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GIRSANOV TRANSFORM FOR SYMMETRIC DIFFUSIONS
WITH INFINITE DIMENSIONAL STATE SPACE

By S. ALBEVERIO, M. ROCKNER AND T. S. ZHANG

Ruhr-Universitit Bochum, Universitdt Bonn and
University of Edinburgh

A Cameron-Martin—Girsanov—-Maruyama type formula for symmetric
diffusions on infinite dimensional state space is proved. In particular,
relaxations of the usual assumptions which still imply absolute continuity
(but possibly no longer equivalence) of the path space measures are dis-
cussed. In addition a converse result is proved, that is, we show that
absolute continuity of the path space measures enables us to identify the
underlying Dirichlet form.

1. Introduction and main results.

A. Preliminaries. The purpose of this paper is to present a proof of a
Cameron—Martin-Girsanov-Maruyama type formula for symmetric diffusions
associated with Dirichlet forms which works for finite as well as for infinite
dimensional state spaces E. The finite dimensional case was solved in
Fukushima (1982), Oshima (1987) [generalizing the one-dimensional case
studied in [Orey (1974)] by a different method which does not carry over to the
infinite dimensional case. Our proof is based on recent results in Albeverio and
Réckner (1991), Takeda (1990) and Réckner and Zhang (1992) (to which we
also refer for further references). In order to state our results precisely we
need some preparations.

Let E be a locally convex Hausdorff topological vector space over R which is
Souslinean. Let E’ be its dual equipped with strong topology. Suppose there
exists a separable real Hilbert space (H,{ , )x), densely and continuously
embedded in E. Identifying H with its dual we obtain

(1.1) E' cH CE densely and continuously

and ( , )y restricted to E' X H coincides with the dualisation { , )g be-
tween E’ and E. H should be thought of as a tangent space to E at each
point. Let, for K C E’,

(1.2) FCK) = {f(ly,...,1,)m €N, fe Ca(R™), 1,,...,1, €K},

where Cy(R™) denotes the set of all infinitely differentiable (real) functions on
R™ such that all partial derivatives are bounded. If K = E’, set FCy =
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FCH(E"). For k € E and u € FC; we set

1.3 ou d + sk E

. — =— €E.

( ) ok (2) dSu(z s )s=0’ ¢

Observe that for u € ¥C; and z € E fixed, h — (du/dhXz) is linear and
continuous on H. Define Vu(z) € H by

du
(1.4) <Vu(z),h)H=£(z), h €H.

Let u be a probability measure on the Borel o-algebra #(E) of E and for a
set & of functions on E, we denote the corresponding set of w-classes by &7.
k € E is called well-u-admissible if there exists 8, € L%(E; u) such that

u du
(1.5) fﬁvd/x= —fu—azdu—fuvﬁkdu forall u,v € FCy.

We refer to Albeverio, Kusuoka and Réckner (1990) for a characterization of
well-u-admissibility [see also Réckner and Zhang (1992), Theorem 1.4]. As-
sume from now on that:

There exists a dense linear subspace K of E'(C HCE)

(1.6) such that each %2 € K is a well-u-admissible element in E.

(1.6) implies that the densely defined quadratic form
(1.7) @(u,v)=§j<Vu,vU>HdM, u,veey;,
E

is (well defined and) closable on L2(E;u) [cf. Albeverio and Réckner (1990),
Albeverio, Kusuoka and Rockner (1990) and Rockner and Zhang (1992) for
details]. We denote its closure by (&,, D(¢£),)), which is a classical Dirichlet
form [in the sense of Albeverio and Roéckner (1990); see also Fukushima
(1980)].

Let (, ), denote the usual inner product in L%(E; u). A negative definite
self-adjoint operator L on L2(E; u) is called a Dirichlet operator if

(1.8) (Lu,(u—-1) Vv 0),<0 foreachu € D(L)

or equivalently, if the corresponding semigroup T, = e'X, ¢ > 0, on L%(E; ) is
(sub-) Markovian (i.e., 0 < T,u < 1 whenever 0 <u < 1 u-a.e., t > 0). Recall
that for any Dirichlet form (&, D(&)) there exists a unique Dirichlet operator
L(&) on L*(E; u), called its generator, such that

(1.9) D(&) =D(Y-L(&)), &(u,v) =(V-L(&) u,V-L()v),.

Recall also that there is a (1-)capacity associated to a Dirichlet form (&, D(&))
on L%(E;u) which we denote by &Cap; correspondingly we define the notions
&-quasi-everywhere (abbreviated £-q.e.), &quasicontinuous, &-nest and so on
[cf. Fukushima (1980) and Albeverio and Rockner (1989) for detailsl. As
Fukushima (1980), Theorem 3.13, one proves that each u € D(¢]) has an
&,-quasicontinuous (u-)version i.
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From now on we assume that either E is a conuclear space such that
[z, z) glu(dz) < » for each | € E’ or E is a separable Banach space. Then
by Schmuland (1990) and Albeverio and Rockner (1989) there exists a diffusion
process Mg = (Q, #,(X)),.,(Q,),c g) with state space E associated with
(&,, D(&)); that is, for u: E — R, #(E)-measurable, bounded and ¢ > 0,

(1.10) E2[u(X,)] = fgu(xt) dQ, = (e'™%u)(z), p-ae.zeE.

