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THE WIENER SPHERE AND WIENER MEASURE

By NiceL CuTLaND AND Stu-AH Ng!
University of Hull

The Loeb measure construction of nonstandard analysis is used to
define uniform probability w; on the infinite-dimensional sphere of
Poincaré, Wiener and Lévy, and we construct Wiener measure from it, thus
giving rigorous sense to the informal discussion by McKean. From this
follows an elementary proof of a weak convergence result. The relation to
the infinite product of Gaussian measures is studied. We investigate trans-
formations of the sphere induced by shifts and the associated transforma-
tions of u;,. The Cameron-Martin density is derived as a Jacobian. We also
prove a dichotomy theorem for the family of shifted measures.

0. Introduction. The connection between Wiener measure and the uni-
form probability measure on the infinite-dimensional sphere S*(V ) has been
known for a long time; it plays an important role in the understanding of
Wiener measure and white noise and has motivated many important results.
The intuitive idea behind it is clear, but so far it lacks a rigorous theory which
is both natural and useful at the same time. With the advent of nonstandard
analysis, this situation is easily remedied, and the sphere can once again
occupy a more respectable niche.

The history of S*(¥ ) in probability theory started with Poincaré [10] early
in this century. His remarkable observation was the following. Fix an interval
(a, b) on a coordinate axis of R”. Consider the uniform probability measure on
8"~ %yn). Then as n increases, the measure of the portion of S”~'(yn) that
projects onto (a, b) approaches that given by the Gaussian distribution .#710, 1)
between a and b. In a different vein, Lévy [6] made use of this idea to study
functional analysis in an infinite-dimensional space. These results eventually
led to Wiener’s construction of Brownian motion which appeared in [11].

In [11], S*(V=) is called the “differential space.” The justification for this
term is as follows. Let w be a Brownian path. Intuitively, since dw? = dt,
writing w = dw,/dt, we have [lw?dt = (dt)™! =, so |l]l = Vo. If we re-
gard each dw, as the coordinate of dw on the ““¢-axis,” then the differential w
lies on the “infinite-dimensional sphere in L? of radius Ve .” Wiener’s con-
struction was based on this heuristic picture. However, during the next several
decades, the sphere faded from view and information from [11] was extracted
without mentioning the sphere. Wiener measure was given many rigorous
constructions, but the sphere was abandoned.
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2 N. CUTLAND AND S.-A. NG

Half a century later, interest in the sphere was revived when new work was
done by Hida and Nomoto [5] and Hasegawa [4]. Many of the insights and
results from this period were assembled by McKean in [8], which is still the
most valuable source of information on this subject. The papers [5] and [4] gave
rigorous treatments using the projective limit of S”(vn ). Their main interest
was in applications to functional analysis. More recently, Morrow and
Silverstein [9] utilized the sphere to construct the Ornstein-Uhlenbeck process
by means of weak convergence arguments. (This was also discussed in Williams
[12] concerning the Brownian sheet and Malliavin calculus.) However, these
approaches are conceptually unsatisfactory. Indeed, they are clumsy to use and
obscure the geometric content of S*(ve).

Robinson’s nonstandard analysis enables us to consider, for infinite N €*N,
a genuine sphere SV ~1(YN). Furthermore, the Loeb measure theory construc-
tion gives a genuine (standard) uniform probability on it. In this paper, for
purely notational reasons, we find it more convenient to work with the sphere
SN~=1(1) of unit radius, since the coordinates of an element will then represent
the increments of a Brownian path. We call SY~1(1) the ‘“Wiener sphere.”
The main result is the construction of Wiener measure from the sphere. There
are at least two other basic methods of constructing Wiener measure using
nonstandard analysis. The first is Anderson’s ““‘discrete’ construction from a
hyperfinite random walk [2]. The second is that in [3], obtained from *R¥
equipped with hyperfinitely many copies of Gaussian measure—this is a
“*continuous” construction. Our spherical construction is also *continuous.
Viewed internally, Anderson’s paths correspond to a hyperfinite number of
lattice points on the sphere; on the other hand, most of the paths in [3]
correspond to points that lie inside a thin shell surrounding the sphere. Thus
the spherical model is somewhere in between these two earlier constructions.
Perhaps the most significant difference is that the nonstandard increments on
the sphere fail to be independent, and the surprising thing is that nevertheless
the corresponding standard increments are independent.

