. Since A increases only when B does, it follows that ¢ — S(a,)
increases only when ¢ — B, does, and hence

Z(t) = S(0,) = B(0).

3.4 LEmmA.  With probability 1:
sup|S(ty~2) - Z(¢)| = O(n1/4(loglog n)"* /logn )

t<n

Proor. Simply notice that by Remark 3.3, Lemma 3.2 and the uniform
modulus of continuity of Brownian motion [see Revuz and Yor (1989), for
example],

sup |Z(n"'A(nty?)) — Z(nt)| = sup |B(nty?) - B(o,,)]
0<t<1 0<t<1

= 0(\/|y_20'n — nllogly 20, — nl )
= 0(n1/4(loglog n)*logn ),

since by Lemma 3.2 and definition of o,

(3.3) y~?0(n) —n=0(ynloglogn).

However, by definition for all ¢, Z(u"'A,) = S(¢), so the lemma is proved. O

3.5 LemMA.  For any B > 1, with probability 1,
lim n~1/*(loglog n) ~*/* maxV; = 0.
n—o J=n
Proor. To simplify the notation, define M, = max;_,V; and r(u) =
u'/4loglog uf/4, u > 4. Here B > 1 is fixed. Then
P{M,>x}=1-P(V,<x}" <1-[1-x*EV{]".
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Therefore for large n,
P{M, > r(n)} < C(loglog n) *.
Fix p > 1 and let ¢, = p*". Then for n large,
P{M, >r(t,)} <Cn",
which sums, since 8 > 1. Hence with probability 1,
M, <r(t,) ultimately.
Now let t, <t <t¢,,,. Sofor any ¢ > 0, as ¢ = o,

14| log(p™ log p + plog p)
log(p™ log p)

M(t) < M(t,,) < r(t,)p°

< (1 -¢&)r(t)p?”" ultimately.

This proves the lemma since p > 1 and 8 > 1 are arbitrary. O

We now proceed to prove a strong approximation theorem for our construc-
tion of the compound Poisson process.

3.6 PROPOSITION.  For our above construction, assuming equations (A)—(C):
i |Z(nt) — B(y®nt)|
imsup sup <o a.s.
n—w o0<t=1 n**(loglog n)"*logn

Proor. In view of Lemma 3.4, it is enough to show that with probability 1,

(3.4) sup |S(t) — B(t)| = O(n'/%(loglog n)"/* ylog n ).

0<t<n

But notice that
sup |S(¢) - B(t)| = max V..
l<j<n

O<t<r, <

By Lemma 3.5,
maxV; = o(n1/4(loglog n)"*logn )
J=n
Therefore with probability 1,
sup |S(¢) — B(t)| = O(n'/*(loglog n)"/* ylogn) ultimately.

O<t<r,

Flfrthermore, by properties of {B(¢); ¢ > 0} and by Lemma 3.1,
sup{| B(¢)|: min(7,,y?n) <t < max(r,,y%n)} = O(n1/4(loglog n)'* log n)
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and
sup{S(t): min(7,,y*n) <t < max(r,, 'yzn)}
(3.5) = sup{B(t): min(r,,y?n) < ¢t < max(r,,y%n))

= O(n1/4(loglog n)'* /logn )

Thus
sup [S(¢) - B(t)| < sup |S(z) - B(#)| + O(n"*(loglog n)"* ylog n
O<t<ny? O<t<r,

= 0(n1/4(loglog n)*log n )
By (3.4), this completes the proof. O

The above proposition readily implies the following two well-known corollar-
ies:

3.7 COROLLARY. Let Z be a compensated compound Poisson process, with
Lévy measure v satisfying equations (A)-(C). Then for a Brownian motion B
and for Z,(t) = (Z(nt)/yVn), Z,, = B. Here = denotes weak convergence in
D([0, 1D equipped with Skorohod topology.