Since My, is conservative, that is, eléw1 =1, t > 0, we may (and shall)
assume that Q= C(0,«[,E) and X, Q — E is evaluation at ¢ € [0, o[.
Furthermore, &= %, where for t € [0,»], & =o{X|s <t}. My is called
canonical in this case. For brevity we also write P < @ for two probability
measures on (Q, &) if P is absolutely continuous w.r.t. @ on each %, t > 0,
andset P~ Q if P < @ and @ < P.

B. A converse result. Assume there exists another family of probability
measures (P,),. z on (Q, %) such that M = (Q, #,(X,),., (P,),cg) is a
(canonical) conservative diffusion on E which is symmetrizable; that is, there
exists a probability measure m on (E, #(E)) such that for all u,v: E — R,
#(E)-measurable, bounded,

(1.11) fptuvdm =fup,vdm forall ¢ > 0,
wilere pAz,dy) = P[X, € dyl. Consider the Dirichlet form (&, D(¢)) on

L*(E; m) associated with M, that is, the Dirichlet form whose generator
L(&) is the L*(E; m)-generator of M. Assume that

- (1.12) FZ7 isdensein D(E) wrt. & =E+(, Im-

THEOREM 1.1. Let My, Mp and (&, D(£)) be as before and set Q, =
/Q,u(dz) and P,, = [P,m(dz). Suppose P,, < @Q,. Then:

(i) m = @2 u for some ¢ € LAE;p), ¢ > 0.
(i) (&, D(&)) is the closure on L*(E; ¢® - u) of the quadratic form

(1.13) &(u,v) = %fE<VU,VU>H€D2dP«, u,v e%}f.
Furthermore, any &,-nest is an &-nest.

Proor. See Section 2.

Theorem 1.1 extends Theorem 1 in Fukushima (1982), which follows from
Proposition 1.2.

PROPOSITION 1.2. Suppose that m does not charge &,-capacity zero sets and
that P, < Q, for m-ae. z € E. Then P, < Q.
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ProoF. See Section 2.

REMARK. Theorem 1.1 and Proposition 1.2 remain true if in (1.6) we
merely assume that each % € K is u-admissible as defined in Albeverio and
Rockner (1990) instead of well-u-admissible.

C. A Girsanov theorem on infinite dimensional state space. For K as in
(1.6) we define an operator S, x on L*(E; u) with domain ¢ ;(K) as follows:
For u=f(,,...,1,) € ¢ (K) and K, K an orthonormal basis of H
having [;,...,1,, in its linear span, let

114 S 1 Z Jd (du u
. = — R— — +
(1.14) WK 8k(ak) Brar |

where B, is as in (1.5). Note that the sum in (1.14) is only a finite sum and

that by (1.5) we have for the generator L(&,) of (£, D(&))) that 5% ,(K) c
D(L(&)) and

L(&)u=S, gu for each u € FZ(K).

In particular, definition (1.14) is independent of the chosen basis K. In this
subsection we assume that

(1.15) L(&,) is the only Dirichlet operator on L*( E; ) extending S, .

Sufficient conditions for (1.15) to hold have been proved in Rockner and
Zhang (1992). It is fulfilled, for example, in many cases where u is Gaussian
[cf. R6ckner and Zhang (1992), Proposition 3.2, A.1] or absolutely continuous
w.r.t. a Gaussian measure [see Rockner and Zhang (1992), Section 2].

Let ¢ € D(&), ¢ # 0 p-a.e. such that B, - ¢ € L?(E; u) for all & € K. Then
by Rockner and Zhang (1992), Proposition 2.1, each & € K is well-m-admissi-
ble where m = ¢? - u. Hence (as before) the quadratic form

(1.16) E(u,v) = %f(Vu,Vv)Hdm, u,veFEy

is (well defined and) closable on L?(E;m) and its closure (&, D(£,,)) has
associated to it a canonical diffusion process Mp = (Q, F,(X,),. o, (P,),c g)
with state space E.

THEOREM 1.3. Consider the situation described in the preceding text. As-
sume furthermore that

(1.17) ¢ € D(&,),
(1.18) ¢ UIVelly € L*(E; 1),

where we use V also to denote the closure of the linear operator V: %ﬁ: -
L% (E - H;u) on LXE; n). Then P, ~ Q, for &,-q.e. (resp. &,,-q.e) z € E and
the corresponding densities are given by (3.5) [ see also 3.4(i)]. In particular,
P, ~ @, and any &, -nest is an &,,-nest and vice versa.



GIRSANOV TRANSFORM IN INFINITE DIMENSIONS 965

ProoF. See Section 3.

REMARK 1.4. (i) Condition (1.17) can be relaxed [see 3.4(ii) below]. By
Ri6ckner and Zhang (1992), Theorem 2.3, (1.17) implies that we also have
uniqueness for L(&},). More precisely,

(1.19) L(&,) is the only Dirichlet operator on L2(E; m) such that 9% {(K)

‘ c D(L(&,)) and L(&,)u = L(&)u + ¢~ Ve, Vudy; u € F& 4.
Sufficient conditions for (1.17) to hold have been proved in Réckner and Zhang
(1992), Proposition 2.6 [see also 4.6(i) below]. For corresponding examples see
Réckner and Zhang (1992), Sections 4-7.

