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PARTICLE SYSTEMS '

By DAvID GRIFFEATH

University of Wisconsin

In the late 1960’s Frank Spitzer’s research underwent a phase shift—he
began to study spatially distributed interacting stochastic systems, a subject
that was still in its infancy. Later, in the preface to his 1976 second edition of
Principles of Random Walk, he would write the following:

New types of random walk problems are now in the stage of
pioneering work. This came about because the simple model
of a single particle, performing a random walk with given
transition probabilities, may be regarded as a crude approxi-
mation to more elaborate random walk models. ...In other
models one considers the simultaneous random walk of a
finite or even infinite system of particles, with certain types
of interaction between the particles. But this is an entirely
different story.

Although the roots of interacting systems can be traced to earlier modeling
efforts in applied fields such as statistical physics, computer science and
population genetics [cf. Glauber (1963), Kimura and Weiss (1964) and von
Neumann (1966)], Spitzer and his Russian counterpart R. L. Dobrushin are
widely credited as co-founders of a mathematical theory that has now evolved
into one of the richest and most vital areas of probability. This legacy is best
documented in the excellent books by Liggett (1985) and Durrett (1988), which
not only detail much of the work described below, but also consolidate two
decades of research by Spitzer’s colleagues and students.

The early 1970’s were a doubly fortunate time for me to be a graduate
student in stochastic processes at Cornell University. First, I could learn the
subject from three masters: It6, Kesten and Spitzer. However, I was also lucky
to find myself among an unusual concentration of eager disciples, several of
whom have become my close friends and collaborators. We responded to
interacting systems as a promising new paradigm for understanding the
organizational principles that underlie many fundamental ‘“real world” phe-
nomena. All of us were equally inspired by Spitzer’s keen sense of aesthetics,
which was guided by the beauty of mathematics®as much as any physical
motivation. Although he admired exceptional technical ability, Frank seemed
to favor elegance above all. He. set high standards for himself and his students
while communicating genuine enthusiasm for good work.
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SPITZER: INTERACTING PARTICLE SYSTEMS 609

What follows is a rather subjective annotated bibliography of Spitzer’s
writings on interacting particle systems (IPS). I include a sampling of papers
by other authors, either because Frank admired them, or because I feel they
illustrate his lasting impact on contemporary research. The bibliography is
divided into six groupings, more or less in chronological order. References of
the form [Sn] refer to the publication list that begins on page 622 in this issue
of the Annals. '

Not surprisingly, Spitzer’s first couple of papers about interacting systems
recall his earlier work on random walks and Brownian motion.

[S27] Uniform motion with elastic collision of an infinite particle system.
J. Math. Mech. 18 (1969) 973-989.

[S28] Random processes defined through the interaction of an infinite particle
system. Probability and Information Theory (Proc. International Sym-
posium, McMaster University, Hamilton, Ontario, 1968). Lecture Notes
in Math. 89 (1969) 201-223. Springer, Berlin.

Frank was intrigued by Harris (1965), in which an infinite system of reflecting
Brownian particles on the line was analyzed. Starting from a Poisson distribu-
tion, Harris proved that the displacement of a tagged particle is of order ¢'/4 at
time ¢, due to the congestion caused by other particles. At the end of the paper
Harris considered a related model in which the individual particles execute
deterministic motions with independent mean-0 random initial velocities and
elastic collisions (‘‘1-d billiards”). In this case he showed that the displacement
of a tagged particle is of order #/2 at time ¢, and conjectured that the
trajectory, suitably scaled, should converge (weakly) to a Brownian motion.
Spitzer proved this conjecture in [S27] by establishing convergence of finite
dimensional distributions and tightness. Then in [S28] he discussed a more
. general class of IPS on R including some variants on the Harris billiards. Most
notable was the result of his student R. Holley [Cornell dissertation, Holley
(1969)]. In a masterpiece of technical virtuosity, Holley proved that a massive
1-d particle, buffeted by infinitely many small ones, executes an
Ornstein—-Uhlenbeck process under a suitable limiting scheme. Frank found
such results satisfying for the precise way they demonstrate that basic diffu-
sions arise as large-scale limits of deterministic particle dynamics. In retro-
spect, it is worth noting that his first models were deterministic systems with
random initial states.