Proor. Let Z and B be as in our construction. Then we have shown that

nl/? sup |Z(nt) — B(y?nt)| > 0 as.
0<t<1

But for each fixed 7, {(B(y2nt)/yVn); t > 0} is a Brownian motion. Hence the

result follows. O

3.8 COROLLARY. Define K to be the set of absolutely continuous functions f
on [0, 1] such that f(0) = 0 and [{f(£)>dt < 1, where f is the derivative of f.
Then assuming equations (A) and (B), K is exactly the set of accumulation
points for the function sequence {(loglog n)~'/2Z (t); 0 <t < 1} in C([0,1])
endowed with the compact open topology.

Proor. To derive this result, we need to adapt the proof of Proposition 3.6
to the case where (C) need not hold any more. We shall briefly sketch the
argument:

Step 1. Lemma 3.1 becomes sup, _, _;|7,, — nty? = o(n) a.s.
Step 2. Lemma 8.2 becomes sup,, _, . ;|A(nt) — wy~2nt| = o(n) a.s.

,STEP 3.  Proposition 3.6 becomes
|Z(nt) — B(y®nt)|
nto  nloglogn-

a.s.
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Now the result follows from Strassen’s law of the iterated logarithm [see
Revuz and Yor [1989], for example]. O

The above two corollaries are well known and we wrote them this way as
easy consequences of the embedding. There are no claims to their originality
on the part of the author.

4. The problem of level crossings. We shall use the construction of the
previous section to give a formulation of strong invariance principles for the
level crossings of compensated compound Poisson processes. To this end,
define:

4.1 DEFINITION.
(a) For any stochastic process X = {X(¢); ¢ > 0}, define (when it exists) the

crossing process of X as
C(X) = {C*(X); (x,t) e Rx [0,1]},
where CH(X) = #{s < ¢: X(s) = x}.
(b) For any stochastic process X = {X(¢); ¢ > 0}, define (when it exists) the
local time of X as L(X)={L*X); (x,8) € R x[0,1]}, where L{(X)=
lim, | o(2e) " Y{ 1, »+.(X(s)) ds almost surely. [See Revuz and Yor (1989).]

It is well known that many continuous semimartingales have local times in
the sense of our definition, and their properties are well understood; an
important example of them is Brownian motion [see Revuz and Yor (1989),
Chapter IV]. The following lemma shows that compensated compound Poisson
processes also possess local times, and this fact is linked to their crossing
process in a fundamental manner.

4.2 LemMa. Let Z be any compensated compound Poisson process with
Lévy measure v and expected arrival rate 1. Then for
Z(nt)

Zn(t) = _‘;\/_T’

the process after scaling, there is a simple relation between its local time and

crossing process, namely:

L(Z,) = —=C(Z,).

Proor. This is a special case of results in Chapter 2 of Adhikari (1987) [see
also the proof of Lemma 3.2.4(c) in Khoshnevisan (1989)]. O

For typographical simplicity, introduce the following notation:
L(x,t) = L{(B),
C(x,t) = CX(2),
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where B and Z are as in the previous sections. Also define

(4.1) T(x) =inf{s > 0: Z(s) = x}.
Then using this, iteratively define
To(x) =0,

Ty i(x) = Ty(x) + T(x)°0(Ty(x))

for j = 1,2,... . We shall also abbreviate T;(0) to 7 for all j, and T(0) to T.
Define

(4.2) Aj(x) EL(x,o(TjH(x))) —L(x,a(Tj(x))).
Then the following lemma holds:

4.3 LEMMA.  For each x, the sequence, {A;(x); j > 1} is an i.i.d. sequence
of exponential random variables, whose distribution is independent of x.

Proor.

Step 1. We show that {A;(x); j > 1} is an independent sequence of
random variables. This is so, simply because of

Aj(x) € o{B(s): o(Ty(x)) < s < o(T;,1(x))}

and since Brownian motion is a strong Markov process and has independent
and identically distributed increments.

