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LARGE DEVIATIONS FOR PROCESSES WITH
INDEPENDENT INCREMENTS

By A. A. MOGULSKII

Institute of Mathematics, Siberian Branch of the Russian Academy
of Sciences

This paper strengthens and generalizes some theorems proved earlier by
Lynch and Sethuraman on large deviations (LD) for random processes with
independent increments.

1. Introduction. Let £(¢), ¢t > 0, be a stochastic process with stationary
independent increments, E£(1) = 0, o2 = E£(1)% > 0. Denote by (A_, A,) the
interval such that ¢(A) = Ee**® < o for A € (A_,A,) and ¢(A) = = for A &
[A_,AL] Let X = X,p(2) = €(tT), 0 < ¢t < 1, be the suitably scaled segment of
£(tT) and P, the distribution of its paths in the space D[0, 1]:

(1.1) P(U) =P(Xy/reU), A=r2/T,UcD[0,1].

A family of probability measures (P,) is said to obey the large deviation
principle (LDP) with rate function I [see Lynch and Sethuraman (1987)], if for
appropriate sets U c D[0, 1],

(1.2) (1/M)InB(U) ~ - inf I(x)

as A — o (for more precise definition see Section 2). The class of sets U in
(1.2) is defined through the topology and is wider when the topology is
stronger.

Lynch and Sethuraman (1987) proved that the family (P,) satisfies LDP if
(@) |A,| > 0, and the sample paths of £(¢) are of bounded variation a.s.; (b)
r=r(T) =T, (c) the class of sets U in (1.2) is defined through the weak
topology in D[O0, 1].

We prove in this paper that (P,) satisfies LDP if: (a) [A | > 0; (b) the
dependence r = r(T) is such that r/T <, r/(T)/2 > o as T — o; (c)
the class of sets U in (1.2) is defined through the Skorohod topology or the
uniform-norm topology in D[0, 1].

The first theorems on LD for stochastic processes were proved by Borovkov
(1967), who considered the Wiener and Poisson processes and linear interpola-
tions of random walks generated by i.i.d. random variables. Borovkov’s initial
results apply to LD in the range [of (1.1)]

limsupr/T <,  limr/(TIn T)"? = o,

T—>w
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LD theorems for interpolation of random walks were proved by Mogulskii
(1976) for the whole scope of deviations satisfying

limsupr/T < =, }im r/T2% = o,
T —

and the class of sets U in (1.2) defined through the Skorohod topology.
For other results see Lynch and Sethuraman (1987).

2. Definitions and general results. We denote by D, the space D[0, 1]
with the weak topology (a sequence f, in D0, 1] converges in the weak sense
to f if f,(¢) = f(¢) for each point ¢, where f is continuous). D, is the space
D[0, 1] with the uniform norm

I Fll= sup |f(£)].

0<t<l1

We also consider the Skorohod metric

s(f,g) = inf (max( sup (|8(2) - F(M®)], sup (It - A(t)l)))),
r€A 0<t<1 O<t<1

where A is the class of continuous increasing mappings of [0, 1] into [0, 1]. The
metric space (D[0, 1], s) is not complete [see Billingsley (1968)]. We denote by
D, the completion of (D[0, 1], s). For ¢ > 0, C.(f) and S,(f) are, respectively,
the e-neighbourhoods of f in D, and D,. Let X be a topological space.

DEeFINITION 2.1 [Lynch and Sethuraman (1987)]. A function I(-) is said to
be a regular rate function (r.r.f.) in X if

(2.1) 0<I(x) <o,

(2.2) I(x) is lower semicontinuous

and

(2.3) for each ¢ < oo, I, = {x: I(x) < ¢} is compact on X.

Let us repeat the definition of r.r.f. I(x), f € D[0, 1] for measures (P,) [see
Lynch and Sethuraman (1987); recall that var f is the variation of f]. For any
element f in D[0, 1] for which var f < « and f(0) = 0, we define elements f,,
f1, fa suchthat f=f, + f1 + fo, [0(0) = f1(0) = f,(0) = 0, f, is an absolutely
continuous function, f; + f, is the singular part of the function f, f; and f,
are increasing and decreasing, respectively. Set

(2.4) A(t) = sup{¢r — lnEe*fj.