(ii) To call Theorem 1.3 a Girsanov theorem (on infinite dimensional state
space) is justified since it follows by Albeverio and Rockner (1991), Section 6,
that if (%, 2)z0%(2)u(dz) < » for all k € K, then for &, -q.e. z € E,

(1.20) X, =z+ W, +Np, t>0,Prae.
Here (W), , is an (%,),. -Brownian motion on E with covariance ¢ , )y

starting at 0 (€ E) under P, and (Ny), . , is a continuous, E-valued, (%,),. -
adapted process such that for each & € K,

5k, N)p = [ [1Bu(X) + (07 Kk, Vodu)(X,)] ds,
t>0,Prae,&,qe z€E.

In the case E is a Banach space we have to assume in addition that E is big
enough (compared with H) so that (W,), ., exists [cf. Albeverio and Réckner
(1991) for details].

Assumption (1.18) in Theorem 1.3 can be hard to check in applications.
However, without (1.18) one cannot expect equivalence of P, and @,, but only
absolute continuity. Let (&, ,,,, D(¢,,,,)) on L*(E;u + m) be defined analo-
gously to (&,, D(&,)) on L*(E; ).

THEOREM 1.5. Consider the situation described before Theorem 1.3. As-
sume that

(1.21) ¢ €D(Ens)-

Then P, < Q, for &,-q.e. z € E. In particular, P,, < @, and any &, -nest is
an &,,-nest.

ProoF. See Section 4.

Examples with dim E = + o have been discussed in detail in Albeverio and
Rockner (1989, 1990, 1991) and Rockner and Zhang (1992), in particular those
arising in Euclidean quantum field theory. It has been shown in Réckner and
Zhang (1992), Section 7, that if u is the free field in two space time
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dimensions in finite volume and ¢ is the exponential of a (even) renormalized
Wick polynomial, then all assumptions for Theorem 1.3 are fulfilled and one
thus has a Girsanov theorem in this case [which was the main tool in
Jona-Lasinio and Mitter (1985)]. It follows from Rockner and Zhang (1992),
Section 5, that if w is the time-zero free field on S’(R) and ¢ is the ground
state of a Schrédinger operator of type H, + V, where H,, is the free Hamilto-
nian and V is a (space cutoff ) renormalized Wick polynomial, then Theorem
1.5 applies.

D. Compactification. We note that in order to make the standard theory of
Dirichlet forms on locally compact space in Fukushima (1980) [and, e.g., also
the results in Takeda (1990)] applicable we need to recall a compactification
procedure developed in Albeverio and Réckner (1980, 1991) for our (possibly)
infinite dimensional, hence nonlocally compact space E. It follows by Albeverio
and Réckner (1989), Section 2, that there exists a Hausdorff compact separable
metric space E such that E c E continuously and densely and such that for
any Dirichlet form appearing above, (£, D(£’)) say, the corresponding image
Dirichlet form (&, D(#)) on L%(E; ) [cf. Albeverio and Riockner (1991) Sec-
tion 1] is a regular, local Dirichlet form. Here { is the image of w under the
embedding E c E. If M is the diffusion process associated with (£, D(&)) on
E, one can trivially extend it to a diffusion process M on E by defining each
z€E\E to be a trap for M [cf. Fukushima (1980), Theorem 4.1.3,
for details] and such that E is an invariant set for M. It easily follows that
M is associated with (£, D(£)) in the sense of (1.10). Futhermore, it
follows from Lyons and Réckner (1992) and Albeverio and Réckner (1989),
Section 3c, that the (1-)capacity &*Cap associated with (&, D(&)) is tight
[ie., &Cap(E\K,) =, . 0 for some compact sets K, C E, n € N]. Hence
the notions of capacity, quasicontinuous, q.e. w.r.t. (&, D(&)) and (&, D(£))
coincide [see Albeverio and Réckner (1991) for details]. This means that we can
“lift” all questions about (&, D(¢’)) and M on the (possibly) nonlocally com-
pact state space E to questions about (£, D(&)) and M on the compact space
E where the standard theory about abstract Dirichlet forms in Fukushima
(1980) is applicable and then transfer the answers back to (£, D(£’)) and M on
E. We shall use this procedure without mentioning it explicitly or by simply
adding the phrase ‘“by compactification.”