Step 2. We now show that A;’s have identical distributions.
P[A; >a] = P[L(0,0(T,)) — L(0,0(T))) = «a
= E{P[L(0,0(Ty)) — L(0,0(Ty)) = a|B(s);s < o(T,)]}
= E{Pp(or,y[ L(0,0(T)) = a]} = P[A, > a].
Step 3. To get the result for A.(x) for any x, observe that all of the

arguments in the above two steps go through, if instead of B, one looks at the
Brownian motion {B(¢ + {,) — B({,); ¢t > 0}, where {, = inf{s > 0: B(s) = x}.

STEP 4. The last step in the proof is to check that the distributions are
exponential. But for all @, b > 0 and for {* = inf{s > 0: L(0, s) > x},

P[Ay>a+b] =P[L(0,0(T;)) >a+b] =P[Ay°0({%) >b,{ <o(T)]
= P[A, > B]P[® < o(Ty)] = P[A, > alP[4, > b],

where the third equality is due to the fact that B is zero on the points of
increase of L. This ends the proof. O
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The next result shows that our construction is very close to Brownian
motion, not only in the sense of the supremum norm, but also in the sense of
local times.

4.4 PrRoOPOSITION.  If (A)—(C) hold, then, for our construction and for each
fixed x € R, with probability 1 as n — «,

sup |Li/V*(Z,) — Li/""(B,)| = 0(n~V*(loglog n)**) uitimately.
0<t<l1
In particular,
sup| LY(Z,) — LY(B,)| = O(n™"*(loglog n)*"*).
t<1
Proor. Fix x € R. Then since

C(x, nt)
L(x,a(TC(x’nt)(x)))= ‘§1 Ai(x)

and since C(x, nt) — » with probability 1, by the law of the iterated logarithm,
there exists a positive finite « such that

(x, nt)
(4.3) ’ Y A(x) —«kC(x,nt) = 0(\/C(x,nt)loglog C(x,nt) )
j=1

Rewrite (4.2) as
" LG m0A (%) o C(x,nt) _ L(x,o-(TC(x’nt)(x)))
T C(x,nt) yn loglog n yn loglog n '

But by the modulus of local times and (8.3), sup, ., ;|L(x, y®nt) — L(x, g,,,)|
is almost surely

(4.5)  O(ylo, — y?nlloglo, — y?nl ) = O(n1/*(loglog n)"* Ylog ).

Observe that by Kesten’s law of the iterated logarithm [see Kesten (1965); also
see Khoshnevisan (1989) for an elementary proof, and some related results]

L(x,y?nt) = O(ynloglogn) ultimately.

Hence by (4.5),

L(x,0,) =O(Ynloglogn) ultimately.

Since L and o are increasing in time with probability 1 and since T, ,,(x) <
nt g}_lmost surely, it follows that .

(4.6) L(x,0(Tow,n0(%))) = O(Vn loglog n).

On the other hand, it is an elementary fact that lim, _,, C(x, nt) = », hence
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the strong law of large numbers implies that with probability 1,
L 0A (%)
4.7 - .
(4.7 C(x,nt) K
Therefore, equations (4.4), (4.6) and (4.7) together imply

(4.8) sup C(x,nt) =C(x,n) = 0(\/n loglog n) ultimately.

O0<t<1

Therefore, equations (4.3) and (4.8) imply
(4.9) L(x,0(Te,nn(%))) — «C(x,nt) = O(n'/*(loglog n)>*) ultimately.
But the monotonicity of local times implies that

L(#,0(Towno(®))) < L(%, 0,0) < L(%, 0(Toge,neyer(5)))-

Therefore we have shown that there exists a finite positive constant « such
that

(4.10)  L(x,y*nt) — kC(x,nt) = O(n'*(loglog n)3/4).
But

(4.11) L(x,v°nt) = Lis( B) = y/n Li/*"(B,),
where we had B,(¢) = (B(nty?)/yVn . A counting argument yields
(4.12) C(x,nt) = CX(Z) = yWn CF/"*(Z,).

