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A LAW OF THE ITERATED LOGARITHM
FOR RANDOM GEOMETRIC SERIES

By ANTON BoVIER AND PIERRE Picco

Ruhr-Universitit Bochum and Centre de Physique Théorique-CNRS

We consider the random variables £(B8) = I}, _,B"¢, for g < 1. We
prove that if the ¢, arei.i.d. random variables with mean zero and variance
1, then a law of the iterated logarithm holds in the sense that the cluster

set of
V1 - g2

2loglog(1/(1 - B%))

£(B),

when B converges to one, is the interval [-1, 1].

1. Introduction. In a recent paper ([2]) we studied the random variables
&(B) = T3_oB%e,, where ¢, are independent, identically distributed symmetric
Bernoulli random variables. Our main result was a variant of the law of the
iterated logarithm (LIL) concerning the limit as B8 tends to one, that is, we

proved that
Vy1-p2
(1.1) lim sup
B11 ‘/Zloglog(l/(l - B?))

Our investigation of this random variable was motivated by the fact that there
is a long-standing history surrounding it. As early as 1935, Wintner and
coworkers [7, 8, 14, 15] studied the properties of the probability distribution of
the random variable £(B), proving in particular that it is always continuous for
0 < B < 1 and moreover pure, that is, either absolutely continuous or purely
singular continuous with respect to Lebesgue measure. In the case g < 1/2,
they showed that the distribution is singular continuous, but for g > 1/2,
which of the two cases is realized depends on the arithmetic properties of the
number B, and a complete answer cannot be given even today. For a survey of
this problem, the reader may consult an article by Garsia [5] or a recent paper
by one of the authors [1].

From the point of view of limit theorems, it is natural to ask the question
under what more general conditions on the random variables ¢, a LIL of the
type (1.1) can be proven. In the case of the standard LIL, the first proof was
given in 1924 by Khintchine [9] for Bernoulli random variables; it took 20
years until Hartman and Wintner [6] showed that in the i.i.d. case only finite
second moments were required. It is an all too natural conjecture that under

(&(B) =1 as.
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LAW OF THE ITERATED LOGARITHM 169

these same conditions on ¢,, (1.1) should hold. It is the purpose of the present
article to prove this. Indeed, we will prove the following theorem:

THEOREM 1.1. Let ¢; be i.i.d. random variables such that Ee; = 0, Ee? = 1.
Put

Al > g
2loglog(1/(1 — B?)) k-o
Then (i) P(im,,, dist(£(),[-1,1) = 0) = 1; (i) P(E(&PBMH =[-1,1D =1,

where €({£(B)}) denotes the cluster set (set of all limit points) of £(B) as B
tends to one and dist(a, b) stands for the distance between a and b.

(1.2) &(B) = 7

REMARK. Theorem 1.1 is a LIL in Strassen’s formulation [11]. It implies in
particular the classical version: lim supg,, £ =1as. and liminf 511 E=-1las.

As pointed out in [2], the techniques used there can easily accommodate
unbounded ¢,, provided the moment generating function E(e’*) exists in a
neighborhood of the origin and satisfies a bound of the form FE(e*) <
exp(t2/2 + O(¢*)). However, if only finite variance is assumed, the proof
requires substantial modifications. In particular, we will need to make use of a
remarkable result from Strassen’s theory [13] on fluctuations of sums of
random variables. On the technical level, our proof is otherwise inspired by the
beautiful proof of the Hartman-Wintner LIL by De Acosta [3].

A LIL does not come without a central limit theorem (CLT), which will in
fact be necessary for our proof. We will require the following version of it:

THEOREM 1.2 (Central-Limit Theorem). Let ¢, be i.i.d. r.v.’s with mean
zero and variance one. Let g(B) be an increasing function from [0,1] to
N U {0} such that

lim = +oo,
;mg(ﬁ)

Put f(B) = Y48} 2" and define
g(B)

(1.3) Z(B) = JiB) EOB”

Then Z(B) converges in law to a Gaussian r.v. with mean zero and variance
oneas B11.

