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CENTRAL LIMIT THEOREM FOR A RANDOM WALK WITH
RANDOM OBSTACLES IN R¢

By HipeEk1 TANEMURA!

Chiba University

A random walk with obstacles in R%, d > 2, is considered. A probability
measure is put on a space of obstacles, giving a random walk with random
obstacles. A central limit theorem is then proven for this process when the
obstacles are distributed by a Gibbs state with sufficiently low activity. The
same problem is treated for a tagged particle of an infinite hard core
particle system.

0. Introduction. Let 9% be the set of all countable subsets n of R
d > 2, satisfying #(n N K) < «» for any compact set K, and let us consider a
class of processes (x(¢), P,), n € M, each of which is an R<-valued continuous
time Markov process of jump type starting from 0 with generator

Lyo(x) = [ d¥{e(2) = e())p(l —yhexp{ = L ¥(lu = o))},

uen
v=x,y
where p(-) is a nonnegative function on [0, ©) such that [z« dxp(lx|) = 1 and
T is a measurable function on [0, ) which is bounded from below and satisfies
the following properties:

(v.1) V(a) =« ifandonlyif a € [0,r),
(v.2) V(a) =0 ifac€(r,x»),

- for some positive constants r and r, with r < r,.

For a probability measure v on the space It we write P, = [pv(dn)P,. We
call the process (x(¢), P,) a random walk with random obstacles. Let I* be
the set of all n € M such that P,(x(1) € -) has an unbounded support and let
w be a Gibbs state associated with a pair potential ® which is translation
invariant. One of the main results of this paper is the central limit theorem for
(x(#), Px), where u* is a conditional probability measure of the Gibbs state u
given the event IN*, that is, u*(-) = w(-[I*).

In a previous paper [10] we considered a system of infinitely many hard balls
with the same diameter r moving discontinuously in R%. We constructed the
Markov process ¢, which describes the system. This process has a Gibbs state
as a stationary measure. We showed the ergodicity of the stationary Markov

Received June 1991; revised November 1991.

IThis work is partially supported by Grant-in-Aid for Scientific Research No. 02740098,
Ministry of Education, Science and Culture.

AMS 1991 subject classification. 60K35.

Key words and phrases. Random walk with random obstacles, tagged particle, invariance
principle, Gibbs states, percolation models.

936

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&

2

The Annals of Probability. STOR ®

WWW.jstor.org



RANDOM WALK WITH RANDOM OBSTACLES 937

process in the case where the density of balls is sufficiently small. Another
main result of the present paper is the central limit theorem for a tagged
particle.

We describe x(¢) as an additive functional of the environment process 7,.
The process 7, is a Markov process which has the probability measure u* as a
reversible measure. We prove that (7,, P,+) is ergodic by using Proposition 2.1,
in which we show the uniqueness of the unbounded cluster of a percolation
model defined on R¢. This percolation model should be viewed as a continuum
analogue of the discrete site percolation. Instead of sites being vacant we have
points of R? with each point being the center of a ball of radius r. We consider
clusters associated with our process, whose definition is described in detail in
Section 1. The idea of the proof of this proposition is similar to the idea in
Burton and Keane [1], but we have to make suitable modifications to take
account of the structure of the continuum model.

Once we obtain the ergodicity, by applying an invariance principle for
additive functionals of ergodic reversible Markov processes in De Masi, Ferrari,
Goldstein and Wick [3], we obtain the central limit theorem for (x(#), P“*)
except for the nondegeneracy of the diffusion matrix D*. To prove the
nondegeneracy of the diffusion matrix, it is important to study random electri-
cal networks. A simple random electrical network is one in which the bonds of
the hypercubic lattice Z¢ are taken to be occupied independently by unit
conductors with probability § and vacant with probability 1 — 6. In the case of
d = 2, Grimmett and Kesten [7] proved that the effective conductivity in the
electrical network is bounded away from zero, if § > 1. The case of general
dimensions was studied by Chayes and Chayes [2]. We introduce an effective
conductivity .#%(n) associated with our process. Then the nondegeneracy of
D* follows from the two inequalities

w(I*)leD** 2 limsup [n(dn)(20)* " (n),

l—>o

for e € R? with |e| = 1, and
li}ninf(zl)z—d/’(n) >0, pu-ae.

The first inequality is established by generalizing a technique in [3] in the case
of a random walk in the infinite cluster of a percolation model on Z2. The
second, which is stated in Proposition 3.1, is obtained by using a comparison
argument to reduce the problem to the results of Grimmett and Kesten [7] and
Chayes and Chayes [2].

In [10] we discussed the central limit theorem for the tagged particle of the
infinite hard core particle system in R? and showed that the tagged particle is
described as an additive functional of an ergodic reversible Markov process.
But we could not prove the nondegeneracy of the diffusion matrix. In this
paper we show the nondegeneracy of the matrix using the lower bounds of the
effective conductivity in the random electrical network associated with the
random walk with random obstacles.
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In Section 1 we state the main theorems precisely. The proof of the
theorems is given in Section 4 using Proposition 2.1 and Lemma 4.3, which are
shown in Sections 2 and 5, respectively. In Section 3 we give the proof of
Proposition 3.1, a key part of the proof of Lemma 4.3.

