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CLUSTERS OF A RANDOM WALK ON THE PLANE

By P. REvEsz

Technical University of Vienna

Let r(n) be the radius of the largest disc covered by S(1),...,S(n),
where {S(k); & = 1,2,...} is the simple symmetric random walk on Z2.
The main result tells us that #(n) = n!/% as. for all but finitely many n.

Dedicated to Professor P. Erdis on the occasion that he is 212
weeks old.

1. Introduction. Let X;, X,,... be a sequence of independent, identi-
cally distributed random vectors taking values from Z? with distribution

P{X, = (0,1)} = P{X, = (0, -1)} = P{X, = (1,0)}
=P{X,=(-1,0)} =1/4
and let
Sy=0=(0,0) and S,=8S(n)=X,+X,+ - +X,, n=12,...,
that is, {S,} is the simple symmetric random walk on the plane. Further, let
&(x,n) =#{k:0<k<n,S,=x}

n=12,...; x=(,j);i,j=0,+1,+ 2,...) be the local time of the ran-
dom walk. We say that the disc

QN) = {x = (i,4): lell = (i +%)* < N}
is covered by the random walk in time n if
£(x,n) >0 foreveryx € Q(N).

Let R(n) be the largest integer for which @(R(n)) is covered in n. We quote
the known properties of R(n).

TueoREM A [Erdos and Révész (1988), Révész (1989, 1990) and Auer
(1990)]. Forany 0 <e <1,C >0 and z € R*, we have

(D R(n) < exp(2(log n)"?log, n) as.,
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for all but finitely many n,

(2) R(n) zexp(‘l/l—_z_oi(lognlog3n)l/2) i.0.a.s.,
(3) R(n) < exp(C(logn)"’*) i.o.a.s,
(4) R(n) > exp((log n)""*(log, n)"*7) as.,

for all but finitely many n,

exp(—120z) < liminf P

n—ow

(log B(n))" >z}
logn

(5)

< limsupP

n—ow

(log R(n))* z
(log R(m)) } <om(-2).

The last inequality suggests the following.

CONJECTURE 1.

log R(n))®
lim P (log R(n))
logn

n—o

>z} = exp(—Az2), 0<z<o,

with some 1/4 < A < 120.

In the present paper we intend to investigate the radius of the largest disc
(not necessarily around the origin) covered by the random walk in time n.
_ Formally speaking, let u = (u,, u,) € Z? and define
Q(u,N) ={x=(i,j):llx —ul® = (i —uy)” + (j — uz)* <N?}.

Let r(n) be the largest integer for which there exists a random vector
u = u(n) € Z? such that Q(u, r(n)) is covered by the random walk in time n,
that is,

&(x,n) =1 foreveryx € Q(u,r(n)).

Then we formulate the following theorem.

THEOREM 1. We have

1/50

r(n)y=n a.s.,

for all but finitely many n.

ReMARK 1. The author can also prove that
r(n) <n%*? as,

for all but finitely many . The proof of this will be published elsewhere.
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Theorem 1 together with Remark 1 suggests the following.

CoNJECTURE 2. There exists a 1/50 < g, < 0.42 such that

log r(n)
m e

n—o logn - qO a.s.

REMARK 2. Theorem A tells us that R(n) is about exp((log n)'/?). The
above theorem claims that r(n) is much bigger than R(n).

Inequality (4) was proved by Auer (1990). In fact, he proved the following
stronger theorem.

THEOREM B. For any 0 < e < 1/2 we have

(6) lim sup ¢(x,n) —1l=0 a.s
n=% |<g.n)| §(0,7) ' ’
where
8.(n) = ep{ (g ) gy )72,
Note that:

() since lim, _,, £(0,n) = © a.s., (6) is indeed stronger than (4);
(i) (6) tells us that the disc of radius g.(n) around the origin is ‘“homoge-
neously” covered.

In the present paper we prove that there exists a ‘‘nearly’’ homogeneously
covered disc of radius n'/%°, In fact, we have the following theorem.

THEOREM 2. There exist a sequence of random vectors u = u(n) € Z2,

n=12,..., and an & > 0 such that
x,n
limsup  sup & ) —-1<1-¢ a.s.
n—oo ”x_u”Snl/SO §(u,n)
and
§(u,n)

lirrbri iol;lf “TogZn

Observe that Theorem 2 implies Theorem 1.
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2. Proof of Theorem 2. At first we present a few known lemmas.

