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WEAK CONVERGENCE AND GLIVENKO-CANTELLI RESULTS
FOR WEIGHTED EMPIRICAL U-PROCESSES

By WILHELM SCHNEEMEIER
University of Munich

Empirical processes of U-statistic structure were introduced by Serfling
and studied in detail by Silverman, who proved weak convergence of
weighted versions in the i.id. case. Our main theorem shows that this
result can be generalized in two directions: First, the i.i.d. assumption can
be omitted, and second, our proof holds for a richer class of weight
functions. In addition, we obtain almost sure convergence of weighted
U-processes in the ii.d. case which improves the results of Helmers,
Janssen and Serfling, Aerts, Janssen and Mason and (in the special situa-
tion of the real line) Nolan and Pollard.

1. Introduction. Following Silverman (1983), let (£,;); . be a sequence
of i.i.d. random variables on some probability space (2, &, P), and let m € N
be fixed. Consider some Borel-measurable kernel function A: R™ — R and
define the so-called U-process U, for all n > m in the following way:

E, = {(ir,..rin) €{1,...,n) i, # i, for j # &},

card(E,) " Y k(&) <t),

(iy,...,i,)€EE,

H,(1) :

H(t) = E(H,(t)),
U,(t) = n*/?[H,(t) — H(t)| forallteR.

The main result of Silverman (1983) is the weak convergence of U, - ¢~ *(H)
w.r.t. the supremum norm, where ¢: [0,1] — R, fulfills the following condi-
tions [with v(¢) == t/%q ()]

(@)4) g and v are increasing on [0,1/2], q is symmetric about 1/2 and
continuous.
(i) [¢/logl/x1"?v(dx) < » and v(t)|0 as ¢ 0.
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WEIGHTED EMPIRICAL U-PROCESSES 1171

Condition (@)(ii) is slightly stronger than square integrability of ¢! because
partial integration at once implies:

172 s
6] f [log J v(dx) z[oq_z(x) dx for £ > 0 small enough.

€ 12 £
(ii) fo[log %} v(dx) =~ and /;q_z(x) dx < o

1/2 3/4
for g(x) = (x log ;C—) (loglog ;) and & > 0 small enough.

In Section 3 we will show that Silverman’s result continues to hold for all
weight functions ¢ having the following property (@, ) for some k&, € N:

(Q;, XD q is increasing on [0, 1/2], symmetric about 1/2 and continuous.
°(ii) [&/2q™ 2ko(x) xR0 dx < oo,

Besides the fact that monotonicity of v can be omitted, a simple calculation
shows that (@,) is strictly stronger than (@, ) for all £ € N [note that (Q,)
means square integrability of ¢ ~']. This implies that the class of all ¢ fulfilling
(@) for some k € N is larger than that of all ¢ fulfilling (@).

Moreover, we prove not only weak convergence for U, - ¢~ '(H) but also for
a truncated version of U, - ¢~ '(V,), where the functions V,: R — [0, 1] are
close to the variance structure of U, [for this result the condition (@,) has to
be strengthened, which might be compensated by a suitable choice of V, 1.

_ This type of argument function is quite new and gives better results in all
cases where the variance of U, (¢) is ~(H(¢)); see Remark 3.9.2.

Nolan and Pollard (1988) proved a different generalization of the Silverman
result by studying function-indexed U-processes, but restricted to the case of
the real line their class of weight functions is smaller than ours.

All our results on weak convergence are stated (for triangular arrays in the
non-i.i.d. case) in Section 3, while in Section 4 almost sure convergence for
weighted U-processes in the i.i.d. case (in order to apply martingale argu-
ments) is investigated. Proofs of the results are given in Section 5.

2. Basic definitions and characterization of weak convergence.
Let (¢,):<in), nen be a triangular array of rowwise independent random
elements taking values in some measurable space (Z, ), which are all defined
on the same probability space (Q,.7, P). Throughout this paper let m € N be
fixed and w.l.o.g. let i(n) > m for all n € N. Consider some (not necessarily
symmetric) measurable kernel function h: Z™ — R and define for all n € N
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and ¢ € R (with E,,, as in Section 1):
Hn(t) = card(Ei(n))_1 ) Z l(h(gnil"'-;fnim) < t)’

H,(¢) = E(H,(t)),
Uy(t) =i(n)*[H,(¢) - H(2)].

