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ALMOST SURE BOOTSTRAP OF THE MEAN UNDER
RANDOM NORMALIZATION"

By STEVEN J. SEPANSKI
Texas A & M University

We consider the problem of when the bootstrap sample mean, appropri-
ately normalized and centered, converges in distribution along almost every
sample path. We allow the normalizing sequence to be an arbitrary se-
quence of positive random variables. It is proved that the only possible
normalizing sequence is essentially (L?_; X?)!/2. Furthermore, if the boot-
strap sample mean converges along almost every sample path, then either
the variance is finite or else the distribution of X is extremely heavy tailed.
In the latter case, the distribution of the bootstrap sample mean is com-
pletely determined by how many times the maximum order statistic from
the original random sample is repeated in the bootstrap sample. The
necessary condition on how heavy the tails must be is (X7_;|X;[")}/?/
(Z?_1X2)'/2 > 1 almost surely for all p € (0,]. Furthermore, we show
that in this case the limit of the bootstrap sample mean normalized by
(X7, X2 is Poisson with mean 1.

1. Introduction. Let X, X;, i € N, be independent identically dis-
tributed (iid) real valued random variables defined on some complete probabil-
ity space (Q, &, P). For » € Q and n € N, let P(w) = n"'L}_,8x,,, denote
the empirical measure and let {X“’J}" , be iid random varlables with laws
P (w). Giné and Zinn (1989) have shown that EX? <  is necessary for there
to exist positive scalars a, T, centerings c,(w), and a random limiting
measure u(w) [assumed to be nondegenerate with positive probability (hence-
forth abbreviated w.p.p.)] such that #(a;'S}_, X2, — ¢,(@)) = w(w) a.s. (Here
. = denotes weak convergence.) Furthermore 1t is then necessary that a,
~ Vn . We consider a related question, allowing normalization by an arbltrary
positive random variable, which we denote by A,. We show (Theorem 1) that if

(1.0) LA (o) f Xo —c(0)| = pn(o) as.,
j=1

then (X7_; X?)'2/A, — ¢ as. for some nonnegative random variable ¢ sup-
ported on the set where u is nondegenerate.

This is not surprising in the finite variance case. However, in the infinite
variance case, we show that if (1.0) holds, then for some random variable ¢ as
above, A, (X7, IX,[P)/P > ¢ as. for all p € (0, ). With p = » in the expres-
sion (Z7_,|X;IP)'/?, we mean M, =: max;_,|X,|.
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918 S. J. SEPANSKI

Therefore, in the case where the variance is infinite and the bootstrap sum
is known to converge for some centering and scaling, one may as well normal-
ize by M. The question then arises as to what the limit is. We show that it is
Poisson with mean 1 and that the necessary condition ¥7_,|X;|/M, — 1 a.s. is
also essentially sufficient (see Theorem 2). We thus have a link between
bootstrapping and the work of Maller and Resnick (1984) and of Pruitt (1987)
on the contribution to the sum of the summand of maximum modulus.

Before proceeding, let us introduce some notation to be used in addition to
that already spelled out above. We will write P and E for probabilities and
expectations, respectively, with respect to the variables { X witi,n With o fixed.
M, , will denote the rth largest among |X,/, ..., |X,|. For simplicity we will
write M, instead of M, ;. X{” is the value among {X;: i <n} which yields
M, That is, XV = X, X, if and only if M, , = |X;|. For a probablhty measure
n on R, we deﬁne m(A) = u(—A), where for a set A, we define —A = {—x:

x € A}.
2. Results.

TueoreM 1. Let A,: Q — (0,%), n € N, be a sequence of (F-measurable)
random variables. If there exist random centerings c,(w), n € N, and a
random probability measure w(w), nondegenerate with positive probability,
such that (1.0) holds, then, with Q, = [w € Q: u(w) is nondegenerate], there
is a nonnegative random variable f with &(w) > 0 for almost every w € Q,,
such that either: () 0 < EX? < w and (L}, X})'/?/A, — €lg a.s; or (i)
EX?2=wand ¥ p € (0,x)], (T"_,|X; Ip)l/p/A - ¢lg, as.

Note that in the case of (i) in the theorem we can conclude from the
Hewitt—-Savage Zero—One law that (X7_,|X,I")'/?/M, —» 1 as. ¥V p € (0,»].
Moreover, it is known [see Maller and Resnick (1984), Theorem 2.3] that this is
sufficient to conclude that the tail of the distribution is slowly varying at
infinity. In particular, all moments are infinite.