The most elementary interactions in particle systems that preclude multiple
occupancy are exclusion (= reflection or elastic collision), coalescence (two
particles merge into one) and annihilation (two particles cancel one another).
When crossed with the simplest particle motions, deterministic (constant
velocity) or stochastic (completely random motion), one gets six basic classes of
one-dimensional model. Within each class, system behavior is essentially the
same whether time and space are discrete or continuous. Linear ordering of
the particles facilitates various exact and asymptotic calculations that are
much more difficult in higher dimensions. Table 1 lists some of the many
papers in this d = 1 setting that may be viewed as descendants of the early
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TABLE 1
Interaction

Motion Exclusion Coalescence Annihilation
Deterministic Harris (1965) Fisch (1993) Fisch (1992)

Spitzer [S27]
Stochastic Harris (1965) Bramson and Erdos and Ney (1974)

Spitzer [S29] Griffeath (1980b) Bramson and

Arratia (1983) Arratia (1979) Griffeath (1980b)

Arratia (1979)

work of Harris and Spitzer. Highlights include: (i) the construction in Arratia
(1979) of coalescing Brownian motions starting with every point of the real
line occupied; (ii) Arratia’s (1983) solution of the tagged particle problem for
Spitzer’s symmetric exclusion process on Z, following the method of Harris
(1965); and (iii) exact asymptotics for annihilating deterministic particles on Z
having Bernoulli + 1-valued initial velocities, derived in Fisch (1992) by means
of an interesting exact connection with simple random walk.

Spitzer’s focus turned next to a general framework for interacting particle
systems m, as Markov processes on a configuration space. He settled on Z¢ as
the set of possible locations for particles, presumably out of affection for the
discrete setting and to avoid additional technical difficulties associated with the
continuum alternative. He chose continuous time so that at most one local
transition occurs at any instant of time and the generator Q for 7, takes the
relatively simple form [see Liggett (1985)]

(1) Qf(n) = %fCT(n,di)[f(ng) - ()],

cp(n, d{) being the exponential rate of change from configuration n to the
modification n¢ that has a new configuration { on the finite set T ¢ Z. In this
context he wrote what I consider to be his best two papers on particle systems:

[S29] Interaction of Markov processes. Adv. in Math. 5 (1970) 246-290.
[S34] Recurrent random walk of an infinite particle system. Trans. Amer.
Math. Soc. 198 (1974) 191-199.

In [S29], Spitzer introduced several classes of models of type (1) for which one
can explicitly identify invariant measures. Many of these models are motivated
by statistical mechanics and formulated in terms of an interaction potential
U(x, y). At that time Frank was inspired by the seminal work of Dobrushin
(1968) and Ruelle (1969) on Gibbs random fields. He wanted to find a collec-
tion of simple random evolutions that admit such Gibbs distributions as steady
states. Part of the grand design was a hope that one could gain deeper
understanding of the equilibria by exploiting the dynamics.
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Spitzer discovered a gold mine in [S29]—the fact that certain basic IPS have
tractable invariant measures, even for d > 1, was a promising development. It
suggested that such systems might be surprisingly amenable to rigorous
mathematical analysis. Frank was especially interested in proving convergence
theorems, that is, determining the ergodic theory of his models. On finite
lattices (Z¢ mod L with wrap-around, say) many of his systems can be viewed
as irreducible denumerable Markov chains, so the Markov chain ergodic
theorem applies. But he was more intrigued by the uncountable configuration
spaces {0, 1)2° (at most one particle per site), or {0,1,...}%" (any number of
indistinguishable particles per site), for which a whole new theory was needed.
In particular these infinite particle systems entailed infinitely many changes
of state in any time interval no matter how small. In the introduction to [S29]
Frank openly admitted that his favorite systems were not known to exist. He
simply called his results ‘‘conjectures” and stressed ‘‘the need for further
work.” Fortunately, Liggett (1972, 1985) resolved this uncertain state of
affairs by proving existence and uniqueness of Markov processes with genera-
tors of type (1) (for f that depend on finitely many coordinates). Liggett’s
theorem imposes only mild and natural assumptions on the “jump rates” c,
and so applies to virtually any reasonable local interaction with uniformly
bounded transition intensities.

