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MARTINGALE FUNCTIONAL CENTRAL LIMIT THEOREMS
FOR A GENERALIZED POLYA URN!

By RAUGL GOUET
Universidad de Chile

In a generalized two-color Pélya urn scheme, allowing negative replace-
ments, we use martingale techniques to obtain weak invariance principles
for the urn process (W,), where W, is the number of white balls in the urn
at stage n. The normalizing constants and the limiting Gaussian process
are shown to depend on the ratio of the eigenvalues of the replacement
matrix.

1. Introduction. We consider a two-color urn with W, white and B,
black balls, T, = W, + B,. Balls are drawn at random in succession, their

color noticed and then replaced in the urn, together with new black and white

balls. Replacements are controlled by a deterministic matrix R = [‘c‘ Z] as

follows: If a white ball is drawn, it is returned to the urn with a white and &
black balls. Otherwise, when a black ball is drawn, it is returned with ¢ white
and d black balls. Negative entries in R are allowed and correspond to
removals.

Our purpose is to obtain weak invariance principles for the urn process (W,)
(number of white balls in the urn at time n), using martingale transforms and
a standard version of the functional central limit theorem (FCLT) for discrete
time martingales. We are motivated by a paper of Bagchi and Pal (1985),
where asymptotic normality is obtained through the method of moments. We
give here a positive answer to their question about asymptotic normality via
martingale theory and we extend the convergence to a functional limit theo-
rem. We also extend their results by proving strong and weak convergence for
the particular case bc = 0, max(b, ¢) > 0. Simple martingale arguments are
also used in Gouet (1989) to obtain a strong law for W, when bc > 0.

Bagchi and Pal (1985) show the relevance of the urn model with negative
replacements in a nice application to computer data structures known as
2-3 trees. However, in a recent paper, Aldous, Flannery and Palacios (1988)
have modeled 2-3 trees using an urn scheme with nonnegative R. See also
Mahmoud and Smythe (1991).

The traditional Pélya urn (@ = d, b = ¢ = 0) as well as many generaliza-
tions, have been extensively studied. A detailed discussion of these models and
their applications can be found in Johnson and Kotz [(1977), Chapter 4].
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Asymptotic results under various replacement strategies are given by Athreya
and Karlin (1968), Freedman (1965) and Holst (1979) but they do not include
the case studied here. Weak invariance principles for Friedman’s urn are due
to Ito and Freedman. See Freedman (1965).

The paper is organized as follows: The tenable model is described in the
introduction. Main results (FCLT) are presented next, in Propositions 2.1 and
2.2, and their proofs are given in Section 3. Finally, some technical results on
the asymptotics of the normalizing constants of the FCLT are collected in the
Appendix.

The tenable model. Let W, (resp., B,) be the number of white (resp.,
black) balls in the urn at stage n and T,, = W, + B,,. Following Bagchi and Pal
(1985) we state the assumptions that define the tenable urn process:

1. The urn is not initially empty, that is, T, > 0.

2. The total number of balls increases by the same amount s > 1 at every
stage, that is, T, = ns + T, )

3. The urn process (W,) is not deterministic, that is, @ # c.

4. The process does not stop because of impossible removals. This requires
that only balls of the same color as the ball drawn should be discarded from
the urn, that is, b > 0 and ¢ > 0. Further, if a < 0 then o divides W, and
¢. The analogous property also applies to d.

Convergence and notation. We assume that all random variables and
processes are defined on a common probability space (), &, P). Continuous
time parameter processes are considered as random elements of D = D[0, ),
the space of right continuous real valued functions x(¢) on [0,») with left
limits, endowed with the usual Skorohod topology on compact ¢ sets. Weak
convergence of a sequence of processes (X,) to X in D, denoted by X (¢) =
X(2), is understood as weak convergence of the induced probabilities on D.