At this point, equations (4.10), (4.11) and (4.12) together prove the result if we
can compute the value of k. This would be rather difficult to do directly.
However, we fortunately have an easy way out, since for all Borel A, as
n —o oo,

t x x _ t
[HZ(s) e A)ds = [ 13(Z,) 4 [ Li(B,) = [1{B,(s) € A} ds
(the right-hand side being independent of n in distribution). Therefore, by

Lemma 4.2, k = y/u. O

At this point, one is led to the following question: Can one show that the
convergence in the above proposition holds uniformly in the space variable x?
We are ready to state the main theorem of this section:

4.5 THEOREM. There exists a suitable probability space on which one can
put a sequence of Brownian motions B, and a sequence of compensated
compound Poisson processes Z, with Lévy measure v satisfying equations
(A)-(C), such that for any compact interval I and all ¢ > 0,

(4.13) 'llimnl/“(log n)"***sup sup|L(Z,) - L¥(B,)| =0 a.s.

tel xR
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If (A)~(C) hold,
(4.14) limsupn'/*(loglog n) ™ "*(log n) sup|Z (1) =B, ()| <» a.s.

n to

Notice that (4.14) is a restatement of Proposition 3.6; the following proof-
concentrates on proving 4.13, which is a uniform version of Proposition-4.4.

Proor. Without loss of generality, set I = [0, 1]. Since the proof is rather
long, we shall divide the proof into two main parts.
Parr 1. For any sequence of (nonrandom) finite sets S,, such that
card(S,) = O(n*)
for some positive integer %k, and for any positive ¢, with probability 1 the

following ultimately holds:

sup sup
xS, 0<t<1

— O( 1/4(10g n)3/4+s)

L(x,y%nt) — —C(x nt)

Proor. As in the proof of Proposition 4.4, it is enough to show

L(x’a(TC(x,n)(x))) - %C(x, n) = 0(n1/4(10glog n)3/4+5)'

sup
x€S,

However, we shall first find a slower rate of convergence:

P{’L(x,a(TC(x,n)(x))) - %C(x,n) > 8y/n logn}

=P{ C(in)(A (x) — —) > dyn logn}
(4.15) Jj=1
< P{jsg/lﬁaﬁgn i§1 (A (x) — —) > 8yn logn}

+ P{C(0,n) > BVn log n}.
But ¢ — C(0,#) is an additive functional with respect to the filtration of the
Lévy process in question. Furthermore, Proposition 4.4 readily implies
y C(0,n)
p Vn
Therefore, using a subadditivity argument, one can show that there exist
constants ¢; and ¢, such that for all %, n,

P(C(0,n) > k) < cie™ek.

In fact much more can be said about the tail distribution of n~12C(0, n).
Namely, that with the appropriate choice of ¢, the constant ¢, can be taken to

-, L(0,1).
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be arbitrarily large. We shall, however, have no need for this fact, and
therefore refrain from giving a proof. Putting log n for % in the above, it
follows that

(4.16) P{C(0,n) > BVn log n} < c;n=Pe2,

In particular, the above probability sums for large enough B. Going back to
(4.15), we see that

P{’L(x,o(TC(x’nt)(x))) - %C(x,nt)

(4.17) < cnPe

> 8ynlogn }

£fsin )

i=1

> éyn logn}.

+BVnlogn max P
J<Bynlogn

Define a new set of random variables A; ,(x) as

A (x) = Aj(x)l{

Then Lemma 4.3, and the fact that we have already seen that A;(x)’s have
mean (y/u), together imply that for any K > 0, there exists C = Cx such that
for all n,

< nl/lG} .

A (x) - %

P{There exist i < Vn logn: A; ,(x) # A, (x)}

(4.18) < BVn log nP{A, ,(x) # Ay(x)}

> /%) < Cn.

= BVn log nP{

A(x) - %

By possibly enlarging the above constant C, notice that for all K > 0, there is
a constant Cy such that for all j < 8Vn log n and all n,

J
> (EAi,n(x) — EAy(x))
i=1

< BVn log nE|A, ,(x) — EA(%)|

< BVn log nyEIAPP(A, # A, ,} < CnK.