Prerequisites on nonstandard analysis for this paper are kept to a mini-
mum. Only a basic understanding of transfer (mostly overspill) and the
saturation principle is needed. But we do assume a good knowledge of the Loeb
measure construction. The reader may wish to consult [1] and [7]. (They
provide enough probability background for this paper as well.)

The first section contains preliminary material. In Section 2 we verify the
spherical construction of Wiener measure using results from [3]. Then we
prove a weak convergence theorem for measures on finite-dimensional (stan-
dard) spheres.

Two applications of the Wiener sphere are obtained.

In Section 3 we consider the shift transformation of the sphere that
corresponds to an external translation of Wiener space. We derive the
Cameron-Martin formula from the Jacobian of this transformation. This
geometric approach makes rigorous the intuition explained in McKean [8].

As a second application, we prove in Section 4 a Kakutani-style dichotomy
theorem for the Loeb measure given by 4 shifted uniform measure. In particu-
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lar, we obtain an infinite family of mutually orthogonal Loeb measures on the
sphere.

1. Preliminaries and notation. We fix an infinite natural number N
throughout this paper and write At = N~! and let T = {At,...,1 = NAt}
denote the hyperfinite time line. For Y €*R” we adopt the convention that
Y,=0.

Given a measure A, we write E, for its expectation (with the subscript
dropped when there is no confusion). If A is internal, we write A; for its Loeb
extension.

We will work with the *Euclidean space *RY whose elements have the form
x = (xy,...,xy), with inner product x-y =XN  x;y; and norm |lx| =
(x - x)'/2. We identify the set {1,2,..., N} with T (via k£ < k At) and hence
*RN =*RT,

The Gaussian distribution with mean 0 and variance u > 0 is denoted by
410, w). It has density function ®(x; u) = 27wu)~ 2 exp(—x2/2u). The mea-
sure y on *R¥ is defined as the N-fold product of .#7(0, At), that is,

(1.1) y(A) = (ZwAt)_NﬂfAexp[—%Ngx?] dx, -+ dxy.
i=1

Note that E[|lx[|?] = NA¢ = 1; for i #J, E[xizsz] = E[x?]E[x?] = At? and
E[x}] = 3 At>
We note that almost all points in *R” are near the unit sphere:

ProposiTION 1.1. |lx|l = 1, a.s. ;.

Proor.

B[ (11 - 1)°] = E[Ixl*] - 2E[121?] + 1 = E[I=1] - 1

i<j

N
=E[fo+22xlzxf} -1
i=1
=N3At?+ (N -1)NA2—1=2N"1=0. O

REMARKS. 1. Let w: [0,1] » R be differentiable with differential w < L*.
Let x(w) €*R7 so that T, _,x(w), =*w,. Then
l2(@)I” = L x(w); < max|z(w),| T |x(w),|=0.
s<1 = s<1

So we can consider ||x(w)||® as a nondifferentiability. coefficient of w. (See [11],
Section 4.)

2. It is possible with a little care to estimate the thickness of the shell on
which vy, is concentrated. We can show that

M{x: 1 - (log N)>N-12 < |lall < 1 + MN-1/?)) = 1,

where M is any positive infinite number.
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A bijection A: *RT ->*RT is defined by AY, =Y, — Y,_,,.

The measure I" given in [3], Theorem 2.2, is related to y by y° A =T, that
is, I' as a measure on paths Y on *R7 is given by the measure y on the
increments (AY,) of the paths. This is the connection that enables us to quote
results from [3].

Write € = {w € C[0, 1]: w, = 0}, that is, continuous paths starting from 0.
As usual, ¢ is equipped with the supremum norm. Recall that for S-continu-
ous Y €*R7, st(Y) = °Y is the element z € ¢ so that 2z, = Y, forall t € T.

The inverse of A is given by the function ¥: *RT »*R7, where (Xx), =
¥, <+%,. We will be thinking of points in *R” =*R”" as vectors of increments,
so the following function from *R” to ¢ is 1mportant We define 7 = stoL;
this has domain dom(w) = A(st~X(¥)) = {x E*RT Yx is S-continuous}. More
explicitly, we note that m(x), = 0 and m(x), = °L, _,x, = °LM x;, when t =
M/NeT.