The theorem indicates a dichotomy. (1.0) holds in only one of two cases.
Either the tails are light enough for the existence of a second moment or so
heavy that all moments are infinite. The finite variance situation has been
studied extensively. We are interested primarily in the infinite variance case.

One consequence of Theorem 1 is that, in the case of infinite variance, if the
bootstrap of the mean converges weakly almost surely to some random mea-
sure u(w) with some random normalizers A,, then A, ~ M, almost surely on
the set Q. Restricting attention to 1, the bootsttrap of the mean converges
weakly almost surely when normalized by the random normalizers M,,. Since
P(Q,) > 0, this is enough to guarantee that the bootstrap of the mean
converges weakly almost surely on the whole space to a nondegenerate limit
when normalized by M,,. The following theorem demonstrates this and shows
that the limiting dlstrlbutlon is Poisson. -
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THEOREM 2. Let p denote the Poisson law with mean 1. The following are
equivalent:

(i) EX? = o and there exist centerings c,(w), normalizers A, (w) and a
random measure u(w), nondegenerate with positive probability such that (1.0)
holds.

Gi) ¥ ,1X,|/M, —> 1 a.s. and either X\V/M, - 1 a.s. or X\ /M, —» —1
a.s.

(i) Either £(Z"_1X¢;/M,) = p a.s. or L(X"_1X¢,/M,) - p a.s.

Pruitt (1987) gives several conditions which are equivalent to the first
condition in (ii) of Theorem 2. Also, more in the spirit of Pruitt’s work, if one
is willing to replace M, by the possibly negative normalizers X, then one
can do away with the second condition in (ii), and in (iii) the limit will always
be Poisson with mean 1. Thus, almost sure convergence in law to Poisson with
mean one of Z;-;l)f,‘;’j /X can be added as another equivalent condition in
Theorem 1 of Pruitt (1987).

Theorem 2 is the almost sure analogue of Theorem 2.1 of Hall (1990), which
deals with convergence in probability. We might point out that in his paper,
Hall discusses the case of almost sure convergence briefly but only in the case
where the limit is assumed to be a nonrandom normal law (e.g., Proposition
2.1).

3. Proofs. Before proceeding directly to the proof of Theorem 1, we first
dispense with some technical questions on the measurability of the random
measure u. We do not assume that this map is measurable. However, the
crucial set where u is nondegenerate is measurable. Indeed, consider the space
H(R) of all probability measures on R with the weak (star) topology and
Borel sigma field #. Let u (w) = J(A;l(w)Z;?:lX',‘fj). It can be shown that
for each n € N, both u, and u, * &, are measurable maps from (Q, ¥) to
(H(R), B).

Since w * w is the almost sure limit of Fmeasurable elements, it is Fmea-
surable as well. Because of symmetrization, if u * & is degenerate, it must be
8o. Hence, [u * i is degenerate] = (u * )~ '({§,}) € &. Also, u*u is nonde-
generate if and only if u is degenerate and so [u is nondegenerate] € #.

If ¢, is an S measurable random variable, then p,*4_. is also an
Fmeasurable random element of #(R). Symmetrization allows us to elimi-
nate any measurability hypotheses on c,,.

One of the key steps in the proof of Theorem 1 of Giné and Zinn (1989) was
showing that the Lévy measure associated to u was the zero measure. This is
not necessarily the case when we allow random normalization. However, it will
be shown that for almost every w, the function A — 7(w)[lx| > A] has at most
one jump and if there is a jump, then it is one unit. Moreover, for almost all
those w where u(w) is nondegenerate, the random variable ¢ appearing in part
(ii) of Theorem 1 is the absolute value of the point where the jump takes place.
The next lemma will be useful in proving this.
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Lemma 3. Let {X,}7_, be a sequence of i.i.d. random variables. If there
exists A € (0,1) such that

n— o

n
im P| ¥ Lyxoam, > 2| = 1,
i=1

then X has all moments.

Proor. Denote by F the distribution function of |X|. Without loss of
generality we may assume that F(x) < 1 V x € R, since if not, X clearly has
all moments. First assume that F is continuous. We will later show how to
modify the argument when F is not necessarily continuous.