The Wiener process is denoted by W(¢) and for every positive, continuous
and strictly increasing function ¢ on [0, ), such that ¢(0) = 0 and () = o,
W o ¢o(t) denotes the continuous Gaussian martingale with covariance function
K(s,t) = ¢(min(s, t)).

Let (x,) and (v,) be two sequences of real numbers. We write u, ~ v,
when (u,/v,) has a nonzero finite limit, while «, = v, means that («,/v,)
has limit 1. The symbols o(:) and O(-) have their usual meanings.

2. Main results. The aim of this paper is to provide weak convergence
results for the sequence of processes W, ,, — uT}, ), n € N and ¢ > 0, where
w=c/(b+c)=1lim,_ W, /T, as. and (k,(¢)) is a sequence of deterministic
time scales, that is, for every positive integer n, k,(-) is a nondecreasing right
continuous function taking nonnegative integer values.

The limiting process, the normalizing constants and some of the tools used
in the proofs depend on two parameters of the urn process: p = (¢ — ¢)/s (the
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ratio of the eigenvalues of R), and the product bc, which is related to the
conditional variances of the martingale (M,,) defined in (12).

It should be noted that properties 3 and 4 of the tenable model imply that
p # 0 and p < 1, respectively. However, unbounded negative values are possi-
ble. When p > 1/2 and bc¢ > 0, results depend on a nondegenerate random
variable Z, which is the a.s. limit of the martingale involved in the proof. In
this case we apply a technique used by Heyde (1977) to obtain a FCLT even
though we know nothing of the distribution of Z.

PropoSITION 2.1.  Let (W,) be a tenable urn process such that be > 0.
Then for p > 1/2,

(1) nTVH Wi + (n8)’(Bpuyy — 2)) = 1P W e o(2),

where o(t) = bc/(2p — 1 p/(1 — p)t2¢~1, Z is a nondegenerate r.v. indepen-
dent of W and B, is defined in (14).

Forp=1/2,
(2) (n*log(n)) ™ *(Wiuy — nTp) = We o(t),
where ¢(t) = bct.

Forp <1/2,
(3) n_I/Z(VV[nt] - /‘LT[nt]) = t"Wo (1),

where o(t) = be/(1 — 2p)p/(1 — p))2t =2,

We consider in the following proposition a tenable scheme with replacement
matrix R = ‘c’ s such that bc = 0. Under this assumption, the results of
Proposition 2.1 do not hold. If we exclude from our analysis the classical Pélya
urn (b = ¢ = 0), studied by Heyde (1977), we have two symmetric cases: b > 0,
c=0and b =0, ¢c> 0. For the first one, it is easy to verify that a negative
value of parameter a implies the extinction of white balls. Therefore, we are

left with essentially one interesting case: R = g ls’], where s > a > 0 and

p = a/s. However, since R is not irreducible, the asymptotic behavior of this
process does not follow from results of Athreya and Karlin (1968). The strong
convergence W, /T, — 0, established in Gouet (1989), can be improved to
W,/T? — Z, where Z is a nondegenerate r.v., using the martingale conver-
gence theorem. Information on the moments of Z can be obtained from the
difference equations characterizing the moments of W,.

ProposITION 2.2. Let (W,) be a tenable urn process such that R = [g ls’],
where s > a > 0 (bc = 0, max(b, ¢) > 0). Then
(4) n=P (Wi, asm — nPtZ) = Woo(t),

where ¢(t) = aZt and Z is a nondegenerate positive r.v., independent of W.
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3. The proofs. The proofs of Propositions 2.1 and 2.2 are based on a
simplified version of a well-known FCLT for martingale arrays, that we take
from Durrett and Resnick [(1978), Theorem 2.5): Let (%,) be a sequence of
increasing sub o-fields of &, {M, = L}_.&,, %} a square integrable martin-
gale and (b,) an increasing divergent sequence of norming constants. If for all
t>0,

k. (2)
(5) A0 =b;" T E(6H%5-1) >p ()