I(f) = LIA(fo(t))dt+A+f2(1)+|/\—Hf2(1)|: if f(0) =0, var f <,

o otherwise.

b
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For any subset U of D[0, 1],
I(U) = inf I(f).
(U) ,}eU (F)

If f is an ideal element of D,, that is, f € D,\D[0, 1], set
I(f) = Im I(S,(1)).

Lemma 2.2. Let [A .| > 0. Then I(f) is a r.r.f. in D,, D,. If A, | =oo,
then I(f)isar.r.f.in D,.

We shall prove Lemma 2.2 in Section 3.
Let 0 < 02 < o, where o2 = E£2(1). Define

I,(f) = (1/202)f1( f’(t)z) dt, if f(0) = 0, f is absolutely continuous,
0 = 0

o0 otherwise.

b

The function I(f) is a r.r.f. in D, because it corresponds to the Gaussian
process with stationary independent increments ¢(¢) = (1/02)w(t), where w(z)
is the Wiener process.

Let (P,) be a family of probability measures on (X, %), where X is a
topological space and % is the Borel o-field of X. For any U in %, define

L*(U) = limsup(1/A)InP,(U),
L™ (U) = liminf(1/A)InP,(U),
where, throughout the remainder of this paper, the limits are as A — .

DEeFINITION 2.3. The measures (P,) satisfy the upper large deviation princi-
ple (ULDP) with rate function I(-) if

(2.5) I(-) isarrf.inX
and
(2.6) for each closed set F, L*(F) < —I(F).

DEeFINITION 2.4. The measures (P,) satisfy the lower large deviation princi-
ple (LLDP) with rate function I(-) in X if condition (2.5) holds as well as the
condition

(2.7 for each openset F, L™ (F) = —I(F).

The family (P,) is the family of path distributions on D, (respectively, D,
D,) defined by (1.1).

TuEOREM 2.5. Let A | >0, r/T —» 1 as T — . Then (P,) satisfies the
ULDP with r.r.f. I(-) in D,. If, in addition |A .| = », then (P,) satisfies the
ULDP in D,.
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THEOREM 2.6. Let |A_| >0, r/T - 0, r/(T)/?> - w as T — ». Then (P,)
satisfies the ULDP with r.r.f. I,(-) in D,.

From standard results on infinitely divisible distributions [e.g., Skorohod
(1986)] it follows that
Eei)\f(t) — etK()\)’

where
K()) =iah = (1/2)622 + [(e™* =1 — idxl(lx| < 1))m(dx).

Since [A .| > 0, it follows that
K(ir) <o
for A € (A_, A_). Chebyshev’s inequality implies that
limsupl/TInw(+T) < —1IA,l,

T—w
where, for T' > 0,
m(T) =1([T,=]), w(=T)=n((-,T]).
We shall need the regularity condition
(2.8) Tlim (1/T)Inw(£T) = —Irl.

THEOREM 2.7. Let |\ | >0, r/T - 1 as T — . Then (P,) satisfies the
LLDP with r.r.f. I(:) in D,. If, in addition, (2.8) holds, then (P,) satisfies
the LLDP in D,.

REMARK 2.8. Let [A,| >0, r/T —» 1 as T — «. Then for each open set G
in D,
(2.9) L7 (@) = -1(GnC[0,1)]).

THEOREM 2.9. Let A, | >0,r/T - 0, r/(T)/? > ©as T — ». Then (P,)
satisfies the LLDP with r.r.f. I,(+) in D,.

Using Theorems 2.5-2.9, we can obtain LD principles for the process £(¢)
for the whole scope of large deviations. To state these results we need the
following. Denote

I(f)=a2(af), a>0.
The deviation function A(a) under conditions
E£(1) =0, O0<Eg(1)=o02<w, [A,]l>0,
satisfies the relations ‘

limOa‘ZA(at) = Ao(t) = t2/(20)".
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Hence

lim L,(£) = Io( f)-

THEOREM 2.10. Let [\ .| > 0, r/(T)"/? > was T — o,
A_= liqlaigfr/TzO, A= limsupr/T < o,

Tow

Let the measurable set G < DI0, 1] satisfy the two conditions
(2.10) 1(G,) =1,(G,) forallac[A_A,],
(2.11) lim I (G) = I(G),

where G, is the interior of G in D, and G, is the closure of G in D,. Then
InP(X;/TeG)~-TI((r/T)G)
as T — o, where (r/T)G = {f: (T/r)f € G}.