The proof of this theorem follows largely the standard proof of the CLT and
will be given in Section 3, where this theorem will actually be used.
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Let us give a brief outline of the proof of Theorem 1.1. Section 2 is devoted
to proving (i). We first establish that, for suitable N,(B), the tails

V1_F Y ple

\/210glog(1/(1 ~ B?)) k=nNyp

(1.4) £x(B) =

are almost surely asymptotically negligible. For the remaining piece &,(8), we
prove an upper bound by showing that for a suitably chosen sequence 8, 11,

(1.5) limsuplé(B,) <1+¢ as,
while
(1.6) lim sup [€(B,) —&(B) =0 as.

2B, <B<Bni1

In reference [2], we proved the analogue of (1.6) in an elementary way, using
renormalization group techniques. Under the weak hypothesis of the present
theorem, we will have to take recourse to Strassen’s results [13] in order to
prove (1.6). [In our opinion, Stout’s remark in [12] applies at this point: “One
would labour long (and possibly in vain) to produce those results by classical
methods.”]

Equation (1.5) is proved by applying a truncation technique similar to that
of De Acosta [3]. That is we split £,(8,) into

(1.7) £1(B) = E(B,) + E(B,),
where
Ny(B,)
(1.8) E(B,) = kg. B ekl{lsk|<fﬂnk/\/2(1 —-B2)loglog(1/(1-52)) }
and
Ny(B,)

(1.9) £(B,) = kE Br’igk]l{Ieklz-rﬁ;k/‘/2(1—ﬁ%)loglog(l/(l—135))}'
=0

Here 1, denotes the indicator function of the event A. £{(8,,) will be shown to
converge to zero almost surely and for £i(8,) the bound (1.5) will be proven in
a rather standard fashion.

Then, in Section 3, to prove that the cluster set of £(b) is [—1,1], we
combine the decomposition of £(8) used in [2] with a moderate deviation
estimate of De Acosta and Kuelbs [4]. This wﬂl require the use of our central
limit theorem, Theorem 2.
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2. The upper bound. Let us begin by introducing some notation. Given
0<B<1,let

1
(2.1) N(B) = [-l—jb—z],
(2.2) Ny(B) = [N(B)log N(B)].

Also, in the present section, we set 8, = e+, where 6, < 1 may be chosen as
6, =1—(1/Inn)3. The following asymptotic relations will be useful in the
sequel:

) BNz(ﬁ)
(l) ﬁ‘ -1 as BT].
1
(ii) BN® ~ exp[(l—l_ll;;)-] —>el/?2 asp1l.
(iii) 0 ~ exp[—— —n—3
(Inn)
. 0n+1 " 3
(iv) (—@n—) ~exp[(lnn)4n_ﬁ 1 aspB?1
(V) 1- Bn+1 ~ (0n+1 0n+1 ” o BT ‘

Our first lemma concerns the tails of ¢:

LemMa 2.1.  Let (g,) be i.i.d. r.v.’s with mean zero and variance one. Then
1/1 _ n2 e

lim P = Y B*,=0 a.s.

B11 /2loglog(1/(1 - B%)) -Ny®

Proor. By the Borel-Cantelli lemma, (2.3) will follow if we can show that
for any ¢ > 0,

(2.3)

o o 2loglog(1/(1 — B2
e 1ol s | T gk \/ glog(1/(1-81) | _,
n=ng | Bn<B<B.+1|k=NyB) 1 =B
Now
sup Y. Bkgy,
ﬁn<ﬁ<Bn+1 k=N2(ﬁ)
(2.5) < X BElel
k=Ny(B,) ’
= ¥ Bl —E(le)] + X BEE(ls).

k=Ny(B,) k=N,(B,)
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For the second term we have
N2(ﬁn) 2

(2.6) Vi-p8% X BriaE(el) < v/1-p? ﬁ <o
n+l n

k=N2(ﬁn)

where use was made of the asymptotic property (v). For the first term we use
Chebyshev’s inequality to get

ol T gt — Eedl)] > g\/gl"gl"gl(l_/(ﬁlz—ﬂﬁ)) ]

k=Ny(B,)
1-p2 -
(2.7) < 2 r B
2¢%loglog(1/(1 = B%)) »-nyp,) "
1 g

<
22 loglog(l/(l - ﬁi)) 9,
Now,
ﬁrzll_gzl(ﬁn) ~ (20:)6n+1(0n+1/0n)n’

and therefore, using the properties (iii) and (iv) from above, the left-hand side
of (2.7) is the general term of a summable series and the lemma is proved. O

Our next lemma establishes that £(B8) for B between B, and B,,, are
strongly correlated.