Let A be as in the hypothesis. By the continuity of F there exist a,
satisfying nP(|X| > Aa,) = 1 Vn. We then have that

nP(X| > a,)(1 - P(X > Aa,))" "
=nP(F(AIX]) > F(Aa,))F" '(Aa,)

n
<nEF" Y(AX]) = P| X Ljx, sam,; = 1| = o(1).
i=1

The last identity follows from the hypothesis of the lemma. Therefore,
nP(X| >a,) - 0.

Now since F(x) < 1V x, the sequence a, is strictly increasing to infinity
and therefore for ¢ > 0, there exists n such that a, <t < a,, ;. We then have

P(IX] > ¢t) ) P(X| >a,) . + DP(X > 0
_— < = =0.
R PXI S A S A P(X > Aa,,y)  am(rt D) (X1 >a,)

We now show that E|XI” < »Vp > 0. Fix p > 0 and let A > 0 be such that
t > A implies P(|X| > ¢)/P(IX| > At) < A? /2. Next, fix B > A; then,

AP

[ptPTP(XI > 1) dt < A” + ?prtp_lP(IXI > At) dt
0 0

1
<A? + = [*ptPTP(IX| > 1) d.
29

Letting B — « yields E|X|P < 24P < .

This proves the desired result in the case when F. is continuous. We now
handle the case for general F. We use the fact that if Y has a continuous
distribution function and X and Y are independent, then |X| + Y also has a
continuous distribution function. For the purposes of this proof, we will take
{Y;}7_, to be a sequence of i.i.d. random variables which are uniformly dis-
tributed over the interval (A /2, 1) and which are independent of {X,}7_,. Let
MY = max; _,(IX;| +Y;). Now suppose Z;‘;J“X“MM”] > 2. For some i, i,,
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min{|X; |, 1X;,I} > AM,, and therefore

A A A

“M* < — Z

2M,, < 2(Mn +1)<AM, + 2 SAM, +Y, <IX;|+7, .

Hence, [Z?IHX1|>/\M,,] >2]c [Z?I”Xi|+Yi>()‘/2)M,’f] > 2]. By hypothesis, the prob-
ability of the former tends to one, hence so does the probability of the latter.
So, {IX;| + Y;}7_, satisfies the hypotheses of the lemma and we apply the
continuous case to conclude that |X| + Y has all moments. It is then immedi-
ate that X has all moments as well.

Proor oF THEOREM 1. The proof will be separated into two cases. First,
suppose that EX? < «. In this case it is known [Bickel and Freedman (1981),
Theorem 2.1] that .Z(n~'/?L7_(Xg, — X,)) = N(0, Var X) a.s. Moreover,
since u is nondegenerate with positive probability, Var X # 0. By the conver-
gence of types theorem we have that for each w such that u(w) is nondegener-
ate, there exists a positive number n(w) satisfying n~ /%A (0) - n(w). For
those w such that u(w) is degenerate, necessarily Vn /A (w) — 0. Also, by the
strong law of large numbers, (n~ X7, X?'% - (EX?)'/2 as. Then ¢ =
7 (EX??[ o, has the desired properties. This proves (i).

The remainder of the proof is devoted to analyzing what happens when
EX? = «, First, a word about the proof. Often certain statements will be made
which hold for almost every w. To avoid technical difficulties we will assume
that subsequent almost sure statements satisfy all previous almost sure
statements. This does not create a problem since only finitely many such
statements will occur. .

We first prove that for almost every w, the array {X},/M (0): j < n},_; is
infinitesimal. Fix ¢ > 0 and a positive integer M:

Ijn<afPA(er?Jl/Mn(w) > 5) =n"t Z I[|Xl|>£Mn]
> ; 1

1=

n
<Iy <yt n ' Xlix s~ P(XI >eM) as.
i=1

The last line follows from the strong law of large numbers and from the fact
that since EX? = », M, — « a.s. Letting M — o yields almost sure infinites-
imality as needed.

Next, we shall show that a necessary condition for (1.0) is that A, must
converge to infinity sufficiently fast. More precisely,

P(limsup(M, /A,) = ®) = 0.

Suppose, on the contrary, that both lim sup(M,/A,) = © w.p.p. and (1.0)
holds. There then exists an » and a subsequence n' such that the following
three facts Ahold: The array (X% /M ww): j <n}, is infinitesimal,
LAY Xy, — c(0) = w(w) and A, (0)/M, () — 0.
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The last two of these imply that

E?;IX;:'J _ cn’(w)An'(w)
M,(0) M)

Under the infinitesimality stated in (iii), a necessary condition for this is
Y Xy > My — O [see Araujo and Giné (1980), Corollary 4.8]. This is
impossible, at least for ¢ € (0, 1). Hence, we conclude that lim sup(M,, /A,,) <
a.s.