1. Statement of results. Let It be the set of all countable subsets n of
R? satisfying Ng(n) < « for any compact subset K, where N,(n) is the
number of points of 7 in A c R?, d > 2. We regard n € It as a nonnegative
integer-valued Radon measure on R%: n(-) = T __ 29:(+), and accordingly equip
AN with the vague topology, where 5, denotes the §-measure at x. We define
o-fields #(IM) and B (IN) by

B(M) = 0(Ny; A e B(R?))
and
Br(M) =o(Ny; A€ B(R?), ACK).
The o-field Z(IM) coincides with the topological Borel field of IX.
For any n € M we define a measurable kernel g, (x, dy) on R% x #(R?) by

q,(x,dy) = p(x — y)x(xln) x(¥n) dy,

where p(-) is a nonnegative Borel function on [0, «) satisfying

(p-1) fRddxp(IxI) =1,
(p-2) fRddexlzp(lxl) < o,
(p-3) {e € [0,%): p(@) > 0} = [0,h) for some k € (0,],

(p-4) essinf{p(a): @ € [0,¢)} >0 foranyc € (0,h),

and, for any n € M and x € RY,

(1.1) x(xln) = exp{— Y V(lx —yl)}-

yen
Here ¥ is a given measurable function on [0, ) which is bounded from below
and satisfies (¥.1) and (¥.2) in the introduction. Let C(R%) be the space of
continuous functions ¢ on R? such that ¢(x) — 0 as |x| — . We denote by
(Q, &, P,, x(¢)) the right-continuous Markov process starting from 0 with
generator

Lyo(x) = [ g,(x,d0){e(y) —¢(2)}, ¢ € C(RY).

Denote the open r-neighborhood of A ¢ R¢ by U.(A) and abbreviate U, ({x})
to UJlx). If U.n) does not contain 0, x(¢) is a jump-type Markov process
whose state space is the complement of U.(n); otherwise x(¢) = 0, t > 0. In
the case where n = &, x(¢) is a spatially homogeneous Markov process of jump
type, that is, a random walk in R?. For any probability measure » on % we
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write P, = [pv(dn)P,. We call the process (2, &, P,, x(t)) a random walk
with random obstacles.

For x € R? and n € ;M we denote by A, , the connected component of
U, ,»(U,(n)°) containing x and put

(1.2) Cla,m) = {2 Ui(m), x&Udl(m),
2, x € U,(n).

We call the set C(x,n) the cluster containing x for 7. Define a measurable
subset IM* of M by

M* = {n € M: C(0,n) is unbounded} .
For a probability measure on I satisfying w(I*) > 0, we define

pw*(dn) = m(zw(;)) w(dn),

where [, stands for the indicator function for a'set A.

In this paper we study the asymptotic behavior of (x(¢), P,+) in the case
where u is a Gibbs state. We introduce terminologies for GlbbS states. Let ®
be a real valued measurable function on [0, ©) which is bounded from below
and satisfies the following condition (®.1), called the regularity condition:

(®.1) fRddxlexp( —(lx])) - 1] < o,

Next we assume either one of the following conditions ($.2) and ($.2'):
(9.2) P(-) =0,

’ (9.2) (1) There exists a positive number r’ such that ®(a) = » if
and only if @ € [0, '),

(ii) There exists a nonnegative number ¢, such that
m
Z q)(lxtl) = —Cy,
i=1

for all m and x,,%,,...,%, € R% with |x; — x;| > 7" for

i #].
® is regarded as a pair potential which is rotation invariant and translation
invariant. For x, x,,...,%, € R% and n € M, we associate a potential energy

U(xy, %g,..,%5,0m) = X ®(lx; —x)) + X 2 (%, — yl).
l<i<j<n i=lyen

For any compact subset K ¢ R? we denote by I(K) and (K, n) the set
of all finite subsets of K and the set of all subsets of K having n points,
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respectively. An alternative description of (K, n) is given by

{2}, if n =0,

(1.3) W(En) =\ (knyss., ifns1,

where (K™Y = {(x,, x5,...,%,) € K" x; # x; if i #j} and S, is the symmet-
ric group of degree n. By means of the factorization (1.3) we introduce a
measure Ay , on IM(K) = U5 _ IM(K, n) (direct sum) such that

)‘K,z(@) =1

and
zn
Ak L(A) = mjAdx1 dx, ++ dx,

for a Borel set A of M(K,n), n > 1, where z > 0 and A is a preimage of A by
the factor mapping in the factorization (1.3).
Now we define a Gibbs state.

DEFINITION 1.1. A probability measure u on M is called a Gibbs state with
respect to the activity z > 0 and the potential ®, if u satisfies the Dobrushin-
Landford-Ruell (DLR) equation: for any compact subset K of R?,

M(l‘@KC(EIR))(n) =:“’K,1;,z(')’ m-a.s. n,
where uy ., ., is the probability measure on Mt(K) defined by

KK, g, (dX) = exp{ —U(xln N K°)}Ag (dx),

ZK,n,z

ZK,n,z = )‘K,z(dx)eXP{_U(x|”7 ch)}'
TUK)
Denote by Z(z, ®) the set of all Gibbs states with respect to the activity
z > 0 and the potential ®, and by Zy(z, ®) the set of all elements of H(z, P)
which are translation invariant.

REMARK 1.1. (i) The set Fg(z, @) is convex and any element of Zy(z, ®) is
represented by the extremal points of Zg(z, @), which are characterized by
their ergodicity under translation (see [5]). We denote the set of all extremal
points of Zy(z, @) by ex Fp(z, D). If #2(z,P) = 1 and p € H(z, P), then u is
rotation invariant, translation invariant and ergodic under translation.

(ii) There exists a positive constant z; > 0 such that if z € (0,2;) and
u € H(z,®), then w(IN*) > 0. In case h = » we can take z; = .

Now, we state our first main result.
“ THEOREM 1.1. There exists z, € (0, z,] such that if z €(0,2z,) and p €

ex Az, @), then the process ex(t/e?) on (Q, F, P) converges to D*B(¢) as
e — 0 in distribution with respect to the.J,-topology on Skorohod’s function
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space D[0, ), where B(t) is a d-dimensional Brownian motion and D* is a
positive definite d X d matrix. In the case h = © we can take z; = .