Now we have to state some regularity conditions for the variance structure of
U,. We make the general assumption that there exists some K > 0 and for all
n € N an increasing right-continuous function V,: R — [0, 1] such that for all
—o < r<t< oo

E([UL(2) — U(r)]?) < K[Vi() = Vo(r) +i(n) Y]

Note that this condition is especially fulfilled by the choice of V, = H,. Our
main result will be the weak convergence of the process

W(t) = {Unu)q-l(vn(t)), for i(n) " < V(1) <1-i(n) 7",
" 0 elsewhere,

where g denotes a weight function satisfying, for some integer & > 3/2, the
condition:

(@,)0) q is increasing on [0, 1/2], symmetric about 1,/2 and continuous.
(i) [&/%q 2*(x)x* 32 dx < oo,

In the case of V, = H,, we will even be able to prove a nontruncated result if ¢
only fulfills (Qk) of Sectlon 1. But in many cases of interest (as pointed out in
Section 1), the (§,) proposition together with suitable V, gives better results.

Now we will give a short abstract of the type of weak convergence used
throughout this paper, the so-called _£,-convergence; for further details see
Gaenssler (1983).

For some totally bounded pseudometric on R, we define the continuity
modulus

w5(8) = sup{| f(¢) — f(r)|:s(r,t) <8}, 6>0, fel(R).

Then the following characterization is crucial [cf. Gaenssler and Schneemeier
(1986)1.

THEOREM 2.1. (W), o is relatively £, -sequentially compact iff

(A) lim lim sup P* (0% (8) 2¢) =0 forall £ > 0,
510 poor

(B) Blllm limsup P(|W,(¢)|>M) =0 forallt € R.
T 55w

ReMARK 2.2. If (A) and (B) hold, we call (W), .\ -Z,-convergent iff the
finite-dimensional distributions of (W), o converge. Thus the main problem
is to prove the “tightness” of (W), . by Theorem 2.1.
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3. Weak convergence of the weighted U-process. The following in-
equality is important for all proofs [for a similar inequality in the degenerate
ii.d. case, see Lemma 7 of Dehling, Denker and Philipp (19871

ProPOSITION 3.1. For all k € N there exists C = C(k, m) > 0 with

6{[U() - U,P1*) = C[E([uuo) - Ul + i |
forallr,t € R,n €N.

SHORT OUTLINE OF THE PROOF. In case m = 1, U, reduces to the empirical
process and so Proposition 3.1 is an immediate consequence of the Bernstein
inequality. For general m, we make use of an approximation of U, by a sum
of m empirical processes.

Now, our aim is to establish conditions (A) and (B) of Theorem 2.1 for the
process W,. The following inequalities are crucial.

Lemma 3.2. If (Qko) holds for some ko > 3/2, then there exists C =
C(k,y, m) = 0 such that foralln €N, 0 <8 <1/2 and &> 0
2

P(sup{| W,(¢)|: V.(¢) <8} 2 ¢) < Ce—4ko|f0‘sq—2ko(x)xko—3/2 dx

LEMMA 3.3. There exists C > 0 such that for all ¢ >0, 0<8<1 and
i(n) =8

P(sup{|U,(£) — U(r)|: [Vo(£) = V(r)| <8;r,teR}>e) < Ce .
These two inequalities are the key for controlling the modulus of continuity

of W,. It is obvious that we have to impose some additional asymptotic
properties of (V,,), <x, which are of the following form:

(V) There exists some pseudometric s on R with:

@ lim, o lim sup,, _,, sup{|V,(#) — V() r,t € R; s(r,t) <8} =0.
(i) (R, s) is totally bounded.

Now we are able to prove one of the main results.
THEOREM 3.4. Assume that (Qko) holds for some ko > 3/2 and that (V) is

fulfilled together with i(n) — % for n — . Then (W), < is relatively -£;-
sequentially compact.

In view of Remark 2.2 this implies the following theorem.