Of all the models Spitzer discusses in [S29], surely the most important is
simple symmetric exclusion. Frank was very fond of a result from the 1950’s,
due to Doob and Derman, about systems of independent particle motions. For
either Brownian motions on R or simple random walks on Z¢, any (homoge-
neous) Poisson point process is invariant. He considered a corresponding
continuous-time lattice model 7, with at most one particle per site and the
simplest imaginable interaction: whenever a particle tries to jump to a site that
- is already occupied that jump is suppressed. Frank observed that m, has a
one-parameter family of invariant measures that is also the simplest imagin-
able: The Bernoulli product measures u,; 0 < a < 1. Curiously, in spite of the
exclusive interaction, an initially uncorrelated homogeneous configuration
remains uncorrelated at all times. Because of this fact, several additional
striking structural features, and its special significance as a prototype for
diffusion of a lattice gas, simple symmetric exclusion is widely revered as one
of the most beautiful models of contemporary probability theory.

The basic ergodic theory of exclusion is laid out in [S34] and the companion
papers Liggett (1973) and Liggett (1974). The starting point is Spitzer’s
duality equation from [S29]:

(2) P'(n,=1on A) =P%(n=1o0n 4,),

where A is any finite subset of Z¢ and A, is the exclusion process starting
from A. This reduces distributional characteristics of the infinite system to
quantities involving the countable Markov chain A,. Various couplings, con-
structions of two or more systems on a common probability space, also play a
key role in the Spitzer—Liggett analysis. For instance, one can couple 1, to an
independent particle system of Doob-Derman type, or to the stirring modifi-
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cation in which particles swap places when one attempts to jump to the
position occupied by the other. Or two copies of 7, with different initial
configurations can be coupled in various ways. The independent and stirring
systems are useful for comparisons because their individual particles execute
bona fide simple random walks to which classical theory applies. Over the past
twenty years duality and coupling have turned out to be the two most versatile
and productive tools for rigorous analysis of interacting systems.

Using duality, coupling, and other clever techniques, Spitzer and Liggett
were able to show that the only extreme translation invariant equilibrium
states for simple symmetric exclusion on Z¢ are the Bernoulli product mea-
sures u,, and to identify the domains of attraction of the u,. Separate
arguments are needed for ‘“‘recurrent” (d = 1,2) and “transient” (d > 3)
models; the theory of discrete harmonic functions plays a key role. Chapter
VIII, Section 1 of Liggett (1985) presents this elegant analysis in complete
detail.

Liggett went on to write several papers about more general exclusion
models, some of them proposed by Spitzer in [S29]. His extensive investigation
of variants without symmetry or nearest neighbor structure constitutes a
beautiful chapter in stochastic process theory, full of power and ingenuity.
Another outstanding paper in this area is Kipnis and Varadhan (1985), where
the position of a tagged particle in the d-dimensional simple symmetric
exclusion model 7, is shown to obey a central limit theorem with the usual Vvt
scaling for any d > 1. Thus the Harris—Arratia identification of ¢/ scaling
for d = 1 represents the only case in which particle fluctuations are ‘‘subdif-
fusive.” Most recently, exclusion processes have become the favorite toy
models of stochastic hydrodynamics: the study of density profile evolutions for
IPS. Over the past decade, since the seminal paper of Rost (1981), dozens of
articles on particle hydrodynamics have appeared. Andjel, Bramson and Liggett
(1988), for example, analyze the connection between asymmetric exclusion and
shocks in an associated pde known as Burger’s equation. See also the survey of
De Masi, Ianiro, Pellegrinotti and Presutti (1984).