Since M, — » a.s., A, = » a.s. and we can prove in the same way as we did
earlier for M that for a.lmost every w, the array {X wi/Aw): j<nk_,is
infinitesimal. Hence, w(w) is almost surely an infinitely divisible measure.

Now, let 7(w) denote the Lévy measure of w(w). By the converse C.L.T.
[see, e.g., Araujo and Giné (1980), Theorem 4.7], we have that for almost every
w’

Xe.

3. n_/ 2
(3.1) jg.l (An

= 7(@)lfx)> 2]
[l >A]

for all A which satisfy
(3.2) m(w){—A,A} =0.

In particular,

n
(3.3) 2 Iix s>aa,, ™ m(w)[lx] > A].
i1
Note that for almost every fixed w all but countably many A satisfy (3.2) and,
in particular, Lebesgue almost every A. However, the set of Lebesgue measure
zero may depend on w.

A simple measurability argument shows that the function (o, A) —
m(w)[|x| > A] is jointly measurable.

The joint measurability allows us to legitimately apply Fubini’s theorem to
conclude that there is a countable dense set D c (0, %) such that V A € D, (3.3)
holds almost surely. For each fixed A € D, we write £(w) = m(@)|x| > A]. ¢, is
necessarily almost surely a nonnegative integer. We use Lemma 3 to show that
¢, cannot be two or greater.

Suppose there exists A, € D such that £, > 2 w.p.p. For a large enough,
P([sup,(M,/A,)a] N[ Hixy = a1 ™ €n N [¢,, = 2D > 0. For w in this set
we see that eventually

n n
2<¢ EI|X|>/\0A < Z X, > AoM,, /o] = ZI|X|>/\Mn]
i-1 im
for some A € D N (0, mln{)to/a 1}). For this A, P(X7_ Iy, sam,) Z 2 eventu-

ally) > 0. The Hewitt—Savage zero—one law guarantees that the probability is
1. Applying Lemma 3 we conclude that EX? < «, a contradiction.
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We conclude that £ €{0,1} a.s. V A € D. There are two possibilities.
(1) & =0V A €D or (i) there is a A € D such that ¢, = 1.

Here the proof splits into cases according to whether w satisfies (i) or (i)
and whether u(w) is degenerate or not.

For those o satisfying (i), (3.3) under the hypothesis that (i) holds is
equivalent to Z;?:lP(IX',‘:’jI >AA,) — 0as. VA > 0. In this case the limiting
distribution must be normal [see Araujo and Giné (1980), Corollary 4.8]. Thus,
w(w) = N(a(w), 0%w)) for some random parameters a(w) and o* ). By the
converse C.L.T. (suppressing o from the right side below), '

_[TiaXE oY (ERX)” . P X?
(34)  o¥w) = J‘i’i( A2 A? T ane A
The last equality is obtained from Giné and Zinn [(1989), Lemma 2].
To essentially eliminate the case of (i) and u nondegenerate holding simul-
taneously, we now show that P([¢{, =0V A > 0] N Q,) = 0. Assume not. On
the set in question o(w) > 0 and therefore

AEEL raye, | - M@)o, 1) w
(E’.’=1X.2)1/2 o Nw)c, w)/o(w), P-p-

That this implies EX?2 < «» was essentially shown by Csorgé and Mason
(1989). They proved it in the case where the limit is a nonrandom normal
distribution, the normalizing sequence is the sample standard deviation and
the convergence is almost sure instead of with positive probability, but their
argument goes through in our case, too. We give their argument briefly with
the appropriate changes. By the converse C.L.T., P(X7_. I[|X;| >
CME L XDY2) > 0 V A > 0. This implies M, /(X7_,X?)'? - 0 w.p.p. The
zero—one law allows us to obtain almost sure convergence. Applying Lemma
4.1 of Maller and Resnick (1984) to the variables {X2J7_, yields EX? < o,
giving a contradiction as desired.
Of course, for w satisfying (i) and u(w) degenerate, recalling (3.4),

(£, x2)"*
A

n

(3.5) — 0 for almost every w € [u is degenerate].