THEOREM 3.5. Under the assumptions of Theorem 3.4, the following state-
ments are equivalent: ’

() (W,), o is Z,-convergent to some zero-mean Gaussian process G.
(i) (EW,(r)W,(£)), < converges for all.r,t € R.
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Now the question arises which functions (V,), . are possible and whether
the results of Silverman (1983) follow from Theorem 3.5. Note in this context
that V, = H,, n € N, is suitable; this follows by a simple calculation. Then the
following corollaries are consequences of Lemma 3.2 and Theorems 3.4 and
3.5.

COROLLARY 3.6. If (Qko) holds for some k, € N, then there exists C > 0
with

IP(sup{lUn(t) lg™*(H,(¢)): H,(t) < 8} > s)
2 , 1/2ko)
< C.s‘4’“"[[5(,?_2’“’(x)xkO‘1 dx] + s‘1[f1/l(n)q'2k°(x)x’“°‘1 dx
0 0

forall e >0,0<86 <1/2andn € N.

COROLLARY 3.7. Assume that (@, ) holds for some k, € N and that (V) is
satisfied for V, = H,, n € N. Then, if i(n) - o forn — », (U,q X(H,)), <y is
relatively £,-sequentially compact.

COROLLARY 3.8. Under the assumptions of Corollary 3.7, (U,q (H,), cn
is -£-convergent to some zero-mean Gaussian process iff

(E([U0a (B [Uura  (Hu(r))]), ..

is convergent for all r,t € R.

REMARK 3.9.

1. Suppose that there exists an increasing right-continuous function H with

limsup[V,(¢) — V,(r)] <H(t) — H(r)forall —w <r <¢ <o,
now
Then it is obvious that the pseudometric s(r,¢) = |H(¢) — H(r)| satisfies
(V)@ and (V)(ii). This is true in particular for the i.i.d. case so that the
result of Silverman (1983) is an immediate consequence of Corollary 3.8
(note also that we have given an elementary proof, whereas Silverman used
the KMT approximation).

2. Another interesting aspect is that the condition on the weight function in
Corollary 3.7 might be weakened by using Theorem 3.4, though the integral
condition is stronger. We may compensate for this by a suitable choice of
(V) cn (but note that Theorem 3.4 gives a “truncated” result). For an
example, set £(¢,,) = U(0,1) for all i <i(n)=n, n €N, m =2 and
h(x,y) = max(x,y). Then an easy calculation shows that there exists
C >0 with E(U,#®) — U () <C[t3 —r3+n~"'] for all 0<r<t<l,

“n €N [note also that H, (t) =t2 for all 0 <¢ <1 and n € N]. By using
q(t) =t — )3 and V(t) =3 for 0 < ¢t < 1, n € N, Theorem 3.5 proves
Z,-convergence of (W,), ., that is, the weight function is of the form
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g~ V.(#) = Lt~! near 0. This result cannot be achieved by Corollary 3.8
because in order to establish this, a weight function ¢*(¢) < 2¢'/% near 0
would be necessary; this function does not satisfy (@) for any & € N.

4. Rates for almost sure convergence of the weighted U-process in
the i.i.d. case. In this section let (£,),cy be a sequence of independent and
identically distributed (i.i.d.) random elements in (Z, &) defined on Q,7,P),
m e N, and let h: Z™ — R be such that h(fil, e, §im) is measurable for all
(iy...,i,) € E,, n > m. Furthermore, we will use the definitions of Section
1. Then we consider a weight function g¢: [0,1] - R, with the following
property:

g is increasing on [0,1/2], symmetric about 1/2 and
continuous; [¢g~ '(x) dx < .

Our aim is to study the almost sure convergence of (a,D7),.,, where
(a,), -, is an increasing sequence of positive real numbers and D7 is defined

for n > m by

D = sup{q~(H(t))| H,(¢) — H(#)|: 0 <H(2) <1}.
The next proposition is an immediate consequence of the fact that H, =
(n))"'LrL H}, where for 1 <i <n!and n > m, H, is the empirical measure
of [[n/m]] independent random variables all having the distribution of

h(¢,,...,¢§,) (here [[-]] denotes the greatest-integer function); this representa-
tion is due to Hoeffding (1963).