LemmMA A [Erdos and Taylor (1960), (3.6)]. For any z > 0 and & > 0 there
exists an ny = ny(e, z) such that

max( —zm log n)

P{§(O, n) = Z(lOg n)z} \‘2 (log n)2z‘rr(l+e)

ifn > n,.
Introduce the following notation:
p(0) =0,
p(1) = min{j: j > 0, S; = 0},
p(i +1) = min{j: j > p(i), S; =0}, i=1,2,...,
a;(x) =€&(x,p(i)) —&(x,p(i — 1)), i=1,2,...;x€Z?
Bi(x) = a;(x) — 1,
p(0~x) =Play(x) > 0}, xeZ2
Lemma B [Spitzer (1964), P5, page 117, and P3, pages 124 and 125]. Let
{x,} be a sequence in Z* with lim, _, x| = . Then

w
lim (logllx,[)p(0 ~ x,) = 1

LemMa C [Petrov (1975), Theorem 16, page 54]. Let X, X,,..., Xy be :
independent r.v.’s and put Sy = X; + X, + -+ +Xy. Suppose that there exist
positive constants g4, &, - - ., &xn and T such that

E exp(tX,) sexp(%tz), k=1,2,...,N;|t|<T.
" Then

22
P{ISyl >z} < 2exp(—ﬁ),

forany 0 <z < GT, where G = g, + g, + -+ +gn-

LemMMA D [Auer (1990)].
P{By(x) = -1} =q(x) =1 - p(0 » x),

P(B,(x) =k} = (p(0 ~ 2))*(q(x))*, k=0,1,2,...,

EBl(x) = O’ ’
‘ 2(1 — p(0 ~

o?(x) =EBi(x) = ( p(é)(A» x)x))

. 92t2 ) p(O ~> x)
, It €« ——=.

Eexp(1B8y(x)) < exp(m 3

)

Now we prove a few simple consequences of the above lemmas.
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LEmMMA 1. Let S{(n), Sy(n),... be a sequence of independent random
walks on Z2. Let £(x,n) be the local time of S(n). Further, let a, 8 > 0. Then
for any u > 0 and & > 0 there exists an ny = n (e, u) such that for any n > n,
we have

n

a—umf )
(log nB)2uTr(1 +¢) ) :

l<i<n

@) P{ maxagi(O,nﬂ) < u(log n’3)2} < exp(—

Proor. By Lemma A we have

l1<i<n®

exp(—um log n?) )na

2
P{ max fi(O,nﬂ) < u(log nﬂ) } < (1 - (log ng)Zufr(He)

n® exp(—um log n*) )

S eXp - uIr €

na—uﬂ'B
exp| — —5 |-
Hence we have the lemma. O

LEMMA 2. For any & > 0 there exists a K, = K(¢) > 0 such that

P{IBy(x) + Ba(x) + -+ +By(x)| = Sa(x) N3/} < exp(—(l - s)%NVz)

provided that
r
K 172 > <6< ) ——m—.
o < llxll < exp(6N'2), 6>0, 0<$§ ‘/(2_'_8)0

Proor. Apply Lemma C with

4

1
Xy =Bu(x), T=5p(0~2), 8= H(0~x)’

4N
z=080(x)N¥*, G=———.
. p(0 ~ x)
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Then by Lemmas B and D, for any £ > 0 we obtain

2(1 = p(0 ~ x))
p(0 ~ x)

2 (8+¢)6
<8N3%y/ ——— <8N}y ——— <2N=GT
p(0 ~x) T
8 +¢)6
o E22 s
o
Further,

22 8% (x)N32 52 82
S -7 91— 1/2 - _ 1/2
YE N 82(1 p(0 ~»x))NY? > 1 (1 -¢e)N=

2p(O ~ %)

N3/4

0 Sz=60'(x)N3/4=6\/

if

Hence Lemma C implies Lemma 2. O

LemMMA 3. ForanyK > 0,8 > 0,& > 0, thereexistan L = L(K,e) > 0 and
an Ny = Ny(K, §, ¢) such that

62
P{IBy(x) + By(x) + -+ +By(x)| > LON?/*} < exp| —(1 — s)ZNl/z

provided that
lxl <K and N> N,.

Proor. Apply again Lemma C with

X=B(x), T=3p0~0), & oo
4N
z = SLN3/4, G=p—(0~9x)'
Then
0<z<2N=GT, forany L > 0if N is large enough,
and
22 2

26 2 (1- S)ZNl/z if L is large enough.

Hence by Lemma C we have Lemma 3. O °
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LemMA 4. For any

ko
>0 0<6</——, 6>0,
£ | 2 +e)6

there exist an Ny = Ny(¢, 6) and an L = L(¢) such that

p{ max PE) * Balx) + 0 F By ()
leli<e?VV max(o(x), L)

< exp(— (6;(1 —g) — 29)w1/2)

provided that N > N,.

> 6N3/4}

ProoF. Lemma 4 is a trivial consequence of Lemmas 2 and 3. O

LEMMA 5. Let Si(n), Sy(n),... be an arbitrary sequence of random walks
on Z2. Define the sequence B;(x),B;5(x),..., i =1,2,..., via S (n) in the
same way as the sequence B(x), Bo(x), ... was defined via S(n). Then for any
€ > 0 there exist an N, = Ny(g, 6) > 0 and an L = L(¢) such that

Pl max max Bii(x) + Bia(x) + =+ +B;n(%) S SN
(8) 1<i<eVV ||zl <e®VN max(o(x), L) -
52
< exp(—(z(l —€) — 260 — y)Nl/Z)
provided that
- 1/2
0<5<(m) , vy >0, 6> 0, NZNO.