Now let 7 = 7 | , the restriction of  to (, the unit sphere in *R". We
see below [Proposition 1.2(i)] that m(, is measurable, hence we can define a
Borel measure W on € by W = u; o 7", where u is the uniform probability
on ). We will see in Section 2 that this is the Wiener measure, and so b =
is a Brownian motion, where B is the process B: Q X T ->*R given by
B(x,t) = (Zx),.

The proofs of the following basic properties of 7 are easy and thus omitted.

ProposITION 1.2. (i) 7 is measurable w.r.t. the o-algebra generated by the
* Borel subsets of *R.

(ii) Given finite a €*R and x,y € dom(w), both x +y, ax € dom(w);
moreover, w(x + y) = w(x) + w(y) and w(ax) = °am(x).

(iii) Let z € € and c = A*z; that is, ¢, =*2, —%2,_,, for t €T. Then
7w(c) = z. In particular, 7 is onto.

The following will be useful when we deal with unit spheres.

ProposiTioN 1.3. If |xll = 1, then x € dom(w) iff x/llx|l € dom(w); in
either case, m(x) = w(x /||xID.

Proor. Write p(x) = x/|lx|. First note that Yx = ||x|[Xp(x). So for [[x|l = 1,
if one of Xx and Lp(x) is S-continuous, then (Xx), = (Xp(x)), for all ¢t € T
hence 7(x) = m(p(x)). O

The unit sphere in R™ is written as S™~1(1) = {x € R™: x? + - -+ +x2 = 1}.
For infinite M, S®~1(1) denotes the corresponding sphere in *R™.
So SM1(1) = {x €*R": ||x|| = 1}. From [6], we have

. m2m/(3m)!, if m iseven,
(1 2) o, =area(S™ (1)) = 2(m+1>/27,.(m D/2/(1-3...(m - 2)),
if m is odd and > 1.
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(For consistency of our notation, we could define o; = 2.)

Throughout, we write Q = SV¥~1(1) as our main sample space. We define u
on Q to be the unique internal uniform (i.e., invariant under rotations)
probability measure on (Q, which is the same as the normalized * Lebesgue
measure on SV1(1). (The existence and uniqueness of these entities follow
from the transfer of appropriate results on S™ for finite n.) The internal
algebra F consists of *Lebesgue measurable subsets of S™~(1).

(Q, &, u) is called the Wiener sphere.

PROPOSITION 1.4. Let A={x € Q: (x, ‘- x,,) € A} for some *Lebesgue
measurable A’ C {x €*R™: x2 + -+ +x2 < 1}. Then

area( A) = oy_,, ,[A,(l —xi— - —x,2n)(N—m—2)/2 dx, -+ dx,,.

Proor. Let r=r(x,...,x,) =0 —x2— - —x2)/? and let dS =
r~ldx, -+ dx,,. Then by transfer of standard theory of surface integration,

area( A) = fA/aN_mrN_’"'ldS - oNnm fA/rN""'2dx1 ceodx,. O

ProposiTION 1.5. (i) E, [x?]=N""
(ii) Suppose 0 < H < N2, H is infinite and |ull = 1. Then p({x: |x - u| <
HN- V%) = 1.

Proor. By symmetry, NE“[xiz] = E#[||x||2] = 1, so (i) holds. For (i), using
the rotational invariance of u, we can assume that u, =1 and u, = 0 for
i > 1. Then x - u = x, and note that by Chebyshev’s inequality,

u({x, > HN"V?)) < H-2NE,[x?] =H %= 0. O

2. Wiener sphere and weak convergence. In this section, we prove
that the measure W = u; o mg! on the Wiener sphere defined in Section 1 is
the Wiener measure. The proof given here is short, but relies on results from
[3]. As a corollary, we also obtain a representation for Wiener integrals. A
further corollary is a quick proof of a weak convergence result for measures
induced by uniform probabilities on finite-dimensional unit spheres; this result
is noted in [9].

THEOREM 2.1. W = u, omq! is the Wiener measure on € in particular, ¥.x
is S-continuous a.s. .

ProOF. The measure y on *R¥ defined in Section 1 is clearly invariant
under rotations about the origin, and so is the measure vy ° p~ ! on Q induced
by the projection p(x) = x/||x|l. Therefore, by transfer of standard results on
finite-dimensional spheres, we have u = y o p~ !, the unique *g-additive proba-

bility on  invariant under rotations. Thus W =y, o p~'omg’.
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Now by Propositions 1.1 and 1.3, w(x) = w(p(x)), a.s. y;, so W=y, o7~}
hence W=T,°A e ! =T, ost™1, by the discussion in Section 1. But
[ o st™! is the Wiener measure ([3], Theorem 2.2). [J

REMARK. A direct verification of Theorem 2.1 is harder than the corre-
sponding result for the Gaussian nonstandard model in [3], but will neverthe-
less follow from elementary calculations similar to those given in McKean [8].