LeEmMa 2.2. Let 8, =1— 1/(log n)® and ¢, be as in Lemma 2.1. Then

(2.8) im sup [E(B) — E(B,) =0 a.s.
BTl B, <B<B,1

Proor. We put S, = L} _,¢,. Define also

Vi B

V2loglog(1/(1 - B%))

a(B) =

This allows us to write

N2(Bn+1)

Y. ex(B*a(B) — BEa(B,))

k=0

(29) Ny(Br+1) .
= k¥1 S,B*a(B)(1 - B) — S,B%a(B,)(1 - B,)

+(BY"1a(B) — B 'a(B,)) S,
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The last term is easily seen to be insignificant: Notice simply that

sup B2 la(B) — B 1a(B,)lISy,
Bn<B<ﬁn+1

(2.10) 2
= VAN(B.)Noglog N(8,) YN(B,) bwoestiouh

where the right-hand side goes to zero a.s. by the Marcinkiewicz—-Zygmund
theorem [8] or the Hartman—Wintner LIL.

The difficult part is to control the first terms in (2.9). Here we use the
following (and truly remarkable) result of Strassen [13] (see also Stout [12],
page 295):

1 n 1
2.11 Pl L —_— S,|=—]|=1.
(211 ( H;?_?::p V2n®loglog n kgll A \/§)
Let us first write
Ny(Brs1)
Y. SpB*a(B)(1-B) — SyBra(B,)(1 - B,)
k=1
Ny(Brs1)
<(1-B,)a(B,) X IS(Bk.1—BE)
k=1
Ny(Bpi1)
(2.12) +1a(Brs1)(1 = Bos1) —a(B)(1 =B, X IS,IBk
k=1
Ny(Br+1)
<(1=B)(Busr — Br)a(B,) X EISBET
k=1
Ny(Brs1)
+la(Bri1)(1 = Bosr) —a(B,)(A =B X 1S,IB%.
k=1

Note that in deriving (2.12) we use the fact that for 8 between B, and B, 1,
a(B)1 — B)B* > a(B,. )1 — B,,1)B%, .. Let us consider the second term in
(2.12) first. Notice that

,a(Bn+1)(1 - Bn+1) - a(Bn)(l - Bn)l

= a(Bn)(Bn+1 - Bn) + (1 - Bn+1)(a(Bn) - a(Bn+1))
1-6, 1

N(B.) y/2N(B,)loglog N(B,) ’

where ¢ = 1.5 for n large enough.

(2.13)

<c
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We split the sum into the piece where %2 runs from 1 to
3N(B, ., Dloglog N(B, ,,) and the rest. Recall that

Ny(Br+1) =N(Brpi1)log N(B,.1).

For the second piece we have

N2(ﬁn+l)
Ia(Bn+1)(1 _Bn+1) —a(Bn)(l _Bn)l Z ISkIB§+1
k=3N(B, Dloglog N(B,.,)
N2(Bn+1)
<la(Brs1)) (1 = Bui1) — a(B,)(1 = B,)|BEYPr 88 N By §7 |G, |
(2.14) k=1
c(1-49,)
< 3
V2N(B, 1)’ loglog N(B,.1)
1 (3/2)N(B,, + Ploglog N(B, 1) Ny(B,, 1 1)
X1 - =7 Y. 1S
( N(B,+1) ) -
C(l — gn) Ny(Brs1)

< 3 Z |Sk|
V2N(B,. 1) log® N(B,.,)loglog N(B,.,) &-1

In the last two lines we made use of the fact that N(B,)/N(B,.,) = 1 as
n to. Since 1 — 6, converges to zero as n — «, using (2.11) we see that (2.14)

converges to zero almost surely.
For the first piece of (2.12) we get similarly the bound

c(l — gn 3N(B,)loglog N(B,)
(2.15) (3 ) h IS,
‘/ZN(Bn+1) logIOgN(Bn+1) k=1

and using that
c

0n= 3 = 37
logn — (loglog N(B,.1))

(2.15) goes to zero a.s. for the same reason as before.
The term

1-—

N2(Bn+1)

k=1

is treated along the same lines, but splitting the sum this time at
5N(B,, . )loglog N(B,, . ). This concludes the proof of Lemma 2.2. O

REMARK. We have chosen 6, = 1 — (1/(log n)?) in order to simplify the
proof of the previous lemma; in principle, more refined estimates obtained by
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splitting the sums into m pieces at the points c¢; N log7 N will allow us to
prove this lemma for sequences 6, approaching one in an arbitrarily slow way.