[S30] Markov random fields and Gibbs ensembles. Amer. Math. Monthly 78
(1971) 142-154.

[S31] Random fields and interacting particle systems. Notes on lectures given
at the 1971 MAA Summer Session, Williams College, Williamstown, MA,
Mathematical Association of America, Washington, D.C.

[S35] Introduction aux processus de Markov a parameétre dans Z,. Ecole d’Eté
de Probabilités de Saint-Flour III-1973. Lecture Notes in Math. 390
(1974) 114-189. Springer, Berlin.

[S37] Markov random fields on an infinite tree. Ann. Probab. 8 (1975)
387-398.

[S40] Phase transition in one-dimensional nearest neighbor systems. J. Funct.
Anal. 20 (1975) 240-255.

Spitzer was greatly impressed by the work of Dobrushin (1968) and Ruelle
(1969) on the mathematical foundations of statistical mechanics. Although
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dynamics remained the focus of his research, Frank became intrigued with the
theory of (discrete) random fields, lattice distributions that play the role of
invariant measures for IPS. Simultaneously with others he discovered a
beautiful equivalence [S30] of Markov random fields and Gibbs ensembles.
Roughly speaking, a Markov field n has the property that the conditional
distribution of n(x) given n off x agrees with the distribution of 7(x) given
1n(dx), where dx denotes the nearest neighbors of x. A Gibbs ensemble is a
random field with cylinder probabilities expressed in terms of \the exponential
of a nearest neighbor potential. Frank’s rather arduous proof that these two
recipes coincide was later reduced to a simple application of the Mobius
inversion formula by Grimmett (1973). A general and abstract framework for
this circle of ideas was developed subsequently by Dobrushin, C. Preston, H.
Follmer, E. B. Dynkin and others.

My first introduction to Spitzer’s work was the ¢ Williamstown Notes” [S31]
that he prepared in conjunction with an MAA summer school in 1971. While
an undergraduate at Dartmouth College, I remember poring over a
mimeographed preprint of these notes (which I have kept to this day). They
begin with a gentle introduction to Markov chains, adapted to suit the IPS
framework. Simple exclusion is introduced, but thereafter the notes focus on
models of statistical mechanics: Gibbs random fields and their dynamical
counterparts, stochastic Ising models. After discussing selected topics from
[S29] and [S30], Frank’s lectures culminate with a demonstration of phase
transition in the basic Ising model on Z2. I still remember thinking that the
Peierls argument he presents in Chapter 7 of [S31] was about the most
beautiful proof I had ever seen.

The subsequent Saint-Flour notes [S35] reflect a more mature theory,
following two more years of fundamental work by Spitzer, his co-workers and
- students. Liggett had proved his existence and uniqueness theorem, while
Holley had established basic properties of attractive (monotone) systems and
obtained some elegant results for stochastic Ising models. Spitzer’s students
R. Thompson and K. Logan had written Cornell dissertations motivated by
statistical mechanics. At that time Frank was optimistic that the dynamics of
Glauber-type spin systems might yield additional insights into the deep secrets
of their equilibria: the Gibbs states. More than anyone else, Holley took this
calling to heart. Over the past twenty years, often in collaboration with
D. Stroock, he has written a large collection of masterful papers that explore
deep and important aspects of the relationship between reversible Ising dy-
namics and their corresponding Gibbs fields. For references, see Liggett (1985)
and Holley’s contribution to the Spitzer Festschrift [Durrett and Kesten
(1991)]. .