CoROLLARY 2.2. b is @ Brownian motion (where b =°B, as defined in
Section 1).

We now have the following representation of Wiener integrals.

CoRrOLLARY 2.3. Let F: T —>*R be an SL*lifting of some f € L0, 1]. Then
forteT,

Y Fx, = fatfu db,, a.s.ujp.
0

s<t

Proor. The above proof shows w = yo p~!. By Proposition 1.1, x| = 1,
a.s. v, therefore the result follows from the representation given by [3],
Theorem 3.1. O

Another application of Theorem 2.1 shows that uniform probabilities on
finite-dimensional unit spheres induce measures on ¢ which converge weakly
to Wiener measure.

Let u, be the uniform probability measure on S”~'(1). Define B,:
. 8771 x[0,1] » R by B,(x,0) =0, B,(x,%k/n) = L% ,x, and for (k — 1)/
n <t <k/n, we interpolate B,(x,t) linearly. The Borel measures W, on ¢
are given by the following formula:

(2.1) W (A) = u,({x: B,(x,) € A}).

Notice that W, (£) = 1. Let E, denote Ey, . The following result is similar to
that of [2], Theorem 29.

THEOREM 2.4 (Weak convergence). W, -, Wasn — o,

Proor. Let f: ¢ — R be a bounded continuous function. We want to show
that

(2:2) lim B,[ f] = Ey[ ]

By construction, E,[f]= [gr-14,f(B,(x,))du,(x) for each n. For our
fixed infinite N, we have O = S¥"X(1), uy = u and Ey = E,. Therefore

Ey[*f] = fﬂ *f(Bu(x,))du(x) = /ﬂ f(m(x)) dur(x) = Eyl f],
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where = follows from Loeb measure theory, continuity of f and the fact that
Bp(x, - ) = m(x) for x € dom(). The last equality follows from Theorem 2.1.

Since N is an arbitrary infinite natural number, E,[*f] = Eylf] for any
M €*N\ N, that is, (2.2) holds. O

We remark that Corollary 2.2 gives a standard Brownian motion .b(x) =
°B(x, - ) with time set [0, 1]. If the time set [0, ») is desired, we could use
{At,..., N2A#) and SV*~%/N) in place of T and S¥~(1) respectively. The
definition of B remains unchanged, and °B(x, - ) will still be a Brownian
motion.

3. Shift transformations and the Cameron-Martin formula. It is
well known that given a ‘“nice” translation of the Wiener space, the resulting
new measure is equivalent to the Wiener measure, with a density given by the
Cameron-Martin formula. Using an appropriate shift transformation of the
Wiener sphere, we derive this formula from an internal Jacobian (Theorem
3.5). Moreover, this transformation produces a measure which is internally
equivalent to the uniform probability.

We will work with the following type of shift transformation of the Wiener
sphere.

Let ¢ €*RY and |lc|| < 1. Define

0:Q - Q
by 6(x) = (x — ¢)/llx — cll = p(x — ¢) (the projection). 6 is well defined since
llell < 1.

ProrosiTiON 3.1. (1) 6: Q — Q is an internal homeomorphism.
() (uo8)y =pg-0.

Proor. (i) follows from |le|| < 1.
0 induces an internal automorphism on the algebra of w-measurable sets,
hence (ii) follows from the construction of the Loeb measure. O

DerFINITION 3.2. We let u® = w60 be the measure on  carried by the
transformation. (Then the above shows u§ = uy < #6.)

Let the translation of the Wiener measure by z € € be defined as
W2(A) = W(A - 2).
Notice that we can always find ¢ €*RY with 7(c) = z and |c|| = 0.

LemMA 3.3. Suppose ¢ €*RY, lc|| = 0 and w(c) =z € €.
(@) Letx € Q. Then x € dom() iff 6(x) € dom(w) and m(6(x)) = w(x) — 2.
«(ii) For any A C € and x € dom(m), w(x) € A iff m(6(x)) € A — 2.