We can now concentrate on the £(8,). Following the ideas of De Acosta, we
will introduce a (B and % dependent) truncation of the variables ¢,, that is, we
write

(2.16) e, = €x(B) +e1(B),

where

(2.17) £h(B) = &l {1e1<ap/\2(1=P)1ogloa (1, (1-F7) }
and

(2.18) 1 (B) = exl{1c,15-p-4//2(1-pP)loglog(1/(1-8%) }»

where 7 is a positive real number to be chosen later.
The following lemma establishes that the tails of the truncation are negligi-
ble:

LEmMa 2.3. Let ¢, bei.i.d. r.v.’s with mean zero and variance one. Choose
B, and 6, as in Lemma 2.2 and define

2.19 £9 = kea .
(2.19) 1(B,) \/2loglog(1/(1 —5) ;Eo Brei(B)
Then

(2.20) lim £9(B,) =0 a.s.

ProoF. Let us first observe that our truncation is related to that of
De Acosta [3]: Since [for 2 < Ny(B,)]

B* [k
(2.21) \/2(1 — B?)loglog(1/(1 - B?)) = 2loglog & ’

]]'{IekIZTB_k/‘/Z(l—ﬁz)loglog(l/(l—ﬁz))} = l{|€k|2‘r‘/(k/2 loglog &) } *
We can easily adopt De Acosta’s proof of his Lemma 2.3 of [3] to show that
1 N(B,)
(2.22) lim Y Bke9(B,) =0 a.s.
n—= /2N(B,)loglog N(B,) x=0 = "
Just notice that by (2.21),

1 N(B,)

‘/2N(Bn)10glog N(Bn) kgo Bﬁeg(ﬂn)

1 N(@B,)

< 1 s )
\/2N(Bn)loglog N(B, L le {leslzr/(k /2 oglog £ )

) k=0

(2:23)
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The right-hand side of (2.23) has been shown to converge to zero in [3]. We
repeat the argument for completeness: Kronecker’s lemma implies that (2.23)
converges to zero as N(B,) goes to infinity if

1
220 L htogiogh e/ amsen) < 25,

which in turn is true if the expectation of the sum is finite. But

e

1
e e O ),
o 1 o]
= = %% lozloz & log log % .Z 'E("?k“l{n/(j/zloglogj) slsklsn/((j+1)/(210glog(j+1)))})

j=k

i | J+1 D [ el \/ J+1
=< VWi o Pl o <lel<T -
(2.25) j=5 loglog(j + 1) 2loglog j 2loglog(j + 1)
ad J+1 [ j+1
< - P - < lel < -
= cjg;loglog(j +1) (T 2loglog j < lel < T\/Zloglog(J +1)

< c’[E(IsIz) =c,

and we are done.
Notice that the same argument shows that with
k

(2.26) SE= Y el(B,),

Jj=0
1

2.27 lim ———
( ) kl—lgo V2k loglog k

By (2.22) we are left with showing that

1 N(B,)log N(B,,)

2.28 ba(B) 50 as.
=2 V2N(B,)loglog N(B,) k=1§%ﬁn) Bnei(Br) a.s

Now notice that

SZ=0 a.s.

N(B,)log N(B,) N(B,)og N(B,,)
Y BB = L BuSE-Si)
k=N(B,) E=N(B,)
(2.29) . N(B,)log N(B,)
= Y BiSi(1-B,)
k=N(B,)

InN+1 N
+ BN I NTISE N — BNSE ..
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Now BN®B» ~ ¢~1/2 and by the remark (2.27),
1

@30 NGB lglog N(B,) P Hn-1 =0 as
Also, since
BNBIIg N o _1__
VN(B,)
BNBENBOIGE s N SErptog Nga)

V2N(B,)loglog N(B,) N(B,)y/2loglog N(B,) ’

which is easily seen to converge to zero by the Marcinkiewicz—Zygmund
theorem [10] (see also [12, 4]).