PrOPOSITION 4.1. Let for all i €N, my,...,n; be independent U(0, 1)-dis-
tributed random variables,

i
a(t) =i"V2 Y (1(n;<t)—t), O0<t<]l,
j=1

and
D7 = sup{i "%} (¢)la;(£): 0 <t < 1}.

Then we have for all n > m, (D) < KD{, , -
Based on these definitions we prove the following lemma.

Lemma 4.2. If flq~'"%(x)dx < o for some 0 <c <1, then there exist
C > 0 and a sequence (v,), cn With v, L0 such that

[E(ﬁ,‘{) < Cn=¢/W+9(y V'™ foralln € N.
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THEOREM 4.3. Assume that [3q~ ' “(x) dx <  for some 0 < ¢ < 1. For all
increasing sequences (a,), s, € R, which satisfy

o
Y (a,—a, )n /0" <w
n=m+1

and either () ¢ <1 and a, = +(n*/4%9) or (i) ¢ = 1 and a, = 2(n'/?), we
have: a,D? — 0 P-a.s.

COROLLARY 4.4. Provided that [4q~ ' “(x)dx <  for some 0 <c¢ < 1, we
have for all decreasing f: (0,1] > R, with [} f(x)dx < : f(n=¢/C*)DI - 0
P-a.s.

COROLLARY 4.5.

() For [lq~%(x)dx < », we have: DI — 0 P-a.s.
(ii) For [lq~*(x)dx < », we have: n'/?*log n(loglog n)'*¢]"'DZ —» 0 P-a.s.
for all € > 0.

REMARK 4.6.

1. Corollary 4.5(i) is Theorem 2.2 of Helmers, Janssen and Serfling (1985) and
Theorem 1(i) of Aerts, Janssen and Mason (1986).

2. The rates in Theorem 4.3 may be compared with those in Theorem (9) of
Nolan and Pollard (1987), who study the more general case of function-
indexed U-processes. Applied to our special situation for many kernel
functions, their theorem gives only bounded weights ¢~ *(v) (because the
function » used there is bounded away from 0) in contrast to Theorem 4.3.

We conclude this section by giving an example which shows that for special
kernel functions h, Corollary 4.5(i) is the best possible sufficient condition
(note that this might not be the case for “all” h).

ExampLE. Let _Z(¢£) = U(0,1) and h(x,,...,x,) = max(x,,...,x,).
Then we have for all n > m:

(+) H,(¢) =R,,"i__[1[Fn(t) - %} for0 <t <1,
i=0

where

n—m)!
m(_.L>1'

F(t)=n"1 i 1(¢,<t) and R,=n

!
i=1 n:
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We suppose [4q (x)dx = ». For all M > q~(1/2), we define 0 <a, < 1/2
for n € Nby ¢ X a?) = Mn™. Then (a,), <y is decreasing and it follows that

m
ay

Yarnml>2"M !t [TgTN(x) dx = .
n=1 0

An application of Mori (1976), Lemmé 3, implies:
P(¢,.,, <a, forinfinitely many n € N) =1,

where ¢, ,, denotes the mth-order statistic of £,,..., ¢, for all n € N. Noting
that ¢,.,, < a, gives ¢ (H(a,)H, (a,) = M [by (+)], we get

[P’(limsup sup{q '(H(t))H,(t):0 <t =<1/2}> M) =1

n—oo

M 1 immediately implies: lim sup,, _,,, D? = « P-a.s.

So this example is an improvement of Theorem 1(ii) of Aerts, Janssen and
Mason (1986) if we restrict ourselves to this special situation.