with P(¢ continuous) = 1; and for all ¢ > 0, ¢ > 0,

k()
(6) B,(¢) = b;2 kEIE(glf]]-ughpeb,,)l'g;z—l) -p 0,

where —, denotes convergence in P probability and 1, is the indicator
function of the set {}, then, as n — o,

k()
(7 by My = by kZ & = Weo(2).
-1

It can be easily seen that the tenable urn process (W,) is a Markov chain with
PW, =W, +aW, - W,)=W,/T,, n=0,1.... Furthermore, W, /T,
converges a.s. to u = ¢/(b + ¢) for any matrix R such that max(b, c) > 0.

Define the indicator variable I, = 1 if the ball drawn at stage n is white and
zero otherwise. Then E(I |I, --- I, ) = E(I,|W, --- W) = W,/T,. This
shows that N, = L2_om, = Lk _o(I, — W,/T}) is a martingale with respect to
the filtration &, = o(I, -+ I,) n = 1,2... . Further, since the increments of
(N,) are uniformly bounded, condition (6) is verified and we obtain a first
FCLT for (W,).

ProposITION 3.1. Let (W,) be a tenable urn process such that bc > 0 and
let o(t) = be(p/(1 — p))*t. Then as n — o,

[nt]

(8) n-1/? VV[nt] - MT[nt] —pPS Z (Wk/Tk - M) = Wo ¢(t)~
k=0

Proor. Let ¢(¢) = w(1 — p)t. Then, (5) is readily checked since, as n — o,
for all £ > 0,

[nt] [nt]

n”t kgoE((Ik - Wk/Tk)2|«7;e—1) =n”! kz_:o(Wk/Tk)(l - W./Ty) = ¥(2) as.

Hence,

[nt]
9 n"Y2Ni = n~V2 Y (I, = W, /Ty) = Wey(e).
k=0
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Next, note that
(10) W1 —-W,=al, +c¢(1-1,)=psl,+c forn=0,1,...
and hence that

n—1
(11) W,=Wy+ps Y I,+nc forn=1,2....
k=0

The result (8) now follows from (9), (11) and the identity (ps)®u(l — u) =
be(p/(1 — p)2 O

We cannot obtain a FCLT for (W,) with deterministic centering from (8)
since n~2L%_(W,/T, — ) does not converge to zero in probability. To
prove Proposition 2.1 we will consider a martingale transform of (N,) such
that the norming for the FCLT is deterministic.

Let (x,) be a predictable sequence of random variables, that is, adapted to
(Z,_1). The transform of the (%,) martingale N, = X} _,m, by (x,) is given by

(12) M,= Y xm= L &.
k=0 k=0

Full details about martingale transforms can be found in Burkholder (1966)
and Neveu [(1972), Chapter VII-3].

In the context of the martingale (N,,) related to the urn process, we wish to
find deterministic sequences (x,), («,) and (B,,) such that (M) is of the form

(]‘3) Mn—l = aan + Bn - aOWO

for n=1,2,....

LEMMA 3.2. A solution to the problem stated above is given by

I(T,/s)

14 = =t
( ) Xy PSSty 41,5 a, r(p + Tn/S)

n
and B,= —c Y a.
k=1

Proor. Let A be the forward difference operator. Then,
AM, =M, -M,_,=x,I, - W,/T,)
= x,((AW, = ¢)/ps — W,/T,),
where the last equality follows from (10). On the other hand, if (13) is to hold,
(16) AM, _, = A(a,W, + B,) = a,,; AW, + W, Aa, + AB,.

Finally, we identify the coefficients of W,, AW, and the constant terms of (15)
and (16) to get

(15)

(17) a,.q = (ps) 'x,, Aa,=-2,/T,, and AB, = —c(ps) 'x,.

The desired formulas follow at once from (17). O
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In the next lemma we establish the weak convergence of (M,,).