Thus, the last two terms in (2.29) converge to zero a.s., and we just have to
consider the sum. Since

1
1-8,~———— andfor N<k <Nlog N, B%~e */2N)

2N(B,)

what we have to show is that

1 N log N
Y e *2M|Sg| -0 aus.

2.31 Zy =
(2:31) NTUN®2 \2loglog N,y

Putting X, = |S7|/ 2k loglog k , we have
Nlog N

1
Zy = ~&/2M) 5k Toglog k X
NT N%2 [2loglog N ,EN ¢ 0BT08 e

(2.32)
1 Nlog N & /2N
< X —( 2k loglog % .
N KN Tl N EN e V2kloglog &
Now
1 N log N
—(k/2N)
N3/2,/2loglog N ng ¢ 2k loglog &
N log N
(2.33) < 2l ) e—(k/zN)1/ i
N N N
sc/we"‘/zx/;dx =y<w
1
and thus
(2.534) ZN(;;,,) <y max X,.

k>=N(B,)

But since X, — 0 a.s., max,, 5 X, converges to zero a.s., too. Using (2.34)
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together with the fact that Z,, is positive, this implies that Zy g, converges to
zero a.s. as n goes to infinity, and the lemma is proved.

It remains now to consider the variables

J1- B2 NoB)

(2.35) £1(B,) =

LeEmmA 2.4. Under the same conditions as in Lemma 2.3,

limsupéi(B,) <1, a.s.,

n— o

(2.36) i
liminf¢{(B,) = -1, a.s.

Proor. Let us first note that F(¢£(8,)) — 0. This follows from F(£4(3,))
—E(€9(B,,)), since E(e,) = 0, and the proof of Lemma 2.3. Thus let £4(B)
et(B) — E(eL(B)). Thus

£1(B.) = &(B,) — E(€1(B,))
(230 V1 b " reie)
= £ .
\/2loglog(1/(1 - B2)) k-o ok
Now, for any real s, we have
NM)(I s BE(1L-p)

sE(Bn) —
E(e ) < kI;IO 2 2loglog(1/(1 - B2))

(2.38)

- B .
XeXp[lsl\/2loglog(1/(1 )) Isk(Bn)”an ,

where we have used that e* < 1 + x + (x%2/2)el! and E(§,(8,)?) < E(e2) = 1.
Using the fact that |£;,(B,)| is bounded by

278, *
V2(1 - B2)loglog(1/(1 — B2))

and that for positive a, 1 + a < e®, we get

82

4'10g10g(1/(1 - 3,21))

ﬂ;(etf'i(ﬂn)) < exp{
(2.39)

X exp

s 2.10g10g(12;(1 = 52)) ]}
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Using the exponential Markov inequality, we get for all ¢ > 0,
(2.40) P(£(B,) = 1+ y) < e sA+ME(esélBw),
Choosing ¢ = 2(1 + y)loglog(1/(1 — B2)), we obtain

~ 1.
(241) P(¢i(B,) =21+7) < exp{—(l X2 - e(1+v)21)10g10g1 —5 }

For any positive y we can now choose 7> 0 small enough such that
1+ y)%2 — e**27) > 1. But

1
exp{—loglog(1/(1 - BZ))} = log(1/(1 - BZ))
(2.42) ! log” n
R log 6, R

Thus, the right-hand side of (2.41) is the general term of a summable series,

and using the Borel-Cantelli lemma, we conclude the proof of the lemma for

the lim sup. The proof for the lim inf is identical, and we are done. O
Collecting the results of this section, we have proven the following:

ProposITION 2.5. Let ¢, be i.i.d. r.v.’s with mean zero and variance one.

Then
.‘/1 _ BZ ©
(2.43) lim sup Y B*, <1 a.s,
B11 \/2loglog(1/(1 - B?)) k-0

the liminf being greater than or equal to —1.