Proor. Let x € Q, since [c/| = 0, |lx — ¢l = 1 and hence (i) follows from
Proposition 1.2(ii) and Proposition 1.3. (ii) is a consequence of (i). O
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The relation between W* and S is given by the following result, which can
be viewed as an extension of Theorem 2.1.

COROLLARY 3.4. W? = omgl.

Proor.
W?(A) = W(A -2)
=u({yeQ:w(y) €A -2z2})
— w((0(x): 7(8(x)) € A - 2))
=u({6(x): m(x) € A}) [by Lemma 3.3(ii)]
= uy(ma'(A)). 0
The density of u® w.r.t. u is given by the following theorem. [We are not
now assuming that ¢ € dom(r).
THEOREM 3.5. Let ¢ €*RY and |lc|l < 1. Then we have the internal density
duf 1-x-c

X —_—.
du lx — el

Proor. Let 6 be the shift transformation associated with ¢ as before. By
rotating the sphere, we can assume the following on the coordinates of c:

(3.1) ¢;=llell and ¢;=0 fori> 1.
(In particular, x - ¢ = x;x,.) Now let y = 6(x). Then
(3.2) y=(x-c)/llx—cl.
Let
F) . _
J(x) = (7 YN-1)
(%~ xy_1)

be the Jacobian of 6~ ! (regarded as a transformation of the first N — 1
coordinates of points on the sphere). Let A C Q) be *Lebesgue measurable and
without loss of generality, assume that x, > 0 for each x € A. As a conse-
quence, we also have (8(x))y > 0 for each x € A. Moreover, the projection
onto the first N — 1 coordinates is one to one on both A and 6(A). We denote
the images by A and 0(A) respectively. Now by Propos1t10n 1.4 (with m =
— 1), and (3.1) and (3.2) above,
area(0(A)) 1

= —Ulf Ay(‘TleNI)—IdM e dyn_q

p(A) = n(6(A)) = Tarea(9) 2

1 _
= 501 jA llx = elld (x) (owlenl) " diy -+ day_s,
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hence
(3.3) U 2y =l — el ().
du
Since ||x|| = 1, for x € Q, we have
(3.4) e —ell = (1 — 22 - ¢ + llel?)"".
From this we obtain
—c;
a—xillx —cll= el
Thus (3.1) and (3.2) give
9y, 1-x¢, 9y, 1
o, Nx—cP’  ox; lx—cl

for i > 1 and dy;/dx; = 0 when ¢ # j > 1. In particular, the Jacobian matrix is
lower triangular, hence

llx — cll x —c|NT

l—xlcl][ 1 ]N_2 l1-x-¢
llx — el® I

J(x) = [
Now the theorem follows from (3.3). O

We remark that there are transformations other than 6 for which Corollary
3.4 still holds. For instance, one may consider ¢: () — (2, where ¢ ! is given
by

o7 Hy) = (v +e)/lly +cl.
Then it can be shown that the counterpart to Theorem 3.5 is the density
N-1
(c cx + (1 + (c- x)2 — l|c||2)1/2)
(1+ (e x)* = llel®)

and clearly 6 is preferable.
The next lemma is the key to showing that u° and u are equivalent if
¢ — d is sufficiently small.

LEMMA 3.6. Let ¢, d €*RY such that °|cll,°|ld|| <. 1. Suppose

Nlle — dlI* < .
Then 6 = du®/du? is S-integrdble w.r.t. ul

Proor. Our aim is to show E“d[Sz] < o, then the result follows from

Lindstrgm’s lemma ([3], Lemma 1.5).
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First recall the parallelogram law for Euclidean spaces:

(3.5) la + dlllla - bll < llal® + 15112,
Then it follows that for x € Q,
(3.6) lx — dllllx — 2¢ + dll < llx — cl® + llc — dJf>.

Notice also if we pick a standard A with °llc||,°lld|| < A < 1, then
la —cll=1~llell=1-h.
Hence if we let & = (1 — )~2 < o, then |lx — ¢[|"2 < a. Now by (3.6),

e = dllllx - (2 — )l lle — dI?
( ) <1+ ——— <1+ale-dl>

lx — cll® - lx - cll®
Therefore
(3.7) lx — dll? < (1+alle - dI?) llx — dll
. < allc — _.
lx - cll® lx — (2¢ — d)ll

On the other hand, Theorem 3.5 implies

1-xz-¢c |x—-d|V
Ti1-xd Qx-d
Using (3.7), we obtain then

1-x-¢c lx — d|IN
[1—x'd lx = (2¢ — d)IN

Notice that °llc|| < 1, llc — d]l = 0 and ||12¢ — d|| < llell + |le — d||, so we have
(3.10) %l2e — dll < 1.