REMARK 2.11. The statements of Theorem 2.10 remain valid under the
condition
I(G.nC[0,1]) = 1(G,), ae[A_,A]
or (2.8) and the condition
I(G) =1,(G,), ac[A_A]

instead of (2.10).
Lynch and Sethuraman (1987) study the processes X%(¢) = X (a(t)), where
a = a(t) is a time deformation, and obtain LDP for the family

P (G) =P(X3/reG), r=r%/T.
But
P (G) =P(G"),
where
G*={f=1(¢) =g(a(t)): g €G}.
Therefore the LDP for (Py) is a corollary of the LDP for (P,).

3. Proof of Lemma 2.2. The function I(f) is a r.r.f. in D, [see Lynch
and Sethuraman (1987)]. Therefore I(f) is lower semicontinuous in D, D,,
D, (the topology in D, D, being stronger than the weak topology). If | L =0
the set I'; is compact in D, [see Mogulskii (1976)].

To finish the proof of Lemma 2.2 we show that I'; is compact in D, (if
A | > 0). The set I'; is closed in D,, therefore it suffices to show that
[y = Iy N DI0, 1] is relatively compact in (D[0, 1], s).

It follows from the definition of the deviation function that, for all ¢,

(3.1) A(t) = 1818 = A,
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where
0 <8 <min(A[,IA_l), A = InEe?éD < oo,
Hence by (3.1) it follows for f € DI[0, 1] that
I(f)= —A+d8varfy+ A var f; + [A_|var f,
> —A+6varf.
Using (3.2) we obtain
2 cV((T + A)/8) = {f€ D[0,1]: f(0) = 0,var f < (T + A)/5}.

Therefore it is sufficient to show that V(T') is relatively compact in (D[0, 1], s)
for all T < ». Denote by B(a, B, N) the finite set of step functions such that

j=0

Let f e V(T). Denote f,(¢) = el f(t)/e] — el f5(¢)/€], where [a] is the integer
part of a, f(¢) = fi(2) — () and f,(¢), f4(¢) are increasing. It is obvious that

(3.3) s(f, f.) < If—fil < 2.

Denote by 0 < ¢, <t, < *-- <t, < 1 all the discontinuity points of f,. Obvi-
ously, for £ < T /e:

ke < var f, = e var[ f,/¢e] + € var[ fy/¢] < e(var f; + var f,)
=gvar f<eT.

For all ¢, there exists 7, € {je/k, j=1,2,...} such that (a) #, <1, (b)
max, _; 4lt; + & <&, () £, < if ¢, <t;. Construct a piecewise linear func-
tion A(#) interpolating

(0,0), (¢, 1), -5 (x5 24)5 (1, 1)
in the plane (x, t). It is obvious that A(¢) satisfies
(3.4) sup |t — A(t)l <e.

0<t<l1

All points of discontinuity of a function fit) = £.(A@) lie in {je/k,
j=1,2,...;je/k < 1}. Therefore

f'; € B(e,e/k, k).
Thanks to (3.4), the relation
(3.5) s(f,f.)<e

follows. We obtain

(3.2)

s(f f) <3

using (3.5) and (3.1). We have already seen that B(e,&/k, k) is a 3e-net in
V(). O :
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4. Auxiliary lemmas.

Lemma 4.1. Let f, f1, g €DI0,1], h € C[0,1], £ = s(f, fD, €, = lg — hl.
Then

s(f+tg, fith)<e+e +we),

where w,(t) is the continuity modulus of h.

Proor. For every 6 > 1, there exists continuous increasing functions A(z2),
A0) = 0, A(1) = 1, such that for all ¢ € [0, 1],

IA(t) —tl < 8e, |[f(A(2)) — fu(t)] < be.

Therefore,

s(f+g, fi+h) <|f(A(t)) +g(A(2)) — fu(t) — k()]
<[ (A1) = f1(2)| +1g(A(2)) — R(A(£))| +|R(A(2)) = h(2)]
< 0e + &, + w,(0¢).