In the previous paper [10] we studied a system of infinitely many hard balls
with the same diameter r moving discontinuously in R?. We denote the
configuration space of hard balls by X:

x={§={xi}CRd:|xi—xj|2r,i¢j},

the position of a ball being represented by its center. The space X is a compact
subset of M with the vague topology.

Let C(¥) be the space of all real-valued continuous functions on X, and let
C,(%) be the set of functions of C(X) which depend only on the configurations
in some compact set K. The system is described by the X-valued Markov
process ¢, whose generator is the smallest closed extension of the operator K
on Cy(X) given by

Kf(&) = L [ d{f(e) = F(Op(x ~yDx(pEN (=), < Co(D),
xe¢

where y is the function defined by (1.1), p is a nonnegative function satisfying

(p.1), (p.2) and (p.4), and

gx,y={(§\{x})u{y}’ ifng,ye—:f,

&, otherwise.

The measure p(lx — yDx(ylé \ {x}) dy gives the rate of the movement of a ball
at the position x to the position y when the entire configuration is £. From
the property (¥.1), the ball of the system moves by random jumps under the
hard core condition.

In this paper we study the behavior of a tagged particle in the process. In
order to follow the motion of the tagged particle it is convenient to regard the
process &, as a Markov process (y(¢), {,) on the locally compact space R? X %,
where

X, = {L € %: £ N UL(0) = D).

y(t) is the position of the tagged particle and ¢, is the entire configuration seen
from the tagged particle. We can see that {, is a Markov process whose
generator % is the smallest closed extension of the operator on Cy(X,) given
by

K= Ky + Ky,

Hif() = [ du{f(7-u8) = F(O}p(uDx(uld),
Hf () = L [ (&) = FO)px = yDx (5 N (=),

x€{ r
€ Co(Xo),
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where C(X,) and C,(X,) are defined in the same way as C(X) and Cy(X),
respectively. We denote by S, the semigroup associated with generator % and
by (Q, &, P2, {,) the associated process with initial distribution ».

14

For any u € £(z, V) we define

x(0ln)
C3

ro(dn) = n(dn),

where ¢; = [ x(0Im)u(dn). In [10] we proved that there exists z; € (0, ) such
that if z € (0, z3) and if #£(2,¥) =1 and u € H(z, V), then (P,?O, £,) is an
ergodic reversible Markov process.

The process y(¢) is driven by the process ¢, in the following way. Let
A € #(R?) and let E(A) be the measurable subset of X, X X, defined by

E(A) ={(n,{) € (Xo X X,y) \ A: { = 7_,n for some u € A},
where
A={(£,0):LeX U ({{ €%y: ¢ =r1_,¢{ for some u € R% \ {0}}2)
Define a o-finite random measure N by
N((0,¢] xA)= X lga(ns-,m,), ¢>0.
s€(0,¢]
Then,

t
t) =y(0) + N(dsdu)u.
(&) =5(0) + [ [ N(dsdu)
Our second main result is the following theorem.

THEOREM 1.2. If z € (0,25 A 23) and if #7(z,¥) =1 and p € H(z, V),
then the process ey(t/e%) on (Q, .?,Pfo) converges to gyB(t) as ¢ = 0 in
distribution with respect to the J,-topology on Skorohod’s function space
DI[0, ), where o, is a positive constant.

2. Uniqueness of the unbounded cluster. Let C(x,7n) be the cluster
containing x for 7, which is defined in (1.2). We denote the collection of all
unbounded clusters for n by €(n):

€(n) = {C(x,7m): C(x,n) is unbounded, x € R%}.

In this section we study the number of elements of €(n). Burton and Keane
[1] proved the uniqueness of the infinite cluster of a site percolation model on
Z¢ under a translation invariant finite energy probability measure. Using their
technique, we show the uniqueness of the unbounded cluster under a transla-
tion invariant Gibbs state, which is a key part of proving the ergodicity of the
environment process. ’

ProposSITION 2.1. If u € ex Zg(z, D) and u(M*) > 0, then #<€(n) =1 for
w-almost all n. )
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Proor. Put

o(n) = {A, ,: A, , is unbounded, x € R},

x,m*

Since #.27(n) > #¢(n) and #<(n) is constant u-a.s. from the ergodicity of u,
it is sufficient to show that #.7(n) < 1 u-a.s. for the proof of this proposition.
This is trivial when A = ». So we assume that A < . First, note that #.<7(n)
is constant, u-a.s., from the ergodicity of w.

Let 2 < n < . Suppose that 7(n) = {A,(n), Ay(n),..., A, (9}, pn-as. 7.
Then there exists [ > 0 such that

r(A; N U(0) +J,i=1,2)>0.
From a property of a Gibbs state we have
(2.1) u({neM:n =N U 0), A(L) NnU(0) # @,i=1,2}) >0,
so w(#7< n) > 0. This is a contradiction. Hence,
(2.2) w(2 < #4< o) = 0.

Suppose that #7(n) = » and «(n) = {A{(n), Ay(n),...}, n-as. n. We
introduce the following notion. Let [, > 0. A point x € [,Z% is called an
l,-encounter site for n € I, if A, is unbounded and A, , \ U, (x) has
exactly three unbounded connected components. Denote by .#; (1) the number
of unbounded connected components of the open set A, ., \ U,(0). By an
argument used to show (2.1) we obtain that there exists /; > 0 such that

p(AH(1y) = 3) > 0.

Since .#,(-) is a right-continuous increasing function and satisfies, for w-
almost all 0, #(1) — #,(1 =) < 1 for all I > 0, there exists {, > 0 such that

{off)-

n({n: 0 is an Iy -encounter site for n}) =& > 0.

> 0.

Then, we have

It follows from the ergodic theorem that for almost all 7,

(2.3) the number of /,-encounter sites for n in V,, = O(k%), k — o,
where V, = [—(k + DI, (k + $)1,]% k€ N.
Put

%(n) = {Y: Y is an unbounded connected component of A;(7) \ V,}.