Now we apply the well-known Bernstein’s inequality, using (4.18) and (4.19):
For all K > 0, there is a C = C such that for all j < 8Vn logn, n > 1, and
all a > 0:

(4.19)

p

[ s~

(4.20) a’nlogn

< Cn~K.
2jv/i + 2/3an®%(log n)"?

<Cn ¥+ 2exp{—
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Going over the proof that has so far led us to (4.20), we see that the reason
that the rate of convergence in (4.20) is y/n log n and not n'/*(log n)*>/*** is
that we were not able to obtain very sharp (i.e., Gaussian-type) estimates on
the tail distribution of C(0,7n) in (4.16). Here is how we can use (4.20) to
sharpen to our satisfaction. From now on, fix an arbitrary K > 0. Then

P{C(O, n) = Bynlogn,lo, — ny? < ns}
g-\/n logn}

T

< P{L(O, ny?) >

+ P{ > g-\/n logn,lo, — ny? < ns}.

The first term on the right-hand side of inequality (4.21) is bounded above by
Cn X for some C = Cx by the fact that {L(0,¢); ¢ > 0} has the same finite-
dimensional distributions as {sup, _, B(s); ¢ > 0} [see Revuz and Yor (1989)],
which has tails of form e~°*". The second term on the right-hand side of (4.21)
is, by the technique in Proposition 4.4, bounded above by

(4.21)

c(0,n) — %L(O,nyz)

Cn % + P{IL(O, o,) — L(0,ny?)| > —ZXE\/n log n, lo, — ny?l < ns}
M

<Cn %+ P{L(O,ns) > ;—B\/n logn} <Cn %
M

for B large enough (and /or ¢ small enough).
We are ready to complete the proof of the first part of the theorem. Write

g -

i=1

3/4+¢ |
’

> 6n'/*(log n) g, —ny?l < ns}

/ Y
<Cn ¥ +Bynlogn max P{ Y (Ai(x) - —)‘
J<Bynlogn i=1 1

> én'/*(log n)3/4+£} .

The above is, by Bernstein’s inequality and the truncation argument of
(4.18)-(4.20), less than or equal to

62n1/2(log n)3/2+28
2ex 3/4+e

Cn %+ Bynlogn max

Jj<Bynlogn
< Cn~¥ + Beyy/nlog n exp{—c,(log n)1+2€} <Cn %

for B large enough. Therefore, for S, as stated in the statement of the
problem, since all calculations were made independently of ¢, by a standard.
argument (on #’s), for any K, & > 0, there is a constant C = C, x such that for

N 2jy/u + 2/356n%%(log n)
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all a > 0,

Y ¢(x,nt) - L(z, y?nt)
o

P{ sup sup
xeS, telo,1]

(4.22)

> 6n'/%(log n)****, lo, — ny? < ney < Cn~kK.
n

Since K can be picked arbitrarily large, by summing (4.22) over n and using
the Borel-Cantelli lemma, it follows that for each ¢, > 0,

P{ sup sup D,(x,t)
x€8, t<l0,1]

(4.23)

> 8n*(log n)****, lo, — ny? < ne i.o.} =0,

where D,(x,t) = |(y/uw)C(x, nt) — L(x, y®nt)|. However, o, is a sum of i.i.d.
L? random variables mean y2, so by the strong law of large numbers, with
probability 1,

lo, — ny? < ne ultimately.

In view of (4.23), the first (and the hard) part of the proof of the theorem is

complete.
The second part of the theorem involves a softer argument than the former

part:

PArT 2. In this part, we shall complete the proof of the theorem. To do so,
we use some information on the modulus of continuity of Brownian local time
in the space variable as in McKean (1962). Actually, all we need is that for all
€ > 0 there exists a constant C = C, such that as § | 0:

sup sup |L(x,t) —L(y,t)| <Cs/%e,
0<t<1|x—y|l<é

As stated, the above fact can be found in Revuz and Yor [(1989), Chapter 6]. At
this point define for £ > 2 the subdivision

S,={xjn"*1<j<nk1/2}.
Then S, satisfies the assumptions of the first part of the proof. Hence

(4.24) Sup L(xj’ n,yz) - lc(xj’ n)|= 0(n1/4(log n)3/4+8),
lil<n®*1/2 1
where for |j| < (n**1/2),

= = in—k
X; =%, =jn"".