Finally, we would like to mention that the implementation of our method to
prove the Girsanov-type theorems, Theorems 1.3 and 1.5, has been open for
quite some time (as was communicated to us by M. Fukushima, who we would
like to thank at this point) and has now become possible by exploiting the
results and methods in Albeverio and Réckner (1991), Takeda (1990) and
Rockner and Zhang (1992). :

2. Proofs of Theorem 1.1 and Proposition 1.2.
Proor orF TueoreMm 1.1. (i) It follows by u- (resp. m-) symmetry and

conservativeness that for each ¢ > 0, @, ° X; ' = p and P, o X; ' = m. Now (i)
is obvious.
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(ii) By Fukushima (1980), Theorem 5.2.2, and compactification we know
that for all « € FCy,
(2.1) u(X,) —u(X,) =M+ NM,  ¢>0,P-as., &qe.z<€E,

where (M[“),,, is a martingale additive functional (abbreviated MAF) of
finite energy and (N[*)),., is a continuous additive functional (abbreviated
CAF) of zero energy of Mp. Furthermore [cf. Fukushima (1980), (5.2.26),
(5.2.1)], for every u € ¢,

1 U2 .1 Y
(2.2) (u,u) = lim EEM[(M} ] = lim — B, [(M1),],

where E,[-]= | - dP,,. Since the quadratic variation of (N}*)), . , vanishes we
have that

N,-1
(2.3) (M), =P, - lim ¥ (u(Xp,) - u(Xp)), ¢20,
n—o i=
for a sequence (7"), c of partitions 0 = ¢§ < ¢} < --- <5 = ¢ of [0,¢] with

8(r") == max, (¢}, ; — t) -, ., 0. For the same reasons [cf. Albeverio and
Réckner (1991), Theorem 4.3] we have for u € ¢,

u(X,) —u(X,) =M+ NM, t>0,Q-as.,&,qe.z€E,

where (M[“)), _ o, (N}*D), , are the corresponding quantities w.r.t. M, and
Nn— 1

(24) (M) =Q, -~ lm T (u(Xy,)-u(Xy), t20.
i-1

But by Albeverio and Rockner (1991), Proposition 4.5 (cf. also Lemma 3.3
- below),

(2.5) (M1, = ft<Vu(Xs),Vu(Xs)>H ds, t>0,Q,as.
0

Since P, < @,, (2.2)-(2.5) and the polarisation identity imply that for all
u,v e 79772",

& i 1E[<M[u1M[vl>] lim —E (Vu(X,),Vo(X,)) d
(0) = lim 5B [0, M) = lim B, [(9(X,), Vo( X)),

f(Vu,Vv>H dm = f<Vu,Vv>H¢2du,

and (ii) is shown, since %% is &,-dense in D(&).

To prove the last part let (F,), .y be an &, -nest, that is, F, is a closed
subset of E such that F, CF,,,, n €N, and hmn_,°° é, Cap(Fc) = 0. Here
F¢ = E\F,. Since e'X“x 1 = 1, £ > 0, we have by Fukushima (1980), Theo-
rem 3.3.1 and Lemma 4.3.1, that

(2.6) &,-Cap(Fy¢) = [exp(—op;) dQ,, neN,
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where Ope = inf{t > 0|X, € F?}, is the first hitting time of F¢. Hence for all
t>0,

n—o n—oo
Therefore, since P,, < @, and {lim,, _,., o5 <t} € F,,;,

P,| lim op: < t] =0,

n—oo

hence

lim op. < 00] =0
n—o
and consequently, as before, lim, _,, &Cap(FY) = 0; that is, (F,), .y is an
&mnest. O

ProOF OF ProPOSITION 1.2. F1x t > 0. Let u be a nonnegative, bounded,
#(E)-measurable function with [u du = 0. Then

[ [u(X) d@.u(dz) = [u(X,) dQ, = [udu =0,

hence by Albeverio and Rockner (1991), Corollary 3.8, [u(X,)dQ, =0 for
¢,-q.e. z € E. Consequently, by assumption [u(X,)d@Q, = 0 for m-ae. z € E,
hence [u(X,)dP, = 0 for m-a.e. z € E. Therefore,

Judm = [u(X,)dP, = [ [u(X,) dP,m(dz) =0

and we have proved that m < u. If N € &, with @, (N) = 0, it follows that
Q,(N) = 0 for u-a.e. z € E, hence for m-ae. z € E. Consequently, by assump-
tion P,(N) =0 for m-a.e. z € E, and thus P, (N) = 0; that is, P, < Q,. O

3. Proof of Theorem 1.3. We start with proving several lemmas. Let \Y
denote the closure of V: %€, — L*(E — H;m) as an operator on L%(E; m).

LEmMA 3.1. Vu =Vu forallu D(&;) n D(&,).

Proor. For I €N, let b, € Cg(R) such that 1,_, ;<b, <1_, 5,5 and
|67l < 1 and define

=b,(Ing), leN.

Then by (1.17) and Réckner and Zhang (1992), (2.9), V((u An) @)= V((u A
n) - ¢;) and Vo, = Vi, hence by the product rule for V,V [cf. Albeverio and
Rgckner (1991), (3 2), or Rockner and Zhang (1992), 1. 8(11)] we conclude that
eV(u A n) =@ (u A n). Letting [ — o we obtain that V(z A n) = V(u A n).
Since u An —, _,u wrt. both & + (, ) and &, + (, ),,, the assertion
follows. O
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Lemma 3.2. (i) In ¢ € D(&,), and for any &,,-quasicontinuous (m-)version
¢ of ¢ we have that 0 < § < » &, -q.e.
(i) ¢~ ' € D(&),).