In his articles [S37] and [S40], Spitzer makes elegant excursions into the
theory of (translation-invariant nearest-neighbor) Markov random fields on
tractable graphs. Paper [S37], based in part on work of Preston, studies the
structure of Markov fields on homogeneous N-ary trees. The absence of loops
enables a prescription of cylinder probabilities in terms of a Markov chain.
This setting provides explicit criteria for uniqueness /nonuniqueness of Markov
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fields with prescribed local characteristics (conditional probabilities). Paper
[S40] studies Markov fields on N“—the lattice is the one-dimensional integers,
but the type space is denumerably infinite. In contrast to the case of finite type
space, there can be more than one Gibbs field with given conditional probabili-
ties, that is, phase transition can occur. A representation theorem for the class
of Gibbs fields is given, an interesting example of phase transition is worked
out in detail, and then the discussion concludes with a list of conjectures and
problems. As was often the case, Frank’s investigations quickly inspired a
flurry of activity by colleagues and students. While I was a graduate student at
Cornell, three “in-house” research projects grew out of [S40], resolving most
of the open problems mentioned there. Frank’s student J. T. Cox wrote a very
nice dissertation on entrance laws, a one-sided variant of the Markov field
theory that allows denumerable Markov chains started at time ¢ = —» to
“come in from « (in the state space).” Another Cornell student, S. Kalikow,
found a surprising example of a nonstationary entrance law that first coincides
with a stationary distribution at a deterministic time (¢ = 0, say). And, even
before Frank’s paper appeared in print, Kesten (1976) proved that the class of
translation invariant Gibbs states must either be empty or consist of a single
stationary Markov chain. A survey of random fields including these and related
results, and many additional references, may be found in Griffeath (1976).

[S36] Random time evolution of infinite particle systems. Proc. Internat.
Congress Math. (Vancouver 1974) 2 169-171.

[S39] Random time evolution of infinite particle systems. Adv. in Math. 16
(1975) 139-143; Also appeared in Surveys in Applied Mathematics
(N. Metropolis, S. Orszag and G.-C. Rota, eds.). Academic, New York,
1976.

Articles [S36] and [S39] are two short overviews of IPS theory circa 1974
with the same title. The first is a very brief sketch of his talk to the 1974
International Congress in Vancouver; the second contains identical references
but elaborates somewhat on the outline of the first. These accounts continue
to focus on connections with statistical mechanics, recapitulating the Saint
Flour Notes for the most part. Frank singles out the seminal work of
Dobrushin (1971), acknowledging his independent discovery of particle system
dynamics that have prescribed Markov or Gibbs fields as equilibria. Dobrushin’s
extraordinary 1971 paper presented a unified approach to existence, unique-
ness and ergodicity of infinite spin systems. Such a process has two possible
states per site, +1 say. Each site x flips its state at an exponential rate c,(n)
that depends only on the configuration of 7 in a local neighborhood of x.
Roughly, the interaction is weak if |c,(n) — ¢, (7')| < ¢ whenever n(x) = n'(x),
that is, if the flip rates at different sites are nearly independent. A system 7, is
said to be ergodic if it converges (in distribution) to a unique equilibrium u
starting from any initial distribution 7. Dobrushin used a combination of
coupling and duality to prove ergodicity in the case of sufficiently weak
interaction (small ¢). But his exposition was rather difficult to penetrate, so
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Spitzer, Harris, Holley, Liggett and others dedicated their collective energies to
understanding the essential techniques.

To my knowledge, [S39] includes the first reference in print to the “major
open problem” that has come to be known as the positive rates conjecture.
Based largely on the fact that no finite range, homogeneous Gibbs potential in
one dimension can admit phase transition, and the closely-related ergodicity of
corresponding stochastic Ising models, a “yes” answer was suspected to the
question:

(3) Is any homogeneous, finite-range, one-dimensional spin
system with positive flip rates ergodic?