Without loss of generality, restrict attention to those j’s that are nonnegative.
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Then by Brownian scaling,
sup sup |L(x, ny?) - L(x;, ny2)|
j<nftl /2 xj<x<x;,
has the same distribution as
Vn  sup sup IL(n‘I/zx,yz) - L(n‘l/zxj,'yz)

j<nktl/2 x;<x<x;.,

)

which, by the modulus of continuity result cited earlier, is less than or equal to
sup Cx/;(n‘l/zlxj - xj+1|)1/2_£ = Cpd-2k)/4+e
ank+l/2
By continuity arguments for Brownian local times,
sup sup |L(x, ny?) - L(x;, ny2)| = o(n'/*%).
J<nk*l/2 x,<x<xj4
This, together with (4.24), implies
(4.25) sup |C(x;,n) — C(x,,,,n)| = o(n'*(loglog n)3/4).
J'Snk+1/2
We claim that with probability 1,
(4.26)  sup sup |C(x;,n) — C(x,n)| = o(n'/*(log n)3/4+£).
Jj<nk*l/2 x,<x<x,.,

Leaving the proof of (4.26) aside for the time being, we see that for large &,

lC(x, n) — L(x,nvy?)

sup
n>x>0

Jjsnkrl 2 x,<x<x,

Y
< sup sup |C(x,n)—C(xj+1,n)|;

(4.27) + sup lC(xj,n)—L(xj,nyz)

ank+l/2

+ sup sup |L(xj,n'y2) — L(x, ny2)|
j<nktl /2 x;<x<x,,y
= o(n'4(log n)****) ultimately.
However, by the law of the iterated logarithm, with probability 1,
sup L(x,n) =0 ultimately
x=4/8n loglog n
and ‘
sup C(x,n) =0 ultimately,
x=4/3nloglogn

which, in conjunction with (4.27), gives the desired result. So it remains to
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give:

ProorF oF (4.26). Let #(1),#(2),... be the jump times of Z in ascending
order. In other words, if we let #(0) = 0 and temporarily define ¢ = inf{s > 0:
Z(s) < Z(s + 1)}, then for all i = 0,1,2,...,

i+ 1) =t =t(i) +tob,;.
Recall the definition of 7),(x) from (4.1). Based on this, define
S;(x) =min{k > 1: ¢, > Ty(x)};
Uj(x) = (8,(x)).

Recall that we are restricting our attention to x; > 0, without any loss of
generality. With this in mind, consider the number of times before ¢ that Z
hits x;,; but jumps prior to hitting x;, that is,

Clx;yq,)+1

Ny(x;,%,41) = ;0 I{Z(Uj(xi) -)> xi}
Clx; 1, 0)+1
= L UHZAT(xe) - 2(Ux) -) <n7t).

This follows from the fact that x,,, —x, = n~* and Z(Ty(x; 1)) = x;,1. By
the strong Markov property, for each i and n, {Z(T,(x,,,) — Z(U(x,) —);
j = 0}is an i.i.d. sequence of exponentials with mean u ~!. Therefore, proceed-
ing as in the argument leading to (4.22), we obtain an estimate on N,(x;, x;_ ;)
as follows: For every K, o and ¢ > 0, there exists a constant C = C_ g , such
that for all n > 1,

P{ Sl}p|Nn(xi,xi+1) — (1 - exp{—pn"*})(C(x;1,n) + 2)|

(4.28) 3/4+¢

> an'/*(log n) , o, — ny?| < ne}

< Cn7K,

But by (4.24) and Kesten’s law of the iterated logarithm [see Kesten (1965)],
with probability 1,

(4.29) squ(xi, n) = 0(\/n loglog.n )

Since % in (4.28), that is, the mesh-size, is by assumption greater than 2, (4.28)
and (4.29) together with (3.1) imply that with probability 1,

sup N, (x;, %, 1) = o(n'/*(log n)3/4+€) ultimately.
i
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In other words, with probability 1, for all i,

(4.30) C(x;41,n) < inf  C(x,n) + o(n'/*(log n)3/4+€).
X <X<X;4
Here the o( - -+ ) is independent of i.