Any l,-encounter site x for n with x € A,(n) NV, determines a partition
P = {P,,P,,P,} of Z(n). If P = {P,,P,,P;} and P’ = {P], P;, P3} are different
partitions of %/(n) determined by /,-encounter sites for 7, then there is an
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ordering of each such that P; > P; U P,. Denote by Z,(n) the collection of all
partitions of %/(n) determined by [,-encounter sites for n in A, (n) NV,.
Using Lemma 2 in [1], if #&, # 0, then

#Z(n) < #%(n) - 2.
Since |Y N (V,44,1, \ VI = |U40)] for any Y € Z(n), we have

s

#%(n) = O(k*Y), k-

i=1

I

so
(2.4) the number of /,-encounter sites for n in V, = O(k¢™1), k — o,

This contradicts (2.3). Hence, we have
(2.5) w(#=») =0.
This completes the proof of Proposition 2.1. 0

3. Random electrical networks. In this section we study effective con-
ductivity in a random electrical network associated with the process x(¢) and
show a property which is a key part of proving the nondegeneracy of the
diffusion matrix D*. We begin with the definition of an electrical network and
effective conductivity in the context of an electrical network, which is a
generalization of that in [4]. Let A be a bounded measurable subset of R%, and
let (g, m) be a pair of a measurable kernel ¢ on A X #(A) and a finite
measure m on A satisfying

q(x,dy)m(dx) = q(y,dx)m(dy).

We call the pair (g, m) an electrical network. Throughout this section we
assume that (-, A) is bounded. Let A, and A; be disjoint subsets of A. The
effective conductivity between A, and A, in (g, m), denoted by % ,(q, m), is
defined by

Sapa{@m) = 3 [ m(dx) [ a(x, dy)(e(y) = #(2))"

where ¢ is a function on A satisfying the following conditions (3.1):

qu<x,dy>(¢<y) —@(x)) =0, x€AN(A,UA),

(3.1) o(x) =0, x€A,

Cp(x)=1, «x€A,.

Although the solution of (3.1) is not always unique, all solutions give the same
value 4, 4(g, m). Indeed, if we denote two solutions of (3.1) by ¢ and ¢’ and
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put y = ¢ — ¢ and ¥’ = ¢ + ¢, then

[ m(d) [ a(x,dn{(e(x) = o))" = (¢(2) = ¢ (=)'}

[ m(dx) [ a(x, dn)(#(3) = b= () ~ (%)

—2/m(dx)w(x)fq(x,dy)(l/f'(y) - ¢'(x))
A A

= 0.
Denote by Pot(q, A,, A;) the set of all functions satisfying (3.1).

LEmMa 3.1. (i) Let ¢ € Pot(q, Ay, Ay). Then,

Sroaldm) = [ m(dx) [ a(x,dy)e(y)
= [ m(dx) fo s8N o).

(i) Sy a0 m) = min{4[ m(dn) [ (. ) G) - (27

where the minimum extends over the measurable functions ¢ on A satisfying
¢ =0o0nA,and ¢ =1lonA,.

ProOF. Applying first the symmetry of g(x,dy)m(dx) and the condition
¢ € Pot(q, Ay, A,), we have

Sngal@rm) = [ m(dx)e(x) [ a(x,dy)(e(x) ~ e(2)

(3.2)
= [ mdn) [ a(xd)(1-e).
Similarly,
[m@) [ aGde) = [ m@) ] a@d)0-e)
(3.3)

N fAm(dx)qu(x,dy)W(y) — g(x)) = 0.

Thus, we obtain (). We ne'xt turn to the second assertion. Let ¢ €
Pot(q, Ay, A;), and let ¢’ be a function on A such that ¢’ =0 on A, and
¢ =1 on A,. Put y =¢ —¢. Since. y(x) =0, for x € Ay U A, and
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q(x, dy)m(dx) = q(y, dx)m(dy), we have

[ (dx) [ a(x,d9){(¢() = ¢'(2))" = (9(y) — 9(2))7)

Lm(dx)&q(x,dy)(tp(y) — y(x))?

3.4
(3.4) + 2[Am(dx)qu(x,dy)(go(y) —o(x))(¥(y) — ¢¥(x))

v

—4f m(dx)y(x) [ a(x,dy)(o(y) = o(x))
= 0.
This completes the proof of (ii). O

We introduce a random electrical network (q, ,,m,) associated with the
process x(¢). Let b =(h/Vvd + 2) A ry, B =2[r,/bl + 3 and a = Bb, where
[c] stands for the integer part of ¢ > 0. Then, a > 2r, + b and essinf{p(a),
a €[0,bVd + 1)} > 0. For any [ with / > 2a put

A=Al)=[-l-a,l+a]lx[-1,1]"7F,
Ag=Ao(l) =[-l-a,—l+a]l x[-1,1]"",
A=A =[l—a,l+a]lx[-11]""

We define a measurable kernel g, , on A X #(A) and a measure m, on A by

(3.5) @, a(%, dy) = 15(%)1x() 9, (%, dy),

(3.6) ma(dx) = l,(x) dx.

It is obvious that

(3.7) @ A(%, dy)mp(dx) = q, (3, dx)my(dy), n €.

The main result of this section is the following proposition.

ProposITION 3.1. There exist z, € (0, 2,] and a positive function cy(z) on
(0, z,) such that if z € (0, z5) and p € H(z, P), then

- 2-d
(3.8) hﬂglf(m) Fho0, (Do, Ay May) = €2(2), Mn-a.e.
In case h = » we can take z; = ».