Work on this problem has been a major impetus to the theory ever since.

At about the same time, Harris (1974) established a phase transition for the
basic contact process ¢, in one dimension, a spin system prototype for conta-
gion in which infected sites (1’s) recover at exponential rate §, while healthy
sites (0’s) are infected at rate B by each neighboring infective. Since the “all
0’s” configuration is a trap for the process ¢,, its rates are not uniformly
positive and ergodicity amounts to global recovery (in distribution) starting
from any initial configuration. Harris proved existence of a critical value
A, € (0,) such that ¢, is ergodic if /8 < A, whereas the infection persists
starting from “all 1’s” if B/ > A,.

Another triumph of the mid-1970’s was the detailed analysis of the basic
voter model {, on Z¢ by Holley and Liggett (1975). In this system, folks of two
competing opinions continuously reevaluate their own views in light of their
neighbors’. Specifically, the individual at x changes opinion at a rate propor-
tional to the number of neighbors who disagree. Again, this system does not
have uniformly positive flip rates; in this case both of the consensus configu-
rations ‘““all ‘0’s” and ‘““‘all 1’s” are traps, so the system cannot possibly be
ergodic. Holley and Liggett showed that the asymptotic behavior of ¢, is
dimension-dependent, reflecting the Polya dichotomy for recurrence/tran-
sience of simple random walk. If d > 3, the model has a one-parameter family
of nondegenerate extreme invariant equilibria v,, and settles down to one of
these starting from any nice initial measure. If d = 1 or 2, on the other hand,
{, clusters starting from any nontrivial product measure p,, meaning that
arbitrarily large connected components of common opinion arise as ¢ — .
This latter scenario constitutes one of the simplest instances of self-organiza-
tion starting from randomness. .

Spitzer mentioned both the contact process and the voter model in [S36] and
[S39], describing the abovementioned results as “deep’’ and ‘‘most surprising.”
These nonreversible systems do not really fit within the framework of tradi-
tional statistical mechanics. Rather, they arise as mathematically tractable
models from a much broader terrain of spatial interactions. It is interesting to
note that Frank dedicated [S39] to Ulam, who along with von Neumann is
considered the founder of the theory of cellular automata [cf. Ulam (1952) and
von Neumann (1966)]. Cellular automata (CA) are deterministic, local, homo-
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geneous, discrete-time dynamics that update in parallel; see Toffoli and
Margolus (1987) for an overview of the field including a brief history. Nowa-
days, the discrete-time synchronous analogs of Spitzer’s particle systems are
often called random cellular automata (RCA), meaning that stochastic ingre-
dients enter into their local update rules. Despite the popularity of Conway’s
Game of Life in the 1970’s, and the obvious similarity of the IPS and CA
paradigms, only in the past few years have researchers from the two areas
begun to collaborate. Increasingly, IPS and CA models are being investigated
by mathematical physicists, chemists, biologists and computer scientists.

In fact, variants on both the contact process and the voter model had been
considered previously, outside the context of statistical mechanics. An RCA
version of the contact process, sometimes called the Russian lamps, was
studied by Toom (1968), Vasershtein (1969) and Vasersthein and Leontovich
(1970) within the context of reliable computation in neural networks. These
remarkable papers established an exact connection between the lamps and the
oriented percolation model of Hammersley (1959), developed the discrete-time
counterpart of Dobrushin’s ergodic theorem via coupling, and formulated both
the sample path and analytical versions of discrete-time duality theory. The
voter model, on the other hand, arose naturally within the context of biology
and population genetics as a prototype for spatially-distributed selectively-neu-
tral genetic drift. Its qualitative dimension dependence was noted by Clifford
and Sudbury (1973). A multitype generalization known as the stepping-stone
model had been analyzed a decade earlier by Kimura and Weiss (1964), based
on ideas that date back to Wright (1943).

[S43] Stochastic time evolution of one dimensional infinite particle systems.
Bull. Amer. Math Soc. 83 (1977) 880-890.