We now complete the proof of Lemma 4.1 by letting § - 1. O

Let (E,d) be a complete metric space, (P,) be a family of probability
measures on (E, %), where % is the Borel o-field of (E, d). Let I(x) be a r.r.f.
in (E, d).

LEMMA 4.2. For any closed set F in E,

I(F) = imI(D(F)),

where
D(F)={x€E:d(x,y) <&,y € F}.
Proor. Set
M = lir%I(Ds(F)).
Since

I(F)=>M,
it suffices to show that
(4.1) I(F) <M.

If M = «, then (4.1) is correct. If M < o, then there exists a sequence (x,),
x,, € E such that

M= lim I(x,), I(x,) <2M, «x,€D,, (F).
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Since Iy, is compact in (E, d) and x, € Ty,,, there exists a subsequence
(¥,)s ¥n = x; , satisfying
Yo = limy, €F.
By the semicontinuity of I(-) we have (4.1):
M = lim I(y,) >1I(y,) = infI(y) =I(F). ' ml
n—o yeF

DerFINITION 4.3. The measures (P,) are weak large deviation tight (WLD
tight) in (E, d), if for each M < and ¢ > 0 there exists a finite set (x, ..., x,,),
x; € E, such that

(4.2) Lﬁ(ﬁluwa))s—M,
i=1

where (U)° is the complement of a set U.
It is obvious that the measures (P,) are WLD tight in (E, d), if for each
M < o, there exists a compact set K = K,, such that for each ¢ > 0,

L*((D.(K))") < —-M.

LEMMA 4.4. Let (P,) be WLD tight in (E, D), let the function I(x) be a
r.r.f.in (E, D) and let E, be a dense set in (E, d) such that for each x € E,
e>0,6>0,

(4.3) L*(D,(x)) < —I(D, . 4(x)).
Then (P,) satisfies the ULDP with r.r.f. I(-) in (E, d).

Proor. If I(x) = 0, then (2.6) is correct. If I(x) > 0, denote
M = min(2I(F),N),

where N < «. For this M, there exists a finite set (x,,...,x,), x; € E,
(thanks to WLD tightness) such that (4.2) is correct. Therefore,

RMﬁsz@mam»+E“Gawﬂ).
i-1 i=1
With the help of (4.2) and (4.3), we obtain that
L*(F) < —min(M,min(I(D,(x,))): F N D,(x;) #+ @)
< —min(M, min(I(D,,(F))).

We now complete the proof of Lemma 4.4 by letting M go to « and ¢ go to 0
(thanks to Lemma 4.2). O

A

LEMMA 4.5. Let I() be a r.r.f. in (E,d) and E, C E a set such that for
each open set G,

(4.4) 1(G) = I(G N Ey).
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If for each x € E, and € > 0,
L=(D,) = —-I(x),
then (P,) satisfies the LLDP with r.r.f. I(:) in (E, d).

Proor. Obvious. O
5. Proof of the theorems.

Proor oF THEOREM 2.5. For k =1,2,...,5 > 0 we introduce the set

X(k,5) = {£€DI0,1]: £(0) =0, sup | F((i +1)/k) = f(i/k)

<t<
<8,i=0,1,....k-1}.
It is obvious that
P((X(%,8))°) < kP(oi]:ETlf(t/k)l > ré).
It follows from a well-known inequality [ék_orohod (1986), page 35] that
(5.1) P( sup [£()|= 2x) < (1 - ) "B(I&(T)| 2 %),

where

a= sup P(|£(t)]>x) <1.
0<t<T

Chebyshev’s inequality implies the estimate

- (5.2) P(l4(T)| = x) < e TAG/T) o= TAC==/T),
The deviation function A(a) [see (2.4)] satisfies [Borovkov (1967)]
(5.3) AMe) = [Nty dt,  a=E&Q),
where A(#) is an increasing function, A(a) = 0 and
(5.4) lim A(¢) =A,.
t— +o -

It follows by (5.3) and (5.4) that
(5.5) tliT A(t) /1t = Al

With the help of (5.1), (5.2) and (5.5), we obtain that for each M < », § > 0,
there exists an integer & = k(M, §) such that