LemmA 3.3. Let (W,) be a tenable urn process such that bc > 0. Let
(a,),(B,),(x,) be the sequences defined in (14) of Lemma 3.2 and (M,,) the
martingale of (12) and (13). Then, for p > 1/2,

(18) np_l/z(akn(t)Wkn(t) +Brw—Z) = Woo(2),

where k() = [nt1/@=20) o(t) = be/(2p — 1Xp/(1 — p))?t and Z is a nonde-
generate r.v., independent of W.
Forp =1/2,

(19) (IOg(n))_1/2(akn(t)Wk,,(t) + Bk,,(t)) = Woo(t),

where k,(t) = [n'] and ¢(t) = bet.
For p <1/2,

(20) n_l/z(akn(z)wkn(t) + Bk,,(t)) = Wop(t),
where k,(t) = [nt] and o(t) = be/(1 — 2p)p /(1 — p))*t1 =2,

Proor. From Corollary 4.2 we have x, = psn™ as n — «. Then, since
W, /T, converges to u a.s., the asymptotic behaviour of A ,(t), defined in (5),
can be easily established as follows:

W 2
(In - —an_) |9r_z—1)

2 Wn 1 Wn

= (ps)’u(1 — w)n~%

E(1 1)

xZE

p |2
= bc( ) n~?% as.asn — o,
1-p

Then, as n — «, for each ¢t > 0 and p < 1/2,

(21) A, (t) = bc(

2 k() be 2
Jorr X = = (] bk
1-p A

-1 1-2p\1-p
and for p = 1/2,

p 2 k(8
(22) A, (t) = bc( 1 ) b,2 Y, k7! =beb, 2 log(k,(t)).
P k=1
Now let p > 1/2. As a first step toward (18), we note that Y7 _,E(¢2| %, ;) ~
»_1k7%¢ as n — «, which is convergent. Then, by the martingale conver-

gence theorem [see Neveu (1972), VII-2-3], there exists a nondegenerate r.v. Z
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such that

n
(23) M,= Y ¢ —>Z as.asn — .
k=0

The FCLT will be derived from an idea of Heyde (1977) that gives a FCLT for
the tail of an a.s. convergent martingale. Since we do not present our result
using his time scale k(n,t), [Heyde (1977), page 762] we apply Barbour’s
transform directly, following as much as possible the notation of Heyde but
omitting many details.

Let T be the subspace of functions x(¢) in D[0, ») such that

lc () w|x ()l lc(2)
lim sup (t) =0, f 52) dt < and fl—(t—)dt<°°,

t—>o 1 0

equipped with the topology defined as follows: x,, = x in T if there exists a
sequence (A,) of strictly increasing continuous mappings on [0, ®), converging
uniformly to the identity, such that .

2a(A,(2)) — x(2)

— 0 uniformly on ¢,

(24) t+1
wlx,(A,(2)) — x(2)l lx,(A,(2)) — x(2)l
/ ( ()3 Ol 50 and IR A() == )y g
Let g: T — T be the mapping given by
(25) g(x)(t) = fw s™(ds), 0<t<um,
1/t

which is defined by its integration by parts formula
g(x)(t) = —tw(t™") + [ s7%(s) ds
1/t

and is shown to be continuous. See Heyde [(1977), page 761], for a description
of the space T}* and the topologies on T and T;.

Let us consider the transform of martingale N, = ©%_n, by the sequence
¥, = n* " x,, with x, defined in (14), and let

k,(t)
Y (t) =n'27" 3 yymy
k=1
with k,(¢) = [n¢'/®*~D]. To obtain (18) we first show that for every n > 0,
Y,(-) belongs to T, then we check conditions (5) and (6) of the martingale
FCLT and show that convergence holds in T with topology (24). Finally we
apply Barbour’s transform g, given by (25).
Following Heyde’s arguments closely (pages 765 and 766), we show that
Y.(t) = o(z'/2*%) a.s. for every ¢ > 0 as t — o, which clearly implies that Y,(-)
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belongs to T. For this purpose we note that as n — » and for each positive ¢,
E((n(1/2+sx1—2p)ynnn)2|'gn_l) ~ p2e1-20-1 4o

Therefore, the martingale Y7_,k/2+X1=20)y 5. converges a.s. and from
Kronecker’s lemma we get Y7 _,y,m, = o(n1/27X2~D) a5 as n — », which
implies that Y, () = o((¢1/@r~D)1/2+eX2p~D)) = o(41/2%¢) a5, as ¢t — .