Article [S43] is based on an invited address that Spitzer delivered at the
January 1976 meeting of the AMS in San Antonio. There he introduced a new
class of one-dimensional interactions known as nearest particle systems. Just
as for spin systems, each site of Z is either occupied by a particle or vacant,
and transitions are governed by flip rates. But now these birth and death rates
at x are of the form B(/, r) and 6(I, r), where [ and r are the distances from x
to the nearest particle to the left of x and to the right of x, respectively. [One
can obtain finite nearest particle systems by suitable choice of rates B(, r),
B(1,), 8(», r) and (1, =) to dictate transitions of the extremal occupied sites.]
Frank discovered that for certain choices of the flip rates, for example,

1 1\?
(4) ﬁ(l’r) =C(7 + ';) ’ 6(1,7‘) =1, ‘P> 1,C>C‘p,

where c, is easily computable, the corresponding infinite nearest particle
system has an invariant renewdl measure p, and is reversible with respect to
. [In example (4) the interparticle spacings of u are iid with density g(n) =
n~P.] Thus he exhibited another rich class of interactions with equilibria from
classical probability theory. The connection is limited to d = 1, but has given
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rise to a rich and detailed theory, including the evaluation for various critical
exponents, much of which is developed in Chapter VII of Liggett (1985). Again,
at the time of Frank’s lecture his calculations were largely formal: Since his
new systems were not local, Liggett’s existence theorem failed to apply to basic
cases such as (4). By the time [S43] appeared the following year, his student
L. Gray had written a dissertation on “controlled spin systems’ that estab-
lished the existence and uniqueness of nearest particle systems under natural
assumptions.

In one of my very favorite pieces of mathematics, Holley and Liggett (1978)
found it fruitful to think of the basic one-dimensional contact process &, as a
nonreversible nearest particle system with 8(1,1) = 2A, g(1,r) =B8(,1) = A
for r,1 > 1, B(l,r) = 0 otherwise, and § = 1. Motivated by Spitzer’s reversible
examples, they sought an initial renewal measure u, with the property that &,
stays above u, in an appropriate sense at all times ¢ > 0. Amazingly, they were
able to carry out this survival strategy for A > 2, thereby obtaining far and
away the best rigorous upper bound on the critical value A, (even to this day).
What better indication of the vision and scope of Spitzer’s model-building
abilities?

Section 7 of Chapter VII in Liggett (1985) lists 18 challenging problems
about finite and infinite nearest particle systems that were unsolved when the
book was written. One of the most intriguing dealt with the (nonreversible)
uniform nearest particle process with rates

b
B(l,r)=m, 6(l,r)=1, c>0,p>1.

In words, a particle is born within each unoccupied interval at rate b, the
position of the particle being uniformly distributed over that interval; deaths
.occur at rate 1. It is not hard to see that such a process dies out if b < 1;
Liggett asked the critical value b, for survival. The recent and impressive
solution is due to Mountford (1992). Improving on some partial results of
Bramson, he proves that b, = 1.

[S46] Infinite systems with locally interacting components. Ann. Probab. 9
(1981) 349-364.

[S47] (with T. M. Liggett). Ergodic theorems for coupled random walks and
other systems with locally interacting components. Z. Wahrsch. Verw.
Gebiete 56 (1981) 443-468.

Spitzer’s final two papers on particle systems introduced yet another new
collection of interacting systems, these with spins in N or R rather than a
two-point set. Paper [S46] is based on his 1979 Wald Lectures to the IMS; the
subsequent collaboration [S47] with Liggett provides the technical underpin-
nings. His last models are called smoothing and potlatch processes and
coupled random walk. They are interrelated by an intricate web of duality
equations and martingales that also makes connections with previously stud-
ied systems such as the voter model and coalescing random walks. An elegant
treatment of these so-called linear dynamics may be found in Chapter IX of
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Liggett (1985), which also describes the ““second-moment method” for proving
phase transitions, developed subsequently by Holley and Liggett.