Lower bounds similar to (3.8) were shown by Grimmett and Kesten [7],
Chayes and Chayes [2] and Grimmett and Marstrand [6] in the case of the
electrical network associated with the simple random walk on the Bernoulli
percolation cluster. Then the proof of Proposition 3.1 is completed if we show a
suitable relation between this network and the electrical network (g, ,, m,).
To this end we first introduce an electrical network (L, M) associated with a
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simple random walk on a cluster. For any £ € N we put
T =T(k) =aZén ([~ (k+ Da,(k+ 1)a] X [—ka, ka]®™"),
To = To(k) = aZén ({—(k + 1)a} X [—ka, ka]®""),
T, = Ty(k) = aZ?n ({(k + 1)a} X [~ka, ka]®"?),

where a is the same constant as introduced above. Let a € {0, 1}°2°, Define a
measurable kernel @} on I' X #(I') and a measure M (dx) on I' by

(3.9) Qa(x,dy) = X a(x)a(u)s,(dy),
uel
lu—x|=a

(3.10) My(dx) = ¥ 6,(dx).
uel

Then,

Qi(x,dy) M(dx) = Qi(y,dx) M(dy), ae (0,1)%"
Given u € aZ®, we define a function x,(x) of n € M by

(1, i L(w) nn =2,
X8 = Vo i1 (u)nn+o,

where (and also in the sequel) for ¢ > 0 and v € R?, I,(v) denotes the cube

d c c
==+ =
[T (v~ Sove )

i=1
LemMA 3.2. Suppose that (k + 3)a <1 < (k + 2)a for some k € N. Then
Fro Al Tn a0 MA) = €157, rl(Q)E,,, Mr), neM,
where ¢, = (b2?/B) essinf{p(a): a« € [0,bVd + 1)}.

Proor. Put

J J .
I, ={=u+|1-=|v:j=1,2,...,8}, u,vel, lu—-vl =a,
“e B B
r= uy mn, = U, It= U L.
u,vel u,verl] u,vel;
lu—vl=a lu—vl=a lu—vl=a

First, we define a measurable kerriel g; on A X Z(A) by
qi(x,dy) = )y Q(u, v)l]lb(u)(x)ﬂlb(v)(y) dy,

u,ver N
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where

X (W) x,(V), ifu,ve Lo, uw,ver,

Q(u,v) = lu —vl=b,|w —v|=a,
0, otherwise.
It is obvious that q,(x, dy)m (dx) = q,(y, dx)m \(dy). Since

I,(v) cUy(x), ifuel?xel(u),
b

vers
lu—v|=0b

and
x(xln) = x(u)x,(v) fxe U IL(w),lu—-vl=a,

!
uver, ,

we see that g, \(x,dy) > essinf{p(a): @ €[0,5Vd + 1)}q(x,dy). Then, by
Lemma 3.1(ii), we have

(3.11) A a(Qy army) = essinf{p(a): aE [0, bvd +1 )}%,O’Jl(ql, my),

where Jy = U, crp I(uw), J, = U wers L(w).
Second, we define a measurable kernel @, on A X #(A) and a measure M 5
on A by

Qe(x,dy) = Y Q(x,u)8,(dy),

uert

My(dx) = Y 6,(dx).

uel?

It is obvious that @Q,(x, dy)M,(dx) = Q,(y, dx)M,(dy). Let ¢y €
Pot(Q,,T§, T?). We define a function ¢, on A by

oo(u), ifxel(u),ueT?,
eq(x) = 0, ifxeA\( U Ib(u))‘

uerb

Then ¢, € Pot(q,, A, A,). Hence, by Lemma 3.1(),

I (a1, my) = [J my(dx) /A (% d)ey(y)
0 0

(3.12) - bZd[Fsz(dx)[Fb\erz(x, dy)ea()

= bZdjrg,r{’(Qz, M,).
Let o3 € Pot(QXFn, [y, I')). Then we define a function ¢}, on I'® by

eu(x) = Fea(u) + (; - é)sos(v),
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for x=0G/Bu+A—-j/Bv, u,vel, lu-vl=a, j=1,2,...,B8. Then
@y € Pot(Q,, T¢, T}, and so

g, rt(Qe My) = [ Mo(dx) [ Qa(ix, dy)en(y)
1
(3.13) =5 Mi(dn) [ @p(x dy)es(y)

= %fro,rl(Q;,, Mr)-

From (3.11)-(3.13) we complete the proof of Lemma 3.2. O

ProoF oF ProposITION 3.1. From the conditions (®.1) and (®.2) [or (®.2)]
of @, for any 8 € (0, 1) we can choose z(0) < (0, z,) such that

1
(3.14) ZIa(u), n,20) = 6

for any u € R? and n € M. Then, if u € H(2(),P), we can construct
{0, 1}*%“.valued random variables a, and a, on a probability space 0, &, P)
satisfying

P(ayu) > ay(u),u €aZ) =1,
Payu;) =1,i=1,2,...,n) = p(x,(v;) = 1,i = 1,2,...,n),
Pay(u;) =1,i=1,2,...,n) = 6",

for any sequence uy, Uy, ..., u, of aZ? suchthat u, # u;, 1 <i<j <n.Itis
obvious that

(3.15) Sy QL Mr) = A o(@F, M),
in the sense of distribution. From Lemma 3.1(ii) we have
(3.16) St Qap Mr) = 1, 1(Qa, Mr).

Since (Q;,, M) is a random electrical network in which the sites of I' are
taken to be occupied independently by unit conductors with probability 6 and
vacant with probability 1 — 6, it has been proven that there exists 6, € (0, 1)
such that if 6 > 6,

(3.17) lim inf (2% 1> A, QL My) > 0, as.

(See [3], [6] and [7].) Therefore, by (3.15)-(3.17) and Lemma 3.2, we obtain
(8.8) for any u € Fy(z, ) with z € (0, 2(0)), 6 > 6,.