Proor. Lemma 5 is a trivial consequence of Lemma 4. O

Define the sequence {p,(N); N = 1,2,...} via S;(n) in the same way as the
sequence {p(N); N =1,2,...} was defined via S(n) and let £(-, ) be the
local time of S;(-). Assume that

52
(9) 20 + vy < z‘

T
<.
(8 + 4¢)0

Since by Lemmas D and B for |lx|| < e° W,

max((x), L) < max(]/;(—o% ,L) < 80;/__]\7(1 re),
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by Lemma 5 we obtain that for all 1 < i < e”VN we have

8> max Bir(x) + Bia(x) + -+ +B;n(x)
B “xHSe"\/ﬁ max(o(x), L)N3/4
fi(x,Pi(N)) l T 1
> e = e,
= nx;zjz(ﬁi £(0,p;(N)) (8 8) 9

that is, for any ¢ > O and for all 1 <i < eV‘/N we have
x, p;(N
max bilx.pd(N)) <5(1+2e)\/ a.s.,
llxll<e®VN (0 PL(N))

for all but finitely many N, provided that the parameters v, 8, 6 satisfy (9).
Assume that

(10)

86
5y — <1,
ko
that is, we assume
11 20 o il
ty<—<—
(11) Y54 S 320

Then as a consequence of (10) we obtain that the radius R,(p,(N)) of the
largest disc around the origin nearly homogeneously covered by S; in p,(N)
satisfies the inequality

(12) Ri(pi(N)) = e as,

“forall 1 <i < e”VN and for all but finitely many N.
Let 0 <a <1 B=1-a. Then by Lemma 1 for all n =1,2,... there
exists a 1 <i = i(n) < n® such that

(13)  &(S(inP), (i + 1)nP) — £(S(in®),in?) > u(log n)’
for all but finitely many n, provided that

(14) a>upm.
Let
9 ) 1 /N
u(log n?)" =N, thatis,n =exp|—1 — |,
BY u
and

. exp(yVN) = n®, thatis, yVupB =a, thatis, = (1+ 'y\/i)_1
Then
eOVN = poVEs,
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Inequalities (12) and (13) combined imply that for all n = 1,2,... there
exists a 1 < i < n® such that with probability 1,

£(S(inP), (i + nP) — £(S(in®),in®) > u(log n?)’

and around S(inP) there exists a covered disc of radius n®/*# for all but
finitely many N. [We do not claim that the above two statements hold for
all but finitely many n; we only claim that they hold for all but finitely many
n=u(N)=-exp(1/B)yN/u).l

Then we want to choose the parameters «, 8, 0, u, v, 8 such that they satisfy
the conditions

15 26 o
< e
(15) Y < <355
(16) a>umf,
17 1 Vup, thati !
( ) a = B_'yuB’ als,B_l'i“}'\/-l_L_,
and 6Vu B is as large as possible. This is equivalent to finding v, 6, & for which
20 i >Vu
+y< —
Y 329’ Y um,
and
oVu
Wup = ——
Vu B T
is as large as possible.
Let
Yo = \/;77
and
T 1 20
=20 + = ——, thati = — - —.
20 + vy, 0+ Vum 320" tatls,\/; 320 -
Then
ovVu 25702 — 21194 ]
1+ yo/u 21294 4 772792 + 72 £(6).
Since
3 1
274 )= — > —
(18) f( ‘/;) 146 = 50’
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we can choose the parameters «, 8,0, u,y, 8 such that they satisfy (15), (16)
and (17) and 6Vu B > 1/50, that is, we proved that there exists a nearly
homogeneously covered disc (in the sense of Theorem 2) of radius

F(n) =n'/% as,

for all but finitely many N, where n = exp((1/B)yN/u) and u and B are
defined so that they satisfy the inequalities (15), (16) and (17).

In case
1 /N 1 /[N+1
expE ” <n<expE ” ,

we also obtain immediately the statement.

Note that we do not claim that the above chosen parameters are the best
possible ones. Very likely more careful work gives a somewhat larger constant
instead of 1,/50; even evaluating the exact maximum of f(6) instead of using
(18) we get a somewhat better constant. However, to find the best constant
very likely requires essentially new ideas.

3. The waiting time for a new point: A problem. Consider the simple
symmetric random walk {S(n); n =0,1,2,...} in Z% and let V, be the
smallest integer for which

S(n+V,)+S(k), k=0,1,2,...,n,
that is, V,, is the waiting time for a new point. Clearly,
liminfV, =1 a.s, d=12,....

n—oo

- However, the lim sup behavior of V, is a much harder question. It is easy to
see that in the case d = 1 we have

\%4
limsup——n——2-=C, 0<C <o,
n-w n(loglogn)
Our Theorem 1 suggests (cf. also Conjecture 2) that in the case d = 2 for any
>0,
limsup —-— = and limsup -

n
2qo+e
n—o n—o
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