Applying Theorem 3.5 to 2¢ — d and ¢, (3.9) gives
(1—x-c)? (1+ale—dI?)" du2?

l1-x-d 1-x-(2c—d) du?

(3.8)

2
(1 + alle — dI?)”

(3.9) 52

IA

(3.11) 8% <

Now
(1 —x-c)2
<
1-x2-d)(1-x-(2¢c—d))
and by (1 + a/b)? < e® for all @ > 0 and b > 0, we have

(1+alec- dIIZ)N = (1 + aNlc - d||2/N)N s‘exp(aNllc - d||2) < o,
So for some B < o,
d,u2c—d
du?

This shows that E 6% <B <. O °

(3.12) 52 < B
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COROLLARY 3.7. Under the assumptions in the above lemma, u5 = u%.

PrOOF. u°(B) = [3ddu?, and since & is S-integrable, u?(B) =0 =
u(B) = 0, that is, u5 < u?%. By interchanging the role of ¢ and d, we get
pg <pg. O

We can obtain the Cameron-Martin formula for a translation of Wiener
measure by showing that its density is the standard part of the internal
density du®/du.

LeEMMA 3.8. Suppose z € € and 2 = dz/dt € L0, 1]. Let c €*RY be such

that ¢; =*z; 5y —*2;.1,/n- Then du’/du is S-integrable w.r.t. u, and for
Lr-a.a. x,

du’ 1, I
E(x) = exp(fozt db, — Efozf dt) =p(d), say,
where b = 7w(x) is the Brownian motion given by p.

Proor. By Proposition 1.2(ii), 7(c) = z. We first establish the following
interpretations of some geometric quantities:

(3.13) Nlel? = [22 dt,
0

(3.14) Nx-c= ['%db, as.u,
0

(3.15) le —cl™ = p(b), as. u;.

In order to prove (3.13)-(3.15), we let a €*R” so that a; 5 = c(AH)~"
(Recall our convention that a, = 0.) Since c; = i/} y"2, dt, it follows from
[3], Lemma 1.7, that a is an SL?lifting of 2. So [j27 dt = LY ,a? y At, which
is just Nllc|?, and (3.13) follows. Similarly, we have Nx ¢ = LN ja; yx;, S0
(3.14) follows from Corollary 2.3. Notice that Nx - ¢ is u-a.e. finite. From (4)
we obtain

lx =™ = (1 - (2Nx - ¢ — Nlel?)/N)
~ exp(Nx ‘e — éNIIcIIz), a.s. iy
= p(m(x)), a.s.ur,by(3.13) and (3.14),

so (3.15) holds. )

Note that (3.13) and the assumption on z imply that ||c|| = 0. Consequently,
Theorem 3.5 applies. Since |x - c| <llcll= 0, from (3.15), we see that
du/du(x) = p(m(x)), a.s. u;, that is, du°/du lifts p, as required. Lemma 3.6
(with d = 0) shows that du’/du is S-integrable w.r.t. u. O

From Corollary 3.4 and Lemma 3.8 we have the following corollary.
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CorOLLARY 3.9 (Cameron-Martin formula). Suppose x € € and 2 €
L?0,1]. Then W? < W and dW?/dW = p.

4. The dichotomy of shifted measures. We will show that the Loeb
extension of a shifted uniform probability as in the last section is either
equivalent or orthogonal to the Loeb extension of the uniform probability. In
fact, the dichotomy theorem (Theorem 4.2) can be used to produce an infinite
family of mutually orthogonal measures each arising from an internal measure
equivalent to the uniform probability. (The maximal cardinality of such a
family depends on how much saturation the nonstandard universe has.)

We first see that when the transformation moves too far, the measures
become orthogonal.

LEMMA 4.1. Let ¢,d €*RY such that |lcll < 1, °ld|l < 1 and Nllc — d|I® is
infinite. Then u5 L u%.

Proor. Let & = du’/du?. Then by Theorem 3.5,

1—-x-¢ llx=dI™

4.1 o = .

We define A = {x € Q: (x — d) - (¢ — d) < |lc — d?/3} and will show
(4.2) ui(4) =1,
(4.3) 8(x) =0 whenever x € A.