We now consider w satisfying (ii). We note that (ii) implies u(w) is nonde-
generate and therefore this is the only case left to consider. The set of such
has positive probability because if not, u is almost surely degenerate.

Now, let A*(w) = sup{A € D: £,(w) = 1}. Note that X* < = a.s. since the set
{A € D: ¢{,(w) = 1} is bounded above by lim sup(M,, /A ). Of course, A* > 0. By
monotonicity of A — w(w)[|x| > A] and the fact that D is dense,
Zidyx,spa, > LY A< A and Do yx, oy, 2 0,V A 2 X*. Therefore,

A* < liminf(M,/A,) < limsup(M,/A,) < X*.
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We therefore have that for almost every o satisfying (ii),
M, ()
A, (o)
We also have that if o satisfies (ii), then M, ,(w)/A,(0) = 0. When we
combine this with (3.6) we may conclude (M, ,/M,) — 0 w.p.p. As usual, the

zero—one law yields almost sure convergence. We then apply Theorem 1 of
Pruitt (1987) to the variables {|X;[}’_; to obtain

(S 1X,P) P
M

n

Finally, by (3.5), (3.6) and (3.7), £ = A*I[£, = 1 for some A] has the desired
properties.

(3.6) - X ().

(3.7) -1 as.Vpe(0,].

Proor oF THEOREM 2. We will prove that (i) implies (ii) first. Without loss
of generality we may assume that P(Q),) = 1. Indeed, if we can prove that (i)
implies (ii) in this case, then arguing relative to 0, gives that the limits in (ii)
hold with positive probability and the zero—one law gives almost sure conver-
gence.

The first half of (ii) of Theorem 2 follows directly from (ii) of Theorem 1.
Assuming P(Q,) = 1, we have by Theorem 1 that there exists a random
variable ¢ > 0 a.s. such that M, /A, — ¢ a.s. Therefore, .£(M, IZ"_I ni =
d (0)) = v(w) a.s. for some centerings d,(w), and an almost surely lnﬁnitely
divisible and nondegenerate random measure ().

We again denote the corresponding Lévy measure by 7(w). An application
of Lemma 3 shows

M:

- (3.8) Lix >am, >0 as.VAx1,

i=1

n

(3.9) Z Lixsam,;— 1 as.VAe(0,1).
i=

We may then conclude that

(3.10) m(w) =a(w)d; + (1 —a(w))d_; as,

for some random variable a taking values in [0, 1].

By (38.1) with M, in place of A,, and by Fubini’s theorem, there is a
countable dense set D c(0,%) such that V A €D, X7 Ly _ p
m(w)(—, —A) a.s. In particular, there exists A € (0,1) N D for which "this
holds. However, for A € (0, 1), the limit is equal to 1 — a(w) almost surely by
(3.10). By the Hewitt—Savage zero-one law, we then’conclude that a and
are constant almost surely. Since the sequence is integer valued, so is the limit.
Thuys, in fact, a € {0,1}. By (3.10), either 7 = 8, a.s. or 7 =6_; a.s. In the
former case, X(l)/M - 1 a.s. In the latter case, X(/M, > —1 as.

Next, we prove (ii) implies (iii). Suppose to be specific in (ii), that we have
XO/M, > 1as.
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The first condition in (ii) implies M,, ,/M, — 0 a.s., which, in turn, implies
(3.8). Also, (3.9) clearly holds. These two condltlons plus the condition
X®P/M, - 1 as. yield

X’ A
(3.11) Z L —= qum] 81lys>ay @8- VA #L

M, 1 a.s. is necessary for the first condition in (ii) and therefore the array
under investigation is infinitesimal a.s.

Next, observe that the truncated (at § < 1) means and variances converge
to zero almost surely. Indeed, directly from the first hypothesis of (i),

n Xw
; ( [IX I<3Mn])
n n 2
Zi=1Xi I[|Xi|<8M,,] Zi=1XiI[|X,|<5M,,]
= 5 - -0 as,
M? M n
an Z;l=1){iI[|Xi|<¢SMn]
ZE I“X 1 <6M,] i -0 as.
Jj=1 n

Under inﬁn1tes1ma11ty these and (3.11) are sufficient for .,/(Z;LIX' wi/M,)=p
a.s. [Araujo and Giné (1980), Corollary 4.8].
Finally, (iii) implies (i) is trivial.
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