Proor. (i) Let ¢ €]0,1]. Since x — In(x + &) belongs to C;([0,«[) and
¢ € D(&,), it follows that In(e + &) € D(¢,). But In(e + g)<|lng|l +In2 e
LXE;m)and |V In(e + &)llx = IVellu/(¢ + &) < IVelln/¢ € LAE; m), hence
In ¢ € D(&,). Let In ¢ be an &, -quasicontinuous Borel (m-)version of In ¢.
Since

—_— 1
&,-Cap{|ln ¢| > A} < F@”m(ln ¢,ln ¢)

[cf. Fukushima (1980), Lemma 3.1.5], we obtain that
&,-Cap{ln ¢l = +} < limsup &,-Cap{n ¢l > A} = 0.

N e
Consequently, ¢ = exp(In ¢) is an &),-quasicontinuous (m-)version of ¢ with
0 <@ <o &,-q.e. Now the assertion follows by Fukushima (1980), Lemma
3.1.4 (see also Lemma 4.1 below).

(i) is proved similarly to the first part of (i), using (1.18). O

Recall that by Albeverio and Réckner (1991), Theorem 4.3, the Fukushima
decomposition holds for (&, D(&),)); that is, if u € D(&,) and & is an
&, -quasicontinuous version, then

(3.1) a(X,) — a(Xo) =M + N, t=20,

where Ml = (M®]),_, is an MAF of M, of finite energy and N :=
. (NM@®),_, is a CAF of M, of zero energy [cf. Fukushima (1980), Chapter 5].
Note that since M, has continuous sample paths, M («1 is also continuous [by
Fukushima (1980), Theorem 4.3.2 and compactification]. If in particular, u
e €, it follows by (1.19) and Albeverio and Réckner (1991), Remark
4.4 (ii), that

(82) Nf“t= [((Lu(X,) + o7 (XX Vo(X,), Vu(X)g) ds,  £20,

where L = L(&). Again by compactification we also have the correspondence
between positive CAF’s of M, and smooth measures proved in Fukushima
(1980), Theorem 5.1.3. As usual we denote the smooth measure corresponding
to (M™) for u € D(&,) by i,

The following lemma is merely a special case of Albeverio and Rockner
(1991), Proposition 4.5. We include the proof for the reader’s convenience.

LEmMa 3.3. Let u € D(&,). Then Bouy = (Vu,Vudy - m and

<Mlu1>t=f’(vu(xs)ﬁu(xs»HdS, £>0.
A ,
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Proor. If u, :=(u An)V(-n), n €N, we know by Fukushima (1980),
Theorem 5.2.3, and the product rule for V that for all » €N and all fe
D(&,)) N L™(E; m),
[fdnc,y = 26u(unfru,) = (w2, f)
= ff(ﬁun, Vu, by dm.

Since

2
(‘/.[lfldl'l’(u) - \/flfldFL(un)) <2flloCp(u —u,,u—1u,)

[cf. Fukushima (1980), proof of Lemma 5.4.6], we conclude that
(3.3) /,L<u>=<6u,6u>H'm.

Since (Vu, Vu )y - m is a smooth measure we have that
Pz[ft< 6u(XS)’%t(‘xvs»hrd’" <o, t>0]=1
0

for &,-q.e. z € E, which is an immediate consequence of Fukushima (1980),
Lemma 5.1.6 and Theorem 3.2.3. Consequently,

N, = [’( Vu(X,),Vu(X,)) ds, =0,
0
is a positive CAF of M and for all #(E)-measurable f: E — [0, o[,

1 t 1 . -
(3.4) 7fEEz[fof(XS)stJm(dz) = 7 [PV, Vu)m) dmds
=ff<§u,€u>Hdm,

where we used that p/(z,dy) = P[X, € dy] is m-symmetric and p,1 = 1,
s > 0.(3.3) and (3.4) imply that (N,),. , and { M']) have the same correspond-
ing smooth measures and hence must be equivalent. O

In the following proof we apply results from Kunita and Watanabe (1963)
and Takeda (1990) [and again Fukushima (1980)] only proved in the case of
locally compact state spaces E. The easiest way to apply our compactification
method (described in Section 1D) here is to replace, right at the beginning of
the proof, E,M, by E,M,, respectively, and to consider all subsequently
appearing functions f on E as functions on E by putting f=0 on E\E.
Then one easily transfers the final result back to E,Mp. For simplicity,
however, we drop the additional caret (") in the notation.

Proor or THEOREM 1.3. We shall show that @, can be obtained from P, by
a Girsanov type transform. Let ¥ := 1/¢ [€ D(&},) by Lemma 3.2] and let
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¥ :=1/¢, ¢ as in Lemma 3.2. Then since In¥ € D(&,) by Lemma 3.2, we
have by (3.1) that

In¥(X,) - In¥(X,) = M"Y+ NI t>0, Prae,

for &,-q.e. z € E. By altering M, on a set of &,-capacity zero, we may assume
that (M"™¥), & P)),. , is a real valued continuous martingale with M{¥1 =0
for all z € E [cf. Fukushima (1980), Chapters 4 and 5 for details]. Here
(%), , is the minimal admissible family corresponding to M, [i.e., (%), is
right continuous and completed]. Hence the multiplicative functional

(3.5) L} = exp( MY — (M™YT),),  t>0,

is a continuous nonnegative local martingale, hence a supermartingale. In
particular, for all z € E,