The verification of (5) and (6) is straightforward. The first one follows from

[t 207 ) 2o-1 (p3)°
Y E((m)1Fsy) = [t/ @-D]7 oo — M~ k)
E=0 p
2
= be ( ) n? "1,
20 —1\1-p

For condition (6) we let b2 = n?*~! and obtain

E((yknk)_Z(yknk)4]]'(|ykn,,|>sbn)|'9;e—1)
< e72b, B{(yym) 1 Fi—1} ~ b, k4P~ O}
~ b %k*"* as.as ko,

Then, for some constant C, B,(¢) < Cb,*n* 3 ~n~! as. as n > » and we
conclude that Y,(t) = Wo o(t) with ¢(¢) = bc/(2p — 1p/(1 — p))*t.

Next we apply the continuous mapping theorem with g defined in (25),
which is continuous when T is equipped with topology (24), stronger than
Skorohod’s. Therefore, the convergence of Y,(¢) has to be strengthened accord-
ingly and this is done, as in Lemma 3.4 of Whitt (1972), with the following
complementary tightness condition.

Let 1/2 < @ < 1 be a fixed constant. Then for each positive ¢ and 7, there
exists ¢, such that

(26) sup

a
t2t, o

P{ 1Y,(2)l

>£}Sn.

The integrals in (24) suggest that a condition like P{sup,,, [’|Y,(s)l/
s2ds > ¢} < n should also be required for tightness. However, it is easy to
verify that (26) implies this integral condition. On the other hand, the integral
on [0, 1] is not a matter of concern since it reduces to a finite sum.

The proof of (26) can be carried out as in Miiller [(1968), page 177], using
the Hajek—Rényi inequality [see Chow and Teicher (1988)] and the fact that
r*_E(y;n,)? ~n?"1! as n - «. Note that @ > 1/2 is necessary in order to
apply Miiller’s argument.

Finally, we determine

o Y (d AY,
g(v) ) - [* 2y ENG)

1/t s s>1/t s

where AY,(s) = Y,(s) — Y,(s7) is the jump of Y, at s.
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It is clear that AY (s) = n1/27*y,n, if ns'/@ =D =k and 0 otherwise. Then

g(Y,)(t) =n'?" Y (n/k)2p_1yk"7k=np_1/2 Y XM,
k>k, () k>k, ()

where k() = [nt!/1~29],
Since g is continuous and g(W) = W in distribution [see Heyde (1977),
pages 761, 767] we get

(27) nPV2 Y xum, = g(Weo)(t) = Woop(t) (in distribution)
kE>E,(8)

with ¢(t) = bc/(2p — 1)(p/(1 — p))*t. Combining (27) with (23) and identity
(13), we get the convergence of (18).

To prove (19) (p = 1/2), we note that (5) of the FCLT follows from (22)
with b2 = log(n), k,(¢t) = [n'] and ¢(¢) = bct. Convergence of B, (&) to zero is
immediate since the increments of (M,,) are bounded when p is positive.

To establish (20) (p < 1/2), we see that (5) is deduced from (21),
with 62 =n'"%, k (¢) = [nt] and o) = (ps)?2/(1 — 2p)u(l — p)t' =2 =
be/(1 — 2pXp/(1 — p))?t*~2¢ while (6) follows at once for positive p. For
negative values of p we have |¢,| ~ |x,| ~ k7" a.s. as B - © and

E(fi?]l(|§k|>eb,,)|*%e—1) = E(fk_zfz ]1(|§,,|>ebn)|‘7le—1) < &b, *xj.