In the early 1980’s there was a methodological war underway within the
so-called “particle mafia.”” Duality equations like (2) had become the dominant
tool of the day, but there were two competing approaches to duality: one based
on semigroup theory, martingale problems and differential equations, the
other relying on graphical representation, percolation theory and sample path
methods. A fundamental paper by Holley and Stroock (1976) championed the
former perspective, which Frank seemed to favor. In [S46] he mentions several
essentially analytical results, for example, exact asymptotics for coalescing
random walks, derived by Bramson and Griffeath (1980a) based on stepping
stone results of Sawyer (1979). The competing approach to duality, advocated
by Harris (1976, 1978), won a major battle when Gray (1982) proved that any
one-dimensional nearest-neighbor translation invariant attractive spin system
with positive flip rates is ergodic. Gray’s affirmative answer to an important
special case of (3) seems to require a proof based on graphical analysis. The
phenomenal development of percolation theory throughout the 1980’s [cf.
Kesten (1982) and Grimmett (1989)] introduced powerful new sample-path
techniques that apply to particle systems as well. This connection culminated
in the proof of Bezuidenhout and Grimmett (1990) that the basic contact
process dies out at the critical value A = A, in any dimension d.

Now that some dust has cleared, the future of rigorous results concerning
interacting systems seems certain to entail an exciting interplay of analysis,
combinatorics and topology. Durrett (1988) gives an excellent overview of
many topics not contained in Liggett (1985), including a friendly introduction
to stochastic shape theory. For a popular account of some very recent develop-
ments, see Durrett (1992). Not surprisingly, computer technology and theoret-
ical computer science are having an increasing impact on the subject. For
instance Gacs (1985) uses Turing machine ideas to argue for the existence of
nonergodic d = 1 RCA rules with uniformly positive transition probabilities.
From his perspective this is not so much a counterexample to the (discrete-time)
positive rates conjecture, but rather a proof that reliable one-dimensional
parallel computation is possible at low noise levels.

In closing, I would like to make a few somewhat more personal remarks
about Frank Spitzer. Above all I want this article to document his tremendous
generosity and support in sharing his ideas and enthusiasms with his students
and co-workers. As one of my colleagues once remarked, Frank had more
beautiful results hidden away in his office drawer than most of us publish in
our lifetime. During the 1980’s, as his health was failing, he would often dig
into that drawer and produce lovely computations that inspired substantial
research projects. For instance, my work with Ted Cox in the mid-1980’s on
the large deviations of particle system occupation times grew out of Spitzer’s
evaluation of the cumulant generating function for the Doob-Derman model
in three or more dimensions [cf. Cox and Griffeath (1984)]. Another beautiful
unpublished formula, concerning random walk on a torus, played a key role in
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Cox (1989), which derives exact asymptotics for the time until consensus in the
voter model on a large finite box in Z¢,

As already mentioned in Harry Kesten’s companion article, Frank was
continually searching for ‘“‘new phenomena” and exhorting his students and
co-workers to do the same. He sometimes talked about ‘‘skimming the cream”
off a discovery, implicitly leaving the curds and whey to others. In later years
our conversations focused more and more on self-organization: The ability of
locally interacting systems, initially disordered, to evolve toward coherent,
large-scale spatial structures. His interest in this theme was already evident in
[S27], which concludes by analyzing a one-dimensional point process that tends
toward equal spacing. Now that interactive computer experimentation and
visualization facilitate the empirical study of a vast menagerie of nonlinear
spatially-distributed dynamical systems, self-organization is rapidly becoming
a major theme of scientific investigation. Especially in this arena, where
probability theory is sure to play a major role, I feel certain that Frank
Spitzer’s visionary ideas will impact future generations even beyond the
spheres of mathematics and statistical physics.
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