EF[L¥] <1 if¢ >0,
=1 ift=0,

where EF denotes expectation w.r.t. P. We want to apply Kunita and
Watanabe (1963) [see also Dynkin (1965)] in order to obtain a transformed
process Mg from M, via LY, t > 0. To this end we need to replace 1 by
the space ' of all continuous functions w: [0, {(w)— E. Obviously,
we may consider M, to be defined on the corresponding filtered space
(Y, 7', (F),s,) such that { = + P,as. for all z€ E. Now we can apply
Kunita and Watanabe (1963), Section 3, to conclude that there exists a
standard process Mg := (£, F' A FDis00(XDis 0 b (@,), ) on E such that
for all z € E,

(3.6) Q.(AN{t<¢)) =Ef[LY,A], Aeg,.

By Takeda (1990), Theorem 1, it follows that Mg is u-symmetric and conser-
vative; that is, { = © @, -a.e. Note that indeed Takeda (1990) applies since
¥ >0, &,-q.e. [hence if 7 is as in Takeda (1990), then 7=, P-ae. for
é,-q.e. z € E]and

fd,u,<q,> = f(?‘P,?‘IOH dm = f¢'2<V<p,V¢>H du <

by Lemmas 3.1 and 3.3 and (1.18). Now we are going to show that the

—

Dirichlet form associated with Mg is (&, D(&,)). Let u € ¢ ;(K). We want
to prove that for all ¢ > 0,

(3.7 u(z) - E¥[u(X)] = - [E¥[Lu(X,)]ds forp-ae z<E.
0
First we note that

(3.8) Ezp[ftL‘:’lLul(Xs) ds] <o, t>0,foru-ae z€E.
0
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Indeed, by Fubini’s theorem and the u symmetry of Mg,
(3.9) fEf[ftL‘flLuI(Xs)ds]u(dz) — [*[E[1)Lul(2)n(dz) ds < =
0 0

because it is dominated by #/|Lul(2)u(dz) < ». We define (%), . ,-stopping
times :

T, = inf{t > 0|L} v fotILuI(Xs) ds v [O%-I(Xs)( Vo(X,),Vu(X,)), ds > n}

An.

Then 7, 1w as n —» « P-a.s. for u-a.e. z € E. By the dominated convergence
theorem, Doob’s optional stopping theorem and (3.1) and (3.2) we conclude
that for u-a.e. z€ E and ¢ > 0,

u(z) - Eza[u(Xt)]
—EF[LY(u(X,) — u(X,))]
- 11120E5[L§’(u(X,nM) - u(Xo))]

=~ Em BP[LY (u(X,, 00) — 2(X0)))]

n—o

. (Vo,Vu)
— lim E;’[L‘;' M(MT[“]M + [ "M(Lu(Xs) + —‘f—H(XS)) ds”
n n 0 ¢

n—o

— lim (EzP[L\:'n/\tMT[:]At

n-—o
T (Ve,Vu)
+E;’[f "“L‘g'(Lu(Xs) + 80 vy as)),
0 ¢
where we integrated by parts in the last step. Since by It&’s formula
¢
LY =1+ fL‘g' dMI¥l ¢ >0,
0
we have that
BYLY, M2, = BE| [ Lra o, e, |
(Vo,Vu)
- fEZP[‘[T”MLE’_u(XS)ds
0 @

by Lemmas 3.1-3.3. Now (3.7) easily follows by (3.8) and the dominated
convergence theorem. Let (&9, D(£?)) denote the Dirichlet form on L%(E;u)
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associated with Mg. Then by (3.7) for all v € D(& )N LAE; p),

lim l(u — ER[u(X))],v), lim(— %foth?[Lu(Xs)]v(Z)#(dz) ds

10t tL0

— [Lu(2)v(2)p(dz),

where we used (3.9). Setting first u = v, this implies that u € D(£9) [cf.
Fukushima (1980), Lemma 1.3.4] and subsequently, we can conclude that the
generator of (€9, D(£9)) coincides with L on 9% ;. Hence by our uniqueness
assumption (1.15),

(69, D(69) = (£, D(S)).

Now the same proof as that of Fukushima (1980), Theorem 4.3.3, yields that
Mj; is properly associated with (&, D(&)); that is, z — ES[u(X,)]is &,-quasi-
continuous for all u € LAE; ), u > 0, and all ¢ > 0. Note that for the proof
of Fukushima (1980), Theorem 4.3.3, one does not need Mg to be a Hunt
process, but only that @,[{ = ] = 1 and that the sample paths of Mg are
continuous up to {. Since also M, is properly associated with (&, D(ei)), it
follows by monotone class theorems that for £ -q.e. z € E,

(3.10) R.(A)=Q(ANQ) forall Ae 7.

Now (3.6) and (3.10) imply that P, ~ @, for &,-q.e. z € E. Since m does not
charge &, -capacity zero sets and vice versa, the second part of the assertion
now follows by Proposition 1.2 and the last part of Theorem 1.1. O

ReEMARK 3.4. (i) We emphasize that the exponent of the Radon-Nikodym
derivative LY in (8.5) is of the familiar form since it can be shown (by
~ approximation) that
MY = - j‘E(Xs)dWs,

o ¢
where the stochastic integral is in the sense of Kuo (1975) and (W), . , is as in
Remark 1.4(i).