On the other hand, {Z(¢,) — Z(¢;,; —); j =0} is an iid. sequence of
exponential random variables with mean u~!. Therefore, by an easy argu-
ment, with probability 1,

min (Z(t;) = Z(t;4, —)) = n~**1  ultimately.

j<n
This means that, up to the jth jump, every time Z goes through a point x, it
must either have been through all points of the form, x — 7,0 <7 <n **1/2,
or all points of the form x + 1, 0 < < n~**! /2, In particular, with probabil-
ity 1, for all j,

sup C(x,tn)smax{C(xj,tn),C(xjH,tn)} ultimately.

X, <X<K, 4
By (4.25) and the strong law of large numbers, this means that with probabil-
ity 1, for all j,

(4.31) sup C(x,¢,) < C(x,1,t,) + o(n'/*(log n)3/4+€) ultimately.

X, SX<Hj4q

Here the term o( - - - ) is independent of j. Some renewal theory, together with

(4.31) and (4.30), implies (4.26). Hence the proof of the theorem is complete.
O

Actually, pushing these arguments a little further, one obtains a stronger
result. However, we first generalize assumption (C) to

(D) [ **MF(dx) < for some M > 2.
0

Then the following weak deviation theorem can be proved with little more
difficulty than Theorem 4.5.

4.6 THEOREM. If the conditions of the previous theorem are met, and if we
further assume equation (D), then for all a > 0,

limsupnP{  sup  |Li(2,) ~ Li(B,)| > ani‘4(log )} < v
(x,t)eRx[0,1]

n—o

PRroOF.

STEP 1. First get probability bounds on the modulus of continuity of L
[see Revuz and Yor (1989) or McKean (1962)].
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STEP 2. Proceed exactly as in the proof of Theorem 4.5, explicitly bound-
ing the tail probability of o, that is,

P{lo-n —ny? > ne} = Cn™M.

Indeed, it is the above that determines the rate of decrease of our deviation
probabilities. O

4.7 CoroLLARY. Under the assumptions of Theorem 4.5, the following
hold, with probability 1:

(i) For each fixed y € R: limsup,, _, (loglog n)~Y2L¥(Z,) = V2.
(ii) lim sup,, _,.. sup, < zgloglog n)"2L¥(Z,) = V2.
(iii) liminf, . sup, c z(loglog n)'/2L*(Z,) = V2 p,, where p, is the smallest
positive root of the Bessel function with index 0.
(iv) The function sequence {x — y/loglog n L{€¢™~1/2x(Z ). n > 1} is rela-
tively compact in C((—x,x)) equipped with the compact-open topology. More-
over, the set of its limit points is precisely (up to a null set)

fe C((—»,®)): [% <8, [f=1).

Proor. Statements (i) and (ii) are consequences of Theorem 4.5 and the
first half of Kesten’s law of the iterated logarithm for Brownian local times
[see Kesten (1965) or see Khoshnevisan (1989) for an elementary proof].
Statement (iii) holds by Theorem 4.5 and the second half of Kesten’s law of the
iterated logarithm. The constant V2p, was determined in Csaki and Foldes
(1986). The final statement is from Theorem 4.5 and the result of Donsker and
Varadhan (1977). O

We will state the following version of Theorem 4.5 which can be obtained by
a more careful revision of our estimates:

4.8 THEOREM. With everything as in Theorem 4.5, almost surely
lim sup n*/4(log n) ~** sup sup |L¥(Z,) — L¥(B,)| < 2V*

n—o tel xR

In light of Proposition 4.4, this rate seems at least nearly optimal.
REMARK. The above proof is influenced by Révész (1981).
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