The only assertion left to be proved is that if 2 = «, then (3.8) holds for any
u € Zg(z, ®) with z € (0,%). For this purpose, let 6 > 6, and z € (0,). We
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can choose j € N so that

Zza(u),n’z < {1 -(1- 0)1/j}—1

for any u € R? and n € . Set @ = oj and for k& > 3! put
L . B o qd-1y
[ = (k) = azn ([—(k+1)d,(k+1)d] x | ~#a, k] )

~

d—
I, =Ty(k) =aZ%n ({-(15 +1)a} x —léd,léd] 1),

d-1
f, = F\(k) = 427 n ({(1% +1)a) x | ~ka, ka] )
and
T(k) NI (u), ifuef(k)\ (To(k)uTy(k)),
= L3(k) = {To(k) N I5(u), if ueTy(k),
Ty(k) NI (u), ifuely(k),

where % is the positive integer satisfying (& + 2)j >k — 3> (k + 1)j. We
define

Xn(u) =1~ ul;Ir (1 = xq(w)).

Then, one can proceed in the same way as in the proof of the case of A < ,
and one obtains the desired result. O

4. Proofs of theorems. In this section we give the proofs of Theorems
1.1 and 1.2. First we show Theorem 1.1. To study the random walk with
random obstacles x(¢), we introduce an -valued process n, on (Q, %, P,)
defined by

(4.1) MNe = T—x)M>

where 7,A = {x + u: x € A}, A cR% u € R. The process 7, describes the
environment seen from x(¢). For any probability measure v on I, (n,, P,) is a
Markov process with initial distribution v. We denote the semigroup and the
generator on L%(M, u) associated with the process by {T),., and _Z, respec-
tively. By simple calculation we see that

(42)  Lf(n) = [ 4,0, duw){f(r_m) = f(m)},  FeLX(W,p).

To begin with, we show the reversibility and the ergodicity of the Markov
process (n,, P,») in the following lemmas.
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LEMMA 4.1.  Suppose that z € (0, z;) and p € (2, P). Then (9, Px) is a
reversible Markov process, that is,

<th,g>,u*=<f,Ttg>y,*, «7,gEL2(§I)3,pL),t_>_O,

where { -, - ), is the L2-inner product with respect to a measure v.

Proor. First note that
(4.3) r_,n € M* if u € Uy0) and n € IM* satisfies x(uln) # 0.
Then by the translation invariance of w and (4.2),
w(TN( LS, 8 — {f) L&)

= [ w(dn) [ duf(r_,n)g(n)p(lul)x () x(Oln)igs(m)lgs(7_1)
m R
= [ p(dm) [ dug(r_m) FCn)p () () (O () e ()
= fweu(dn)fRdduf(T-un)g(n)p(lul)X(Ol’r_un)x(Oln)ﬂm*(n)Uzm*(f_un)

= [ () [ dug(rn) £Cn)p(uD) x(Olrm)x(Olm)lae- (mlae(7.)

=0.
Since .7 is the generator for T,, Lemma 4.1 is proved. O

LemMA 4.2.  Suppose that z € (0, z,) and p € ex F(z, D). Then (n,, P,x) is
ergodic.

Proor. Let f be a bounded measurable function satisfying T,f = f for
any ¢ > 0. The ergodicity of (n,, P,x) follows from showing that f is constant
w*-a.s. From (4.2) and Lemma 4.1 we have

~2 L, e = [ pe(dn) [ du{f(rum) = ()} p(ul)x(Olm)x(ukn).

Since f is T,-invariant for any ¢ > 0, -Zf = 0; so, when A& <,
[u(dn) [ du{f(r_um) = F(m)}*x(Ol) x(uln)igs(n) = 0.
m U,(0)

From (4.3) and the translation invariance of u, for any x € R?,

J,

(%

)du |f(7—un) - f(T—xn) |”§m*(7—x”7)ﬂ5m*(1'_u57) = 0, M-a.s.

Using this equality repeatedly, we have for almost all 7,
m-1

| F(rm) - f(n)|kl'fl0 (o) TL10(0) 0 Uploaen) 1 €0, m)] =0,
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for any sequence yi,¥s,...,¥, With y; =0, y,, =x and y,,...,y,,_1 € Q“.
On the other hand, by the definition of C(0,7), if n € It*, then for any
x € C(0, n) there exists a sequence y;, ¥g, - .., ¥, such that y; = 0, y,, = x and
Yoy oo yYm-1 € Qd N C(O’ 17) and

m—1
kl:IO |Uh(yk) N Up(yx+1) N C(O, "7)| > 0.

Hence, for any x € C(0, 1),

(44) | f(7_m) — F() [lgex(7_m)lgex(m) = 0, w-a.s.

By Proposition 2.1, for almost all 7, unboundedness of the clusters C(0, n) and
C(x,n) implies x € C(0, n); so (4.4) holds for any x € R?. Put

A

M = {”7 e M: r,m € W*, for some u € Rd}

Since M is translation invariant, w() = 1 by the ergodicity of u. Define a
measurable function f by

f(r,m), ifr,meiM* ue RY,

f(n) = A
(n) 0, if n & .

From (4.4), f is translation invariant, so f is constant u-a.s. Since f=fon
IM*, f is constant u*-a.s. A similar argument applies when A = «. O

By the construction of 7,, x(¢) is an antisymmetric additive functional of n,,
that is,

(4.5) x()(Meyp-) = —2(t)(m.), =0,

(4.6) x(t+s)(n.)=x(t)(n.) +x(5)(M:4.), t,s > 0.

De Masi, Ferrari, Goldstein and Wick [3] proved an invariance principle for
antisymmetric additive functionals of ergodic reversible Markov processes,
which is a generalization of the theorem of Kipnis and Varadhan [8]. Applying
their invariance principle, we obtain that if z € (0,2,) and u € ex H(z, ),
ex(t/e?) converges to D*(u)B(¢) as ¢ — 0, where D*(u) is a nonnegative
definite d X d matrix. Then, the only assertion left to be proved is the
nondegeneracy of D*(u).