(ii) In the proof of Theorem 1.3 we have in fact only used (1.17) and (1.18)
to show that In ¢, ¢ ! € D(&),). Hence we can weaken the hypotheses of
Theorem 1.3 accordingly. We have considered the more restrictive situation
since (1.17) and (1.18) are easier to check in applications.

(iii) A special case of Theorem 1.3 is also discussed in Fan (1990). However,
the method of proof is different from ours and the proof does not seem to be
complete to us [cf. Fan (1990), Theorem 4.1]. '

4. Proof of Theorem 1.5. For ¢ € [0, 1] set
(4.1) ¢, =¢Ve and m, = ¢ pu.
Since ¢, € D(&,) and B, - ¢, € L%(E; ), it follows as in the case where
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¢ =0 that each k € K is well-m -admissible. Let (&, , D(¢,,)) denote the
corresponding Dirichlet forms on L2*E;m,) and M pe = = (0, &, (F)is0
(X)), 50, (PS), c g) the associated diffusion processes (cf. Section 1C). For con-
sistency with our previous notation we set ¢, == ¢, m, = m and P°:= P,

REMARK 4.0. Let ¢,¢ €[0,1], ¢ < ¢'. Then

D(&,,)cD(&,) and &, (u,u) =&, (u,u)

(4.2)
for all u € D(&,,,).

In particular, &, -Cap < &, -Cap and any &, -quasicontinuous function is
é, -quas1cont1nuous Addltlonally, if V° denotes the closure of V: Gy b
LXE > H:m Jon LAE;m,), then V¢ = V¥ on D(&, ) (= domain of VS)

Since (¢ V 1)? < ¢? + 1, assumption (1.21) implies that
(4.3) ¢€D(&,) [cD(&,) foralle € [0,1]].

From now on we fix an &, -quasicontinuous Borel version ¢ of ¢. By Remark
4.0, ¢ is &, -quas1cont1nuous for all £ € [0, 1]. Since Lemma 3.2(i) does not
use (1.18) we know that 0 < ¢ < = &,.-q.e.

From now on we fix £ € [0, 1] and set for § > 0,

(44) Fy={¢ =26}
and
(4.5) D(&,.) 5, = {u € D(&, )a* = 0 &, -q.e.on E\F},

where in (4.5) (as below) %#° denotes an &, -quasicontinuous version.

Lemma 4.1. Let U C E, U open, and let 5 > 0. If u € D(&,, ) with u > 0
m-a.e. on UN{$ < 8}, then ii® > 0 &, -q.e. on U N {$ < &}.

Proor. Because of the &, -quasicontinuity of ¢, the proof is completely
analogous to that of Fukushlma (1980), Lemma 3.1.4. O

LemMA 4.2. (&, , D(&, )F.) = (&, D(&,)iF,.).

Proor. By Lemma 4.1 we may replace &, -q.e. in (4.5) by m -a.e. Because
of (4.2), it remains to show that if u € D(&),) with*u = 0 m-a.e. on E\ F,,,
then u € D(&;, ). But for such u and fe& Cj(R) with 1y, ,<f<1, . we
have that u = uf(¢) m-a.e. We may assume that u is bounded, hence we can
ﬁndu IS ng,n e N, suchthatsuanNIIu l. <wandu, =, ., uwrt. &, +
(,),,- Then f(@)u, =, o f(@)u =u in L2(E m) and f(e)u, € D(&, )C
D(@” ) [by Fukushima (1980), Theorem -1.4.2, since f(¢) € D(e” Jl- By ‘the
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product rule for ¥¢ and since V¢ = V on D(¢&,,) we see that for all n,m € N,
Copm,»( f(¢)(un - um)’ f(¢)(un - um))
+(f(‘P)(un - um)’ f(¢)(un - um))mp

< 2f(m}[ll G = w)li+ (141 (o) Pl ), — )]

X (¢ Ve)du,
which becomes arbitrarily small for n, m large by the assumption on (), c-
Hence u € D(&},), since (&, , D(&,)) is closed. Since u =u - f(p) for u €
D(&,, )iFs., it follows by the product rule that V°u = Vu = 0 u-a.e. on {¢p < ¢};
hence &, (u,u) = &,(u,u). O

Denoting the expectation w.r.t. Pf by Ef, z € E, we define for f: E->R,
#(E)-measurable, bounded and z € E,

(4.6) ‘p f(2) = E[ f(X,), s <03,]
and
(4.7) p, f(2) = E,[ f(X), s < 03],

where o,, = inf{t > 0|¢(X,) < 2¢} (= o\ 5,) and E, denotes expectation w.r.t.
P,, z € E. Furthermore, for a > 0 let

(4.8) ‘R, f(2) = [

0

<}

e * ‘p,f(2)ds, z€E.

LEMMA 4.3. Let s > 0. Then there exists N € #(E) with &,-Cap(N) =0
such that for all z € E\ N and all f: E — R, bounded #(E)-measurable:

() °p, f(2) =*p, f(2), s = 0.
(i) %p, f(X,) =‘p, f(X), 5,t > 0, Pra.s.