Proor. Just notice that

(2.44)  £(B) = £x(B) + (&Ex(B) — &i(B,)) + £1(B,) + &1(B,),

and apply the four preceding lemmas to the four terms. O

With Proposition 2.5 we have proved the first part of Theorem 1.1, namely,
that all possible limit points of £(8) lie in the interval [ -1, 1]. The second part,
namely to show that all points in [ — 1, 1] are limit points a.s., will be proved in
the next section.

3. The cluster set. In this section we conclude the proof of Theorem 1.1
by:-showing that for any point b € [—1, 1], there exists some subsequence S,
such that

(3.1) ]}i_l)xlf(ﬁk) =b a.s.
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That is, if we denote by €({£(B)}) the cluster set of £(8),
(3.2) P(¢({&B)}) =[-1,1]) = 1.

To prove this, we first introduce, following [2], for some & > 0, the sequence

1
3.3 B
(33) P exp{ k1(log k) !(loglog )’ }

where (log k)*! = IT%_,(log j)*, and so on. We also set
log(1 - (1/log £))

(34) Ni(Br) =

2log B,
Notice that
1
(3.5) N(B,) ~ 5k!(log k)*!(loglog £)°!,
N(B:)
(36) Nl(Bk) ~ 210gk
and
(3.7 Ny(B) = N(Bi)log N(B,) ~ N(B)k log k.

We split ¢(B,) into three pieces,

3
E(Br) = Z &(Br)s

i=1
where

N,(B)
(3.8) &(B) = X Biew

n=N;_{(B)

where we set N, = 0 and N3 = «. For the remainder of this paper we set

59) 1 \/ 1- 6}

’ a, | 2loglog(1/(1-87%))

The purpose of this new decomposition of ¢(B) is the following. We want to
extract a subsequence S, in such a way that the ¢(B,) are essentially indepen-
dent random variables. The idea is that first ¢(8,) will differ from £,(B,) only
by terms that divided by a, converge to zero, and second that if Ny(B,,,) >
Ny(B,), for them £,(B, . 1) and £,(B,) are manifestly independent. This sets up
a number of recursive conditions on N,(B,) that will be seen to be satisfied for

our choice of B,.
) First, notice that by Lemma 2.1,

1 ,
(3.10) ]}1_1)1:0 a—k§3([3k) =0 a.s.



LAW OF THE ITERATED LOGARITHM 181

For £,(B,), we get

1 1 N«(By)
_lf I = h n
ay 1(Bs) \/2N(Bk)loglog N(B:) n2=:0 Ais
(3.11)
Ny(B,) 1 Mg
< Y Bre,|.
N(B.) /2Ny(B,)loglog Ny(B;) | no
Now
1 Ni(By)
3.12 lim su rE,|l <1 as.
B N Broglos Ny | 1= P +

Indeed, with B} in the sum replaced by 1, this would be implied by the
standard LIL. But on the other hand, for the range of summation, B} is
always close to one. One may thus simply repeat the proof of the LIL as given
by De Acosta (or see our Section 2), taking into account that when estimating
the tails of the truncation the bound |87¢%(B,)| < le?(B,)| can be used, and
that again in the estimates of the truncated variables one may bound Y N150g2»
by Ny(B,), which will give the result.

Since Ny(B,)/N(B,) ~ 1/(og k) — 0, it is immediate that the lim sup of
(3.9) is zero almost surely.

Finally one may check, using (3.4), (3.5) and (3.6) (see also [2]) that

Ny(Br+1) = Ny(By),

so that the random variables {£,(B,))%_, are independent. In order to prove
(3.1), it is enough to show that for any interval [c, d] containing b,

(3.13) P(igz(ﬁk) € [c,d],i.o.) =1.
ag

Using independence and the second Borel-Cantelli lemma, this in turn will
follow from the following:

LEmMa 3.1. For any b € [—1, 1] and any interval [c,d] s.t. b € (¢, d),

i 1
(3.14) Y P(a—kgz(;;k) IS [c,d]) = 4o,

b=k,

The proof of this lemma will closely follow the ideas of De Acosta [3] and
De Acosta and Kuelbs [4]. Since in this proof we make use of our (central limit)
Theorem 1.2, let us restate this theorem and outline its proof:

THEOREM 1.2 (Central-Limit Theorem). Let ¢, be i.i.d. r.v.’s with mean
zero and variance one. Let g(B) be an increasing function from [0,1] to N U o
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such that
limlg(B) = +o.