(5.6) L*((X(k,8))°) < —M

and
(5.7 6k(M,5) > o asd — 0.
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Let us consider the compact set in C[0, 1]:
={feC[0,1]: f(0) =0, w,(1/k) < 5,0 <& < 1},

where w ((¢) is the modulus of continuity of f. K is, obviously, also compact in
D,. Let f, = f,(¢) be the piecewise linear function interpolation points

(i/k, f(i/k)), ©i=0,1,...,k,
where f € X(k,d). It follows by (5.7) that for & = k(M, ),
fr €K, If —ful <
and
(5.8) Cs(K) 2 X(k,9).
By (5.6) and (5.8), we obtain that
L*((C(K))*) < L*((X(k,8))°) < —M.

So, the measures (P,) are WLD tight.
Let T" be the class of linear interpolations between nodes with a given finite
set of time ¢, D be the class of step functions with finite sets of steps. Denote
I'+D={f=g+h:g€T,h €D}

It is obvious that I' + D is a dense set in D,. We can obtain that for each
felr+D,e>0,6>0,

(5.9) LY(C1) = ~1(C.rs( 1)),

using the proof of Theorem 4.1 in Lynch and Sethuraman (1987). Therefore
~ thanks to Lemma 4.4, the measures (P,) satisfy the ULDP with I(-) in D,.
Assume now the condition [A ,| > 0. We can write

(5.10) £(t) =€) + £,
where ¢ and ¢® are two independent processes and
Eexp{iAéD(t)}

(5.11) e"p{t(i“)‘ =62+ [7 (77— 1 —ikal(iel < 1))7T(dx))},

Eexp{ir¢®(t)} = exp{t([x|>N(eiAx - l)w(dx))}.

Let N = 1. The process ¢ satisfies the condition IA(DI = . By the part of
Theorem 2.5 already proved, the famlly (P®) satisfies the ULDP in D, (and in
D,) with r.r.f. ID(-),

Let us consider the process ¢®, which is a generalized Poisson process.
Denote T; the subsequent jump times of ¢® and set 7, =T, — T,_,, ¢, =
|E3(T; + O) EA(T, — 0)|. Then (1)), (¢,) are two 1ndependent sequences of
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i.i.d. random variables. The total variation ¢® obviously satisfies the relations
mT mT
{var(Xf/r) > N} c { Y & >N} V] { Yor > T}.
i-1 i=1

By Chebyshev’s inequality,
P(X{/r & V(N)) < exp{—mTA,(Nr/(mT))}
+ exp{—mTA,(1/m)},

where A; and A, are the deviation functions for ¢, and 7, respectively. Using
(5.3), we can show that

mAy(1/m) » o,  A(N) > o,

as m, N —» «. Therefore by (5.12), for each M < « there exist N < « such
that L@(V(N))°) < —M. Hence, under the condition |A | > 0, the family
(P?) is WLD tight in D,. Since the inequality (5.9) holds for (P{®), it follows
easily by lemma 4.4 that (P®) satisfies the ULDP with r.r.f. I® in D_.

Let ¢ >0, M <x. As we proved, there exists a finite set {f,,..., f,.},
f; € C[0, 1], such that

(5.12)

Li((UC.8(£))) < -M.
Let v > 0 be such that v < ¢ and
max w(v) <¢&/3, fe{fi, - fnl-

1<i<m

For this v there exists a finite set (g4,...,8,), & € DI[0,1] such that [the
family (P®) is WLD tight in D]

Li((Us&))) < -
It follows from Lemma 4.1 that

(Us(ri+g)) =(Usien) v(Ucan)
i Jj i
Hence we obtain that (P,) satisfies WLD tightness in D:
L+(( U S.(f, +gj)) ) < -M.
i

Since the inequality (4.3) holds for (P,), it follows easily by Lemma 4.4 that
(P,) satisfies the ULDP in D, with r.r.f. I(:). O

c [4

Proor oF THEOREM 2.6. This proof is similar to that of Theorem 2.5. O

ProoF OF THEOREM 2.7. Let |A .| = . We shall show that for each f€T,
e >0,

(5.13) L(C.(f)) = ~I(f).
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If I(f) = =, then (5.13) is obvious. Let I(f) < «. Introduce the set
Y(k, ) = {g € D[0,1): max |g(i/k) ~ f(i/k)| < e}.