Then, as n — o, for each positive ¢, b, *Xr_ k™4 ~ pn~ @ *)pl=4% ~ n~! and
B,(¢) < Cn~! a.s., for some constant C. O

Proor oF ProprosITION 2.1. We combine the convergence results of Lemma
3.3 with the change of coefficients of Lemma 4.3 to obtain (1), (2) and (3) of
Proposition 2.1.

Let us consider first the simpler case p = 1/2. From (19) and (38) we have
(log(n) =2 (n="" W5 — un""T},,) = Wo o(t), with ¢(t) = bet, and (2) fol-
lows clearly.

From (20) and (39) we have t°n~ (W, — uT,.)) = W o ¢(2). Result (3)
is obtained using the continuous mapping theorem with A ,: D[0, ) — D[0, »),
given by h (x)(¢) = ¢Px(¢), which is clearly continuous for 0 < p < 1/2. How-
ever, for negative values of p we have a more elaborate argument, based on
the classical two stage proof of weak convergence of processes: convergence of
finite dimensional distributions plus tightness.

It can be easily checked, using the Cramér-Wold device, that the finite
dimensional distributions of n~Y*W,,, — uT},;) converge to those of
tPW o o(2).

Tightness follows from (8) in Proposition 3.1. Indeed, (8) implies the
tightness of n~'/*(W,,,, — uT|,,) if we prove that n='/?L*I (W, /T, — ) is
tight. This is done in Lemma 4.5 of the Appendix and the proof of (3) is now
complete.
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It remains to show that (1) holds. From (18) and (37) we get
tp/(2p—1)n—1/2(Wkn(t) + nptp/(1—2p)(ﬁkn(t) — Z)) = Woo(t),

where ¢(t) = bc/(2p — 1Xp/(1 — p))?t and k (¢) = [nt'/1~20],
Next, we apply the mapping x(#) — tx(¢~!), which is continuous on the
subspace T of D [see Heyde (1977), page 761], to obtain

tl—p/(zp—l)n-l/z(Wkn(t) + nptp/(1—2p)(ﬁkn(t) _ Z)) = tWo go(t_l),

with k() = [nt!/@~D],
Finally we note that tW(¢~!) has the same distribution as W(¢) [see Hida

(1980), Proposition 2.1] and we apply the continuous mapping x(¢) —
tA=p/@p=Dy(§) to get

n_l/z(Wk,,(t) + nptp/(1_2p)(ﬁkn(t) — Z)) = tA=P)/@p—DW o go(t),

with %,(¢) = [nt!/@»~D]. We make the change of variable ¢t — ¢?*~! and the
proof of (1) is now complete. O

The next result is central in the proof of Proposition 2.2.

LemmA 3.4. Let (W,) be a tenable urn process with R = g ls’ , where

s >a > 0[bc =0, max(b, c) > 0]. Let (a,) and (x,) be the sequences of (14).
Then, there exists a nondegenerate r.v. Z, independent of the Wiener process
W, such that

(28) np/z(ak,,(t)Wk,,(t) - Z) = Woo(t)
with k,(t) = [nt~1/?] and ¢(¢) = aZt.

Proor. The argument closely parallels the proof of convergence (18). We
note first that (a,W,) is a positive martingale, converging a.s. to a nondegener-
ate r.v. Z as n — . It can be verified that convergence also holds in L,. See
Neveu [(1972), Proposition VII-2-3].