Put f(B) = L84} B%" and define
(B

2(B) = ——— ¥ pre
B)_ f(B n=0B

Then Z(B) converges in law to a Gaussian r.v. with mean zero and variance
oneas B — 1.

Proor. This theorem can be proved along the lines of the standard proofs
of the central limit theorem; the one found in Shiryayev’s text [11] is particu-
larly convenient.

One introduces X,(B) = (1/ y/f(B) )B"¢, and puts
F, s(x) =P(X,(B) <x)

and

@, o(x) = (287" /f(B) ),

where ®(x) is the distribution function of the normal distribution.
The analogue of the Lindeberg condition [11] that will be required for the
proof is that for all 6 > 0,

&(B)
(3.15) C(B) = z[ x2dF, 4(x) >0 asp > 1.
n=0"lxl>
With this condition and the notation above, Theorem 3.2 follows step by step
as in [11]. We will leave it to the reader to check the details.
To prove that (3.15) holds, notice that

& {02
(3.16) Z[ FdF, o(x) = Z/ =2 dF(\/f(B) B~"x),
n=0
where F(x) denotes the common distribution function of the ¢,. Thus
&g(B)
C = —p2" x2dF(x
8 ngo f(B)B '/!-x|>6/3‘"\/f(/3) ()
&(B)
3.17 < —p2n x2dF(x
(317 n=0 f(B)B [x!>6\/f(l3) ()
= - ___x?dF(x).
lx]>8y/ £(B) ( )

The last expression converges to zero since f(B) — « and [x2 dF(x) = 1.
This concludes the proof of Theorem 3.2. O
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Proor oF LEMMA 3.1. The main idea of the proof of the lemma is now to
represent ¢,(B,) as an average of g, = ¢t 22loglog N(B,) variables, each of
which converges to a Gaussian r.v. of variance one by the preceding central
limit theorem. To do this, we introduce numbers p,, satisfying

(3.18) Bz):f;%mk(l — B%Plk)t_zz loglogl 5 =1,
Pk
and put
- pip—1
Zl(Bk) = Bl)l:wopik E Bl’elsn+E€;(I)Pik+N1(Bk)t_l
(8.19) n=0

1
_ p2
x\/(l Bk)210glog1 — 5
Then

-1 qr

(3.20) £5(By) = TI;‘BI{;VI(B”)IZ Z,(B)-

=0
The p;;, are defined in such a way that E(Z,(8,)?) = 1, and that moreover p,,
converges to infinity with %2 uniformly in [. To see this, just note that
TLZ8P,, < Ny(B,) for all I considered and thus
£2
2loglog(1/(1 - B}))
from which we get, using (3.3) and (3.7), that p,, > (log? k)!. Notice further

that B1A» ~ exp[—(1/4log k)] converges to one in the limit £ — © and may
thus be ignored. Now,

By ZNZ(Bk)’

(1 — BiPt) ~ —2log B,py, =

@
(3.21) P(E(By) < [e,d]) = TTP(Zi(By) < tle,d]).
By the remarks above and using Theorem 1.2, for any fixed ¢ < o,
(3.22) P(Z,(By) < tle, d]) > y(¢[e, d]),
uniformly in [, where
1

3.23 tle,d]) = — ~G*/2) gy,

(3.23) v(tle. d]) o fxet[c,d]e g
Now let ¢ = b — 8, d = b + 8. We have (see De Acosta [3])

(3.24) y(t[c,d]) > exp[ - (¢2b2/2) + log y([—18,¢5])],

and thus, asymptotically

- 1
P(§2(Bk) = [C,d]) = (:Bxp[— _2—b2 lOglOgl — B]%

(3.25)

1
+ = log y([—t.s,t.s])loglog1 —g |
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Recalling that log(1/(1 — B2)) ~ k log k, we see that for any b € (—1,1) and
8 > 0, if ¢ is chosen large enough, the right-hand side of (3.25) is the general
term of a divergent series. But this proves the lemma. O

Combined with the discussion in the beginning of this section, we see that
we have actually proven (3.2) and thus the second assertion of Theorem 1.1. O
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