<i

It is not difficult to prove [see Lynch and Sethuraman (1987)] that for each
fe Y(k,e),

(5.14) L~ (Y(k,e)) = —I(f).

We proved (see the proof of Theorem 2.5), that there exists a compact K in D,

such that for each § > 0,

(5.15) L~((C(K))*) < —(2I(f) + 1).

It is obvious that for each ¢ > 0, there exist 6 > 0 and %2 < « such that
C.(f)2Y(%k,8) N Cy(K).

Hence by (5.14) and (5.15) we obtain (5.13). Under the condition |A | = « the
class T satisfies (4.4). Hence by Lemma 4.5 we obtain that (P,) satisfies the

LLDP with r.r.f. I in D,.
Assuming the condition |A .| > 0, let us consider the sum [see (5.10) and

(5.11)]

E(t) = ED(2) + £2(t),
where number N € [1,) is arbitrary. The process ¢™(¢) satisfies [AV] = o,
hence (PV) satisfies the LLDP in D, (and in D, obviously) with r.r.f. IV, The
process £®(¢) satisfies A% > 0 and its sample paths belong to the space of

functions of bounded variation. Thus, using Theorem 5.1 in Lynch and

Sethuraman (1987) we obtain that (P{®) satisfies the LLDP in D, with r.r.f.
1®,

Let G be an open set in D, f € G, g € C[0, 1], g(0) = f(0) = 0. There are
¢ > 0 and a neighbourhood G’ of f — g in D, such that

G2G' NC/(g).
Therefore,
P\(G) = P(C.(8))P(G').
We obtain
L7(G) = —(I%(g) +I?(f-g)).

It is known [see the proof of Theorem 5.1 in Lynch and Sethuraman (1987)]
that

I(f) = inf(IV(g) + IO(f - g)}.
g
Therefore for each f < G,
L™(G) = —I(f)
and (P,) satisfies the LLDP in D, with I(-).
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Under the condition (2.8) let us consider a function
fel +D, f=g+h,

where f(0) =g(0)=h(0) =0, g T, h €D. It is obvious (by Lemma 4.1),
that there exists & > 0 such that

{Xr/r € 8.(F)) 2{XfP/r € C, 5(g)} N {XP/r € Sy(h))}.
Hence
(5.16) L™(8.(f)) = LY (C. 5(8)) + LR (S5(R)),
where N is a level in (5.11). Thanks to (5.13) we obtain for each g € T,
lim IP(g) = 1(g),
hence
(5.17) lim LY (C(2)) = ~1(8).
To estimate L@ ~(S,(h)), we assume for brevity that
(5.18) h(0) =0 as0<t<t, h(t) =a ast <t<l,

where a >0, 0 <t; < 1. Let n(¢) be the Poisson process with constant
intensity 1. It is convenient to suppose that the processes £¢®(¢) and n(¢) have
the same jump times. Let us denote by £V’ the random jumps for ¢@(¢). It is
obvious that

(5.19) lim P(£™ = 0) = 1,

- and (2.8) implies that for each N < », ¢ > 0,
(5.20) lill\r,xlinf(l/T)lnP(gl(N)/r €(a—-¢,a+e)> -, (a—2¢)).

Let
A, ={n((t; +&)T) —n((¢, —&)T),n(T) < 2T}.
It is obvious that
P(XP/reS,(h)) 2 P(A)P(¢N/r e (a—¢,a+e)P?(¢V) = 0)).
Hence by (5.19) and (5.20), we obtain that
LY (S.(h)) = —Ar,(a—¢) > —A,a=—IP(h),
where A has the form (5.19). It is obvious that for eaéh h € D the inequality
(5.21) LRY(S.(h)) = —I®(h) = I(h)
holds. Hence by (5.16), (5.17) and (5.21), it follows that
L (S.(F)) > ~I(g) —I(h) = I(f).



LARGE DEVIATIONS 215

The set T' + D satisfies (4.4) in D,. Hence by Lemma 4.5, we obtain that
(P,) satisfies the LLDP in D, [with r.r.f. I(-)]. O

We have at the same time proved the proposition stated in Remark 2.8. O

Proor oF THEOREM 2.9. This proof is similar to the proof of Theorem 2.7.
O
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