In order to use Barbour’s technique we introduce the process Y,(¢), which is
shown to belong to T,

k(1)

Yn(t) = n—p/2 Z YNk
k=1

with k() = [nt'/*], y, = k*x, and n, = I, — W,/T,. See (14), where x, is
defined.
It is easy to check that, as &2 — o,

E((ykﬂk)2|<7k-1) = y2W,/T, = apk? Z a.s.

and also that A, (¢) =aZt and B,(¢) ~n~" as. as n — », with b, = n*/%
Therefore,

Y. (1) = Weo(t),
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where ¢(t) = aZt and the Wiener process W is independent of Z. See Durrett
and Resnick (1978). As in Lemma 3.3, convergence of Y,(¢) is shown to hold in
T with the topology of (24). It is easy to verify that the reasoning of Lemma
3.3 can be carried out here with p instead of 2p — 1.

Next, applying Barbour’s transform to Y, we obtain

g(Y)(@) =n? 3 xm, = g(Wee)(t) = Woo(z)
(29) k>R, (8)

(in distribution),

where k,(t) = [nt™'/*] and ¢(t) = aZt.
The conclusion (28) follows from (29), the strong convergence of the martin-
gale (a,W,) to Z and identity (13). O

Proor ofF ProrosITION 2.2. From (28) of Lemma 3.4 and (40) of Lemma
4.4, we obtain

n=P 2 (W, o — t'nPZ) = Wo p(2)

with k&, (t) = [nt7'/?] and ¢(¢) = aZt. Then, we apply the mapping
x(¢) = tx(¢~1), which is continuous in T}, to get

nP2(W, o —ntZ) = tWoop(t™') = Weg(¢) (in distribution)

with %,(¢) = [nt'/?] and o(¢) = aZt. O

4, Ai)pendix. To characterize the asymptotic behaviour of «, we apply
Stirling’s expansion of I' [see de Bruijn (1970), page 70, Equation 4.5.2]:

(30) T(t)e't'2 4 (27) 2 =1+ Lt 1+ O(+72) ast — .

LEmMMA 4.1.  For each real number p, as t — o,

T'(t)

(31) I'(¢ +p)

-t =0(t""").

ProOF. Let A(¢) = I'(#)e‘t'/27%27) "2 Then as t — w,

A(t) r'(t) 1+ Kt '+ 0(t7?)

) AGrp T3 K(t+p) ' +0(t72) O
with
(33) B(t) = e rt¥/274(t + p)* PP = yr(1 + O(+7Y)).

Equation (31) follows now from (32) and (33). O
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COROLLARY 4.2. Foreach p <1,asn — o,

(34) @, —n~"=0(n"*Y
and
(35) B, + usn'™? = 0(1 + n*).

Proor. Equation (34) follows directly from (31) with ¢ = T,. To obtain
(35), we note from (34) that a, =n~" as n - «, so that 8, = —cX}_ja, =
—(c/(1 —phnt=? = —usn'~. O

In the following two lemmas we consider the substitutions of the a and B
coefficients in the FCLT of Lemmas 3.3 and 3.4. Following Corollary 4.2, a;, ,,
and B, ., will be replaced, respectively, by functions al(n,t) and B(n,t) given
essentially by &,(¢)7” and —usk,(¢)' . We show that the remainders con-
verge to zero a.s., uniformly on compact ¢ sets, so that the FCLT also holds for
the new processes. That is, for any positive 7, D* + D? = 0(1) a.s. as n — o,
where

DX =b' sup {Wkn(,,)lakn(,,) —a(n, t)I}
tel0, 7]

and

Df =b;' sup {Bs, — B(n,0)l}.

telo, ]

We note first that W, /T, < 1a.s. and T, = ns + T, imply that

(36) Dy < Kb;' sup {k,(t)ley o) — a(n,t)l} as.,
tel0, 7]

where K =T, +s.
Let us define, for & € N,

Sy(k) = k max{la, — k|, la, — (k + 1)1},
Sy(k) = max{|B, + usk |, B, + usk(k + 1) "1},
Sy(k) = k°S(k),

Sy(k) = k*Sy(k).