Since (4.3) implies u$(A) = 0, the lemma will follow.
For (4.2), let a = (3(1 + ||d|D) L. Define

A={yeQ:y (c—d)<allc-dl?.
If y € A, then

(c—4d) 1/2 ~1/2
e —dl <alle —dll= (aN'?|lc = dI)N~*/%.
Since °a > 0, N'/?||c — d|| is infinite, so by Proposition 1.5(ii), u(A’) = 1. Now
let p(u) = u/llull be the projection and we show that A’ c p(A — d), from
which it follows that u?(A) = u(p(A — d)) = 1 and thus (4.2) holds.
Take y € A, let x € Q so that y = p(x — d). Then /

G=d) ey < e

llx — Il 3(1+1dll)’
hence
(x—d) - (c—d) <llc—dl?*/3,
that is,
» "Acp(A-d).

For (4.3), note that
le —cl®=l(x —d) — (¢ = )P =llx —dl® + llc — dlI? — 2(x — d) - (c — d).
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So for x € A,
e — ol > llx — dI® + lle — dI? — 2lle — dI*/3 = llx — dI® + lle — dI?/3,
hence
e — ol le — dIi?
PR T T

Notice that |1 — x - d| < 1 — ||d||, is noninfinitesimal, and using (4.1) we see
that for x € A, 8 (x) is infinite, that is, 8(x) = 0, hence (4.3) holds. O

N/2
N,
> (1 + 3a%lc — dlI?)""?, infinite.

A little calculation actually shows that in the above lemma we can replace
the condition °|d|| < 1 with the weaker one log(1 — ld[)/Nllc — d|I* = 0 (still
requiring that Nlc — d I is infinite). Combining Corollary 3.7 and Lemma
4.1, we obtain the following Kakutani-style classification for Loeb measures

c

K-

THEOREM 4.2 (Dichotomy). Suppose c,d €*RY and °lc|,°lId| < 1. If
Nllc — dl? < », then uS, = ul; otherwise u5, L u%.

However tempting it appears, this theorem does not readily give the corre-
sponding dichotomy theorem for W?. Consider, for example, that if ¢, =
(=1)'N-12 for i < N2 and c; = 0 otherwise, then Nl|c||® is infinite, so
uS L puy. But since m(c) = 0, uSomgt = W=pu omgh

REFERENCES

[1] AuBevERIO, S., FENSTAD, J., HgEGH-KROHN, R. and LiNDsTRgM, T. (1986). Nonstandard
Methods in Stochastic Analysis and Mathematical Physics. Academic, New York.
[2] ANDERsON, R. M. (1976). A nonstandard representation for Brownian motion and It6 integra-
tion. Israel J. Math. 25 15-46.
[3] CutLaND, N. (1987). Infinitesimals in action. /. London Math. Soc. (2) 35 202-216.
[4] HaseEgawa, Y. (1980). Lévy’s functional analysis in terms of an infinite dimensional Brownian
motion. I. Proc. Japan Acad. Ser. A Math. Sci. 56 109-113.
[5] Hipa, T. and Nomoro, H. (1964). Gaussian measure on the projective limit space of spheres.
Proc. Japan Acad. Ser. A Math. Sci. 40 301-304.
[6] Lévy, P. (1951). Problémes Concréts d’ Analyse Fonctionelle. Gauthier-Villars, Paris.
[7] LinpsTrgM, T. (1988). An invitation to nonstandard analysis. In Nonstandard Analysis and
Its Applications (N. Cutland ed.). Cambridge Univ. Press.
[8] McKEaN, H. P. (1973). Geometry of differential space. Ann. Probab. 1 197-206.
[9] Morrow, G. J. and SILVERSTEIN, M. L. (1986). Two parameter extension of an observation of
Poincaré. Séminaire de Probabilités XX. Lecture Notes in Math. 1204 396-418.
Springer, New York.
[10] Poincarg, H. (1912). Calcul des Probabilités. Gauthier-Villars, Paris.
[11] WiENER, N. (1923). Differential space. J. Math. Phys. 2 132-174.
[12] WiLLiams, D. (1981). To begin at the beginning: ... Stochastic Integrals. Lecture Notes in
Math. 851 1-55. Springer, New York.

DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY OF HULL

HuLr, HU6 7TRX

Unitep KiNgDoM