The reversibility of the Markov process (n,, P,) is derlved from the transla-
tion invariance of w. From this and the fact that x(t) is an antisymmetric
additive functional of 7,, we can show that if u € F(z, @), then

(4.7) tim B, [5,(0)7] = o(n)?,
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where o(u) is a nonnegative constant determined by

o(w)’ = [ u(dn) [ g,(0,du)ul - 2[ d«(T, F, F),
m R 0

F(n) = [ a,(0, du)uy.

(See, for instance, [11].) On the other hand, if u € Zy(z, ®) with z € (0, z,),
then

1
lim [ wdn)E,[x(0)7] =0,

t—ow I
so
1 o(u)*
2Nt s 2] _
el(D*(/,L) ) e, = tll_l)l; ;E#*[xl(t) ] = ()’
where e; = (1,0,...,0) and ‘e; denotes the transpose of e,. For any rotation

R on R? with R(0) = 0,
(2(2), P) = (R(x(2)), Pr-vc)

in the sense of distribution. Then, for any u € Zy(z, @), there exists u €
Zg(z, @) such that

(x(t)’ P#’) = (R(x(t))’ P#)’

in the sense of distribution. Hence, it is enough to show the following lemma
for the proof of the nondegeneracy of the matrix D*(u) for any u € Zy(z, ®)
with z € (0, z,).

LemMA 4.3. Let cy)(z) be the function on (0,z,) in Proposition 3.1. If
2 €(0,2,) and p € Fy(z, ), then a(u) > 2¢,(2).

The proof of this lemma is given in Section 5.
Next we give the proof of Theorem 1.2. In [10] we showed the theorem

except for the strict positivity of o,, which is the nonnegative constant
determined by

(00)" = [ du [ wo(dn)p(ul)x(uin)ut = 2["de (S, 7, ),

F(n) = [ dup(u)x(uln)u,.

Then it remains only to prove the following lemma.
LEMMA 4.4. Ifz € (0, 2z,) and u € Z(z, V), then

S du [ wo(dm)p(ul)x(un)us - 2[ di(S,F, F),, > 0.
R? %, )



954 H. TANEMURA
Proor. First, note that
SIS Fug =ZLFs [y [ € Co(Fy),
¢s{F, [uy=<F, [y, fe Cy(%).
Since %, is nonpositive, we obtain
(4.9) e = Ff, fue =2 —Lf, fou, € Cy(Xy).
By the self-adjointness of the operator .Z, if

(4.8)

[ dKT,F, ), <c
0

for some ¢ > 0, then
<F’f>isc<_~/f,f>;u fECO(%O)’

so, from (4.8) and (4.9),

(B, 2 < ~—( = HF, Fousy [ Co(%y).

C3

By the self-adjointness of the operator ¥, this implies that
o a A c

[0 dt(S,F, F),, < o

Then, we have
1 oo oo N
4.10 — | d(T,F,F), = [ dt{S,F,F),,.

( ) C3 j(; ( t 133 /(; < t >I-Lo

Hence,

Jpu J, moldmyp(ul) x(uin)ut = 2 di<S,F, B,

v

—{ [ du [ pCamp(uxCalm xOinyat - 2 acrr, 1))

a(n)®
cs

Therefore, Lemma 4.4 follows from Lemma 4.3. O .

5. Proof of Lemma 4.3. To prove Lemma 4.3 we first construct Markov
processes. For [ and a with 0 < a < 2/ put

W=Rx[-[,I1]"= U m.A.
T ke2lZ
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Let ¢, 5 be the measurable kernel on A X #(A) defined by
G, a(%5 dYy) = Iy aouap(®)axapuap(y)gq(%, dy)
+ 0 a2 (¥)gq(x, Ag) dy
+ I al®)a(7)q,(x, Ay) dy
+ UAo(x)ﬂA\ Ao(y)qn(y’ Ay) dy
+ () a(9)94(9, Ay dy,
and define a measurable kernel gl(x, dy) on R? X #(R?) by

(5.1) qf,(x, A)= Y Goalx+ ke, ThoA), x € R A e B(RY).
ke2lZ

For any n € I we define a linear operator on C(R?) by

Lhe(x) = [ gh(x,d)e() = ¢(x), ¢ CLRY),

For any x € W and 1 € ¢ we denote by (X(2), Pl ) the W-valued right-con-
tinuous Markov process starting from x € W Wlth generator (L’ C.(R%)).
Denote by Y'(¢) the Markov process X'(¢)/~ , where x ~y © x —y = 2kle,
for some k € Z. Y!(t) can be regarded as a Markov process with state space
V =V({) =[-1,0)? Let @' be a probability measure on V defined by

(5.2) ml(dx) = (21) "“Iy(x) dx.

~ Put P} = fVﬁzl(dx)Pl Let E! , and E] denote the expectatlon with respect
" to Pl and Pl respectlvely Slnce q,,(x dy)ly(x)dx = q, Ly, d)lyw(y) dy, we

have tfle followmg lemma.

LeEMMA 5.1. For any m € I, (Yi(#), P,f) is a reversible Markouv process,
that is,

(TH) 0, 0) 50 = (0. TUOW) 0 @0 €C(V), 120,

where {T.\(t)), . o is the semigroup for the process Y,/ (2).

Let Fnl and G,l, be functions on W defined by

(5.3) Fi(x) = [ an(x,dn) (g =), x<W,

(5.4) Gi(x) = [ aix dy) (v —=)",  wEW.

Since F!(x) = F}(y) and GX(x) = G/(y) if x ~ y, we can regard F! and G} as
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functions on V. Since X!(¢) is an additive antisymmetric functional of the
reversible Markov process Y'!(¢), we have the following lemma.