Proor. Let fe F¢¢ and a > 0. By Fukushima (1980), Lemma 4.4.2, it
follows that ‘R, f is &, -quasicontinuous, ‘R, f € D(&, )IF, and ’
&, (R.fv) + a(‘Royf,0)m, = (f,0)m, forallve D(&, )r,

and a corresponding statement with °R,_ f, m replacing ‘R, f, m,, respectively.
By Lemma 4.2 this entails that

Eu(Ruf ~°Rof "Bof ~"Rof) + a(Ruf ~°Rof Ref ='Rof),, = 0,

hence ‘R f =R . f m-ae. By Remark 4.0 and Lemma 4.1 it follows that the
latter equality holds &,-q.e. By the uniqueness of the Laplace transform and
the right continuity of s — “p, f(2), z € E, we obtain that forall z € E outside
some &,,-capacity zero set,

(4.9) %9, f(2) =‘p, f(z) forall s > 0.
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Furthermore, since ‘R, f is &),-quasicontinuous, using Fukushima (1980),
Theorem 4.3.2, we can find an &), -capacity zero set N, € #(E) such that for
all z € E\ N,,

°R.f(X,) =°R,f(X,), a>0,t>0,Pras.
We deduce as before that for all z € E\ N,,
(4.10) . f(X,) =p,f(X,), s,t>0,P-as.

By the Hahn-Banach theorem we see that there exists a countable set
X' c FCy which is closed under multiplication, contains the constant function
1 and separates the points of E. By Schwartz (1973), Lemma 18, page 108, .%
generates #(E). Applying monotone class theorems with %/, we obtain (i) and
(i) from (4.9) and (4.10). O

The proof of Lemma 4.4 is now standard, but we include it for the reader’s
convenience.

LeEmMMA 4.4. Let N € #(E) be as in Lemma 4.3 and 0 <¢, < -+ <¢, <
. Let fo,..., fo: E = R be bounded, #(E)-measurable and let z € E\ N.
Then

Ez[ fo(Xo) fi(Xy,) = fu(Xe,)s ta < Uze]
= E;[ fo(Xo) (X)) - Fu(X,)s ta < 0'25]-

Proor. For n =1 the assertion is clear by Lemma 4.3(i). Suppose the
assertion holds for n — 1. Then by induction, the Markov property of M, and
M. and Lemma 4.3(ii):

E[fo(Xo) - fror(Xs, ) Fu( X)) te < 03]
=E[fo(Xo) * foci(Xe, )l Xeotn 2Oy Nitnos < Oy,
ty <t, i +030°0, |
= E,[fo(Xo) " fuor(Xe, ) Prrosn  Fu(Xe ) tay < 03]
= E,[fo(Xo) - fuor(Xs, ) Pupv, ful(Xe )s by < 03] -
= B[ fo(Xo) *+* fu-s(X, ) Prpt Fol X ) tns < 03] -
= B[ fo(Xo) -+ fus( X, ) Fu(X,), tn < 03] =

COROLLARY 4.5. Let t >0 and N be as in Lemma 4.3. Then for all
z€ E\Nand A € &,

PlA,t <o, ]=P][At<o0,].

Now we are prepared to prove Theorem 1.5.
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Proor oF THEOREM 1.5. By Corollary 4.5 and Theorem 1.3 it follows that
for &,-qe. z € E,

(4.11) Pl-,t<0,]<@Q, forall¢>0.

Since ¢ is &,-quasicontinuous, ¢ — ¢(X,) is continuous P,-a.s. and oy, T 0y;_¢,
as ¢ |0 P,-as. for &,-q.e. z € E. Since ¢ > 0 &,-q.e., we have that

E, [exp(—0i;q)] = 0.

But z —» Ez[exp(—a-w,:o))] is &,-quasicontinuous [cf. Fukushima (1980), Theo-
rem 4.3.5, hence by Lemma 4.1, oy;_o, = + P,-a.s. for &,-q.e. z € E. Now the
first part of the assertion follows, by letting £ | 0 in (4.11). The second is again
a consequence of Proposition 1.2 and the last part of Theorem 1.1. O

REMARK 4.6. (i) It might not be easy to verify condition (1.21) directly in
applications. Note that it is enough to check that ¢y == ¢ A N € D(&,,, ) for
all N € N. But for this to hold it suffices, for example, to check whether there

1

exist u, € %}’f, neN, and p,q €[2,] with 1/p + 1/q = 5 such that
o € L(E;p), u, =, . ¢y in LY E;u) and

JIV(uy = w) [ dp 5= 0.

Since we may assume that sup, .yl , |l < ®, this is immediate by Hélder’s
inequality. In particular, if E, H and u form an abstract Wiener space, then
the preceding condition is fulfilled for all ¢ € D, ; [see Sugita (1985)]. For
more general examples we refer to Rockner and Zhang (1992), Sections 3
and 5.

(ii) If we consider Theorem 1.5 in the case dim E < », E = R? say, we see
that we cannot hope to get P, ~ @, for &,-q.e. z € E since we have dropped
condition (1.18), which has been shown in Fukushima (1982), Theorem 2, to
be (essentially) a necessary condition for this.
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