5. Proofs.

Proor oF ProrosiTiION 3.1. The proof is given in two steps. Suppose

w.lo.g m > 2.
Part 1. For all n € N we consider the following processes, indexed by ¢ € R:

[Jj—-1 m
L(t)= Y| X, xB,x X Vn]({h <),
j=1_ 1 Jj+1
m [7-1 m
j=1 7t

where for all D € 9,

i(n)
wn(D) = i(m) " X 1p(4),

i(n)
i(n)"" L v,(D) withv,; = 2(£,),

i=1

va(D) :

Bn(D) =i(n)"*[u,(D) — vy(D)].
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We prove (1): For all £ € N there exists a constant C = C(k, m) > 0 with
E(L, (&) — U, )PP*) < Ci(n)~* for all t € R, n € N.
It is obvious that L, = i(n)"?[ XTu, — X7T'v,], which immediately implies
- m-1li(n)—1i
U, -L,l <2[1- T] L i(n)"? < 2m3i(n) "2
i=o i(n) .
It only remains to show that (1) holds with U, replaced by L,, which is a
consequence of the following statement:
(2) For all 2 € N and r € N there exists C = C(k, r) > 0 with

E([an[gm—xvﬂ

r+1

(B)| | <Ci(n)™ foralneN,Be @ 2.
1

1

The proof of (2) proceeds by induction on r € N. First, we treat the case r = 1:
For all B ®12.@ and n € N, it follows with M, = {1,...,i(n)}**:

E([B, X (1, — v,)(B)]*)
4k 2k
= i(n)_Sk Z IE([ X (lfnij_”mj):l( X B)

Gy,.oorig)EM, Jj=1 1
card({i,, ..., i) <2k
. _an 2k (4R, J idb—iook . —k
<i(n)™ " Y j i(n)’ j** 2% < C(k)i(n) ".
j=1

Now suppose that (2) holds for r € N. Then we obtain for all n € N and
Be ®*g:

r+1 r+1
E(an[xﬁ’n_ XVn (B)zk
1 1

i(n)

< 22]ia[i(n)_1 )y [E(ﬁn X [ X, — X, | x1, (B)*
i=1 1 1

+|E(Bn X >1< v, X (M’n - Vn)(B)zk)

The first part of the sum on the right-hand side can be estimated by an
application of the induction hypothesis, while the second may be reduced to
the case r = 2 by Jensen’s inequality. This proves (2).

Part 2. We show (3): For all £ € N there is a C = C(k, m) > 0 with

E([L.(8) — L(M]*) < C(E([L,(6) — L)) +i(n)7*)
forall r,t € Rand n € N.

Combining (1) and (3) finishes the proof of Proposition 3.1. But (3) is an
immediate consequence of the well-known Bernstein inequality [cf. Gaenssler
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(1983), page 91: Let n €N and —o <r<¢<x be fixed. It follows with
v=E(L,(t) — L(r)?) and u = [3vi(n)2/(2m)PP:

E([L(2) — L(r)]*)

- [0°°um(|Ln(t) —L(r)] = /@D ds

S

6v + 46/ mi(n) "V

36V/@Ri(n)"?
(— —————) de
8m

o 3el/k
sfo2exp - 5 | de
1/k

u €
5/;)2exp(— 0

- 1 ® 3
_ofw "t k T 1/k ok _ 2 1ek
2/;) v exp( Yo )ds +2 ui(n)kz(n) exp( St de

de + fw2exp

u

© 1 3
<2f on( - 5o+ oxp( - e/ aelut + i 1]
0

Proor oF LEmma 3.2. For all n € N we define a sequence (t1);en aS
follows (with ¢} == — and inf@ := o0): #},; = inf{t > ¢} V@) - V@) =
i(n)~Y for i € N. Then it is obvious that there exists some [, € N with

—o0 =0 <P < e <UHp g <P =

This implies for all n€N, 0<8§<1/2 and 1 <i<j< 1, with V,(t}) <6
(where C is a variable constant only depending on k, and m):

(L ZGRAGINE clam**o(vi(e))E([Un(e}) - ()] ™)
£, ™) a7 (V) — 0 (V)] ]
(3.1)

2| h(vile) [Vilep) = Vo)

PV g (V) - (V)] ]

50[ i (i(Vn(t;l))—f(Vn(ti‘_l)))}’

r=i+1

where

1(#) = [[lao(x) d(x*) + xtod(—g ()]

< 2k0[0‘q—2ko(x)xko-1 dx forall0<t<1/2.
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Theorem 12.2 in Billingsley (1968) immediately gives for all ¢ > 0:

2
P(T. > <C —4k0[ 5 —2kg ko—ld
@) (T, > ¢) < Ce™*| [lga(x) ko™ d
with T,, = sup{| W, (¢)|: V,(¢7) < 8.
To complete the proof of Lemma 3.2, we make use of the following simple
inequality (with M, = {i > 1: V,(t?) < &}):
sup{| W, (£)|: V,(¢t) < 8} < T, + max{qg~(V,(¢2))T": i € M,,},
where
T == sup(|U,(t) — U,(t})|: tp <t <t} forieM,.
Now we show:
There exists C > 0 with P(T > ¢) < Ce~*%0i(n)'"2*o for all ¢ > 0,i € M,,,
n € N, which immediately implies for ¢ > 0 and n € N:
P(max{q~'(V,(t?))T":i € M,} > ¢)
L Cethogtho(V,(41))i(n)' T
ieM,

L Cethag=ho(V,(e2))[Vi(#7) = V(e )]
ieEM,

IA

(5)

IA

2
< Ck%e"‘ko[ (‘;q_z""o(x)xko':a/2 dx] .
0

Together with (4) this finishes the proof of Lemma 3.2 so that only (5)
remains to be shown: For this let » € N and i € M,, be fixed. Then we define
some sequence (s}); .y as follows (with s§ := ¢} and infJ = co):

Ty = inf{s > st H,(s) — H,(s?) > i(n)_l} for j € N.

Then it is obvious that there exists some r, € N with s <t , <s! ., and
r, < i(n) such that [U,(¢ —) denoting left-hand limit]:

P12 26) = X [Plaun{|U(0) - Uiaples <t <ats) = )
+R(|U(s7) - Un(s5)] 2 )]

< jglo[u)(wn(s;‘“ =) = Uy(s)] + 2i(n) % 2 ¢)

+P(|U(s7) - Up(s8)| 2 ¢)]

3.1 . _
< Cethoj(p) "PRott . O
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Proor oF LEMMA 3.3. Let 0 < a <b < 1and n € N be fixed. Similar to the
proof of Lemma 3.2 it follows: There exists C > 0 with

P(sup{|U,(¢) — U,(r)|:a <V, (r) <V, (¢) <b} >¢)
<Ce®[b—a+i(n)"Y]" foralle >0andneN

[compare with the case ¢ = 1 and &, = 3/2; the term i(n)~! results from the
fact that in order to use Billingsley (1968), 12.2, we partitioned R into at most
i(n) intervals of at least “V,”-length i(n)~!]. Now dividing R into at most §~!
intervals of at least “V,”’-length & completes the proof. O

Proor or THEOREM 3.4. Let wy () be defined as in Section 2. Then we
obtain forall n € N, 0 < 25 < 6 < 1/2 with

,(8) = sup{{W,(¢) — Wo(r)l: IV, (¢) — V()| < 8}:
®,(8) < 2sup{|W,(¢)|: V,(£) < 8} + 2sup{|W,(¢)]: V,(¢) = 1 - §}

5
+ q_l(g)sup“Un(t) — U, (r)|: |V(t) = Vi(r)] < 8}

+sup{|U,(¢)|: t € R}sup{|q‘1(a) -q Yb)|:

<a<b<l-

N | O

;b—asﬁ}.

| O

Application of Lemmas 3.2 and 3.3 immediately implies (note that ¢ is
continuous and that a result similar to Lemma 3.2 holds for W, if V, is “near
1”; this case can be reduced to Lemma 3.2 by using the kernel function —h):

~ 2
lim lim sup P(w,(8) > ¢) < Ce-4ko([‘*q-2ko(x)k°"3/2) for all &£ > 0.
10 0

n—o

Then & {0 and use of (V)(i) show that Theorem 2.1(A) holds. Theorem 2.1(B)
is a trivial consequence of Proposition 3.1 because we have for all ¢ € R,
neN:

N V. (£)? +i(n)"? . L o . 2/kg
E(W,(£)*) _Cq4(max(Vn(t),i(n)_1)) _2C[k0[0q (x)xto1d, ]

with C not depending on n and ¢. O

Proor oF THEOREM 3.5. The last inequality in the proof of Theorem 3.4
also proves the implication (i) = (ii). It remains to show that (i) = (). It is
obvious that for ¢ € R one of the following statements must hold:

1. (V.(#)),, <y is bounded away from 0 and 1.
2. W,(t) =3 0.
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[Note that if there is some subsequence (n') with V,,(¢) — 0 or 1, we obtain
EW,(¢)*) — 0, that is, (i) implies E(W,(#)?) — 0.] So we are able to restrict
ourselves to case (1) if we prove convergence of the finite-dimensional distribu-
tions. Considering now the auxiliary process L, of the proof of Proposition
3.1, we have for all ¢ € R: E(qg ™"V, ()L ()1(;ny1 1 - i(n)- (Vo)) — W (D) >
0 as n — =, so that only the convergence of the finite-dimensional distribu-
tions of ¢~ XV, (¢))L,(¢) to normal distributions has to be shown [note that we
are in case (1)]. This is an immediate consequence of the Cramér-Wold device
and the central limit theorem. O

PrOOF OF COROLLARY 3.6. This follows by noticing that in the case V, = H,,,
n € N, we are able to improve relation (5) in the proof of Lemma 3.2 as

follows:
There exists C > 0 with

(6) P(T" > &) < Ce~**0i(n)"** foralle > 0,n € N.

This is an easy consequence of the fact that (using the notation of the proof of
Lemma 3.2) T < |U(¢t7., —) — U, (t™)| + 2i(n)~ /2 1t only has to be shown
(note that there is no truncation) that

S, = sup{g (AU, )): Ay(t) <i(n) ")
behaves well:

E(S,) < 2i(n)"* [ g Y (x) dx
0

<2

|:2k0 -1 ](2k0—1)/(2k0)[

1/(2kq)

fi(n)_lq'zko(x)xkO_1 dx
0

Proor oF LEMMA 4.2. Using the notation of Lemma 4.1, we obtain by an
application of Chow’s inequality [cf. Gaenssler and Stute (1977), 6.6.1] to the
martingale (a,(¢)/(1 — )y, <1

P(RY2¢) <36:7 [ /°g"*(x)dx foralln>3ande >0,
1/n

)

oo ’ [ 1/2
[E(R;{)s[op(Rgzs)des [Omin(1,36u—2)du}[[llfq-z(x)dx] .

where

R

1
— <t<
n

Ry = sup| o~ (0)]an(t) ~ o 5

Integration over all ¢ > 0 gives for n > 3

With I(s) == [§q 17%(x)dx for 0 < s < 1/2 and C := [§ min(1,36x2) du this
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implies for all n > 3:

1 1/2
E(n~'/?R1) < Cn-l/z[q“‘l(—)[l/zq‘1‘°(x) dx]
nJ/’1/n

(1—c)/(2+2¢) 1/2
— Cn—c/(l+c)|:n—1q—1—c(l)] [I(i) - I(i)] .
n 2 n

1 (1-c¢)/(2+2¢) 1 1/2
g 1 1)
n 2

Similarly to the end of the proof of Corollary 3.6, we obtain for S7:=
sup{la,(®)I: t < 1/n}:

1 1/(1+c)
) for all n > 2.

E(n~1/%87) < 2fl/nq_1(x) dx < 2n_°/(1+c)l(;
0

This completes the proof because we have for all n > 2:

E(DZ) < 2[E(n"'/282) + E(n~*/2R2)]. O

Proor oF THEOREM 4.3. It is obvious that (DJ), ., defines a reversed
submartingale [compare Gaenssler (1983), Lemma 5]. Then Theorem 4.3 is an
immediate consequence of Lemma 4.2 and Chow’s inequality. O

Proor OF COROLLARY 4.4. This follows with a, = f(n=¢/1%9), n>m. 0O

Proor oF COROLLARY 4.5. Apply Corollary 4.4: For (i) weuse f=1,¢c =0
and for (ii) we use

-1

1 1 1+e¢
c=1 and f(x)= [xlog—(loglog—) }
x x
for small x > 0,¢> 0. O
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