LemMmA 5.2. For any n € I,
lim = EY( X1(1)?) = o'(n)",
too £t
where o''(n) is the nonnegative constant determined by

o'(n)* = [ ' (dx)Gy(x) — 2[ A T FL, Fy)

By Fatou’s lemma, a lower bound of o is given by means of o'.

LemMA 5.3. Let u € Z(z, ®). Then,

o(u)” = limsup [ pu(dn)o’(n)*

t— o0

Proor. We shall prove this lemma only in the case & < . In the case
h = o we can proceed similarly. First we show

(5.5) lim [ w(dn)(T} () F), Fy)oy = (TF F) 0.

Let o € (0,1) and put « = inf{t > 0: Y'(¢) ¢ V(I — a — h)}. We decompose the
integral as follows:

[ (T3 F}, F).

= fwu(dn)fv(l_la)m’(dx)F,f(x)E',l,,x[F,f(Yl(t)): t <]
(5.6)
+fwu(dn)fv(l_la)rhl(dx)F,f(x)E,ﬁ,x[F,f(Y’(t)): t >«

i ffmﬂ(dn)fV(z)\V(z—l“)ml(dx) F;(x)%’x[F;(Yl(t))] '

By simple calculation we can show that the second and the third terms on the
right-hand side vanish as / tends to infinity. We put «, = inf{z > 0: x + x(?)
& V(I — a — h)}. Then it is easy to see that

{Y'(¢),t€[0,x), P!} = {x +=(t),t € [0,x,), P,_,m},
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in the sense of distribution. Noting that
Fi(x) = [ go(%,dy)(5 = %) =F(r_m), xeV(I-a=h),

by the translation invariance of w,

fpdm [ il (de) Fi() Er L[ Fy(Y!(2)): ¢ < o]
_ fv(l_la)ml(dx)fmeu(dn)F(q-_xn)E,_xn[F(nt): t <]

- fv(l—zﬂ)’hl(dx)fm“(dn)F(”I)En[F(m): t <k,

and the rightmost member converges to [pu(dn)F(n)E,[F(n,)]. Thus, we
obtain (5.5). On the other hand, since ql(x dy) = q,,(x dy) forx e V(I —a —
h), by the translation invariance of u,

lim [ w(dn) | ' (dx)Gy(x)

(5.7)

lim fmﬂ(dn)fvﬂz’(dx)fmqn(x,dy)(y1 - x;)*

[ p(am [ g,(0,dy)ui.

Using Fatou’s lemma, from (5.5) and (5.7),

lim sup [ ptdme’(n)®

l—>o

hmf,u,(dn)[ﬁzl(dx)Gl(x) —2l1m1nff M(dn)/ dt(Ti(t)F}, F!)_,

IA

2 0
fm,u(dn)fqu,,(O, du)u? 2[0 dt(T,F,F),
= a(u)z.
This completes the proof of Lemma 5.3. O

By Lemma 5.3, the proof of Lemma 4.3 is complete if*we show the proof of
the following lemma.

Levmma 5.4. Ifz € (0,2,) and ;L € Fp(z, D), then

li}ninfal(n)2 > 2¢y(2),. pm-a.s.
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PrROOF. Let ¢! € Pot(§, ,, Ao, Ay) and set ¢)(x) = x; — 21pl(x) + L. Since

Yl(x) = Yl(x + 2le,), x € Ay, . can be regarded as a periodic function on W.
We first show that
(5.8) Liyl(x) = F(x), xeW.

This equation is obvious for x € A \ (A, U A,). On the other hand, for
x €Ay,

Lign(x) — Fi(x)
= quf,<x, dy) (wl(y) — wh(x) = y1 +xy)

= [ @@ dn)(45(r) —di(x) =31+ x)

+ ) Gl + 2len AN (n(9) —da(x) — 31+ :)

—21{ /A \Aoq,,,A(x,dy)sof,(y) + /A \Alci,,,A(x + 2le;, dy) (eh(y) - 1)}-

Since ¢, A(x,dy) = g, A(x',dy) for x,x" € A, or x,x" € A;, by Lemma 3.1 we
have

1
(5.9) Sy o Gn (@) €5(9) = i Fr a0 ma):

' 1
(510) [y a(®d)(1 = ¢0(9)) = g7 Fhealdn a0 ma)-

Thus, we obtain L’ y/(x) = Fl(x), x € A\ A,. Noting that the functions
Ll,,t//,l, and F,f are periodic, we conclude (5.8).
By (5.8) we obtain ~

(5.11) fo dt(T!(t)F}, F}) = —/Vrh’(dx)F,f(x)t/ff,(x).
Using the symmetry of §, ,(x,dy)m (dx) and the equations

Fql(x) = '/;\(jn,A(x,dy)(yl —x) + /Aq,,,/\(x + 2leq, dy)(y1 — *1),

G(x) = [ dy (%, d9) (31 = 22)" + [ Gy a5 + 2ler, dy) (0 = 3)*, % € A,
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we have

o!(m)* = [l (dx){G1(x) + 2F(x) iy ())
= @)™ [ my(dx) [ &, a(x, dy){(1 = 20)°
+2(x1 - 21<pf1(x) + l)(y1 - xl)}
= @) [ ma(d) [ G, a(%, ) (31 = 20) (31 + 21 + 2L = dlgi(x))
= 220" [ ma(dw)xs [ d,,a(x, ) (#4(%) — 04(2))

-2 [ m@nn [ gy )

[ mdn ] G a1 - o)

= 2(21)2_(1%\0,/\1(‘?7,,1\’ mA)'

In the preceding we have used (5.9) and (5.10) in the last step. Since
Fno aldy a ma) = A 2(q, 4 M), by Proposition 3.1 we obtain Lemma 5.4.
O
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