Let S; = sup, <y S;(k), i = 1,...,4. Then, it follows from (34) and (35) that
S, < wand S, < ©when p > 0; S3 < « for any p and S, < « for p < 0. This
simple consequence of Corollary 4.2 will be useful in the proofs of Lemmas 4.3
and 4.4.
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LemMA 4.3.  For any of the following three sets of parameters, correspond-
ing to different values of p, D + DP = o(1) as n - », a.s.

b, =n'2"? Fk (t) =[nt’], s =
Gy el [TMRO [ne’),0 = 7=

a(n,t) = (nt?) "’

{bn = (log(n))"*, k,(t) = [n'],

<0,

1
38 ==
(38) P72 a(n,t) =n"" and B(n,t) = —ps[n']n"*,

n =127 k() = [nt],
a(n,t) = (nt) * and B(n,t) = —us[nt](nt)".

1
(39) Py

Proor. Let p > 1/2 and J, be the interval J(k + 1)/n)!=2¢, (k/n)'~%].
Then, for all positive 7, as n — o,

Dg <Kb;' sup {k,(¢) "} sup {kn(t)H”Iakn(t)—a(n,t)l}
telo, 7] tel0, 7]

<Kb;'[n7®] " sup {k”” sup {la, — n“’t“s"l}}

k>[nt?] ted,
< Kb;l[nq-ﬁ]‘” sup {S3(k)} < Kb;l[n,‘_s]‘ﬂ’s?) = 0(n~V?2).
k>[n7%]

Next, let p = 1/2 and the interval o/, = [log(%)/log(n),log(k + 1)/log(n ).
Then, as n — o,

D¥ < Kb, ! sup {k sup {la), — n“"l}}

k<n’ ted,
< Kb sup {S,(k)} < Kb;'S, = O((log(n)) %)
k<n”
Convergence for D#? follows from
DP < b, sup {Sy(k)} <b,'S; = O((log(n)) ~*/%).
k<n”

Finally, let p <1/2 and J, = [k/n,(k + 1)/nl. We consider first the case
0<p<1/2 Then,as n - o,

D < Kb, ' sup {k sup {le, — n“’t"’l}}

k<nr ted,

< Kb;' sup {Sy(k)} < Kb, 'S, = O(n*~1/?),

k<nr
DP < b, sup {Sy(k)} < b, 'S, = O(nP~1/?),
k<nr

To deal with p < 0 we use the same approach of the case p > 1/2. That is, we
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factor out sup, o {k,(t)} " and we have, as n — «,

Dy < Kb, sup {[nt] "} sup {[nt]“”la[nt] - a(n,t)l}
tel0, 7] tel0, 7]

< Kb, '[nr]™" sup (S5(k)} < Kb, '[n7] "S5 = O(n"V/2),

k<nrt

Df <b;'[n7]™” sup {Sy(k)} <b;'[n7] "8, = O(n""/%). 0

k<nt

LEMMA 4.4.  For the urn model of Proposition 2.2 and the set of parameters
(40), DX = 0(1) as n — «, a.s.

b, =n"""2 k,(t) =[nt~1/"],
a(n,t) =n~*t.

Proor. Note first that p is always positive for the matrix R of Proposition
2.2. )

We proceed as in Lemma 4.3, defining the interval o, =1((k + 1)/n)?,
(k/n)~*]. Then, for all positive 7, as n — o,

Dy <Kb;' sup {k,(t)") sup {k.()' "y, — a(n, )]}
telo, 7] telo, ]

<Kb;[nr'*]"" sup {k”" sup {la, — n“’tl}}
k=[nr~1/°] ted,

<Kb;[nt"?]"" sup {Sy(k)} <Kn*/?[nr"1/°] "8,

k=[nr=1/r]

= 0(n"*"?). O

LEMmMA 4.5. For p < 1/2 the sequence of processes

[nt]
k=0

with paths in D[0,®) is tight.

Proor. Let {, = W,/T, —u and S, = £}_,{,. Then, (X)) is tight if for
each positive ¢ there exists 6 > 1 and n, € N such that P(max, _,_,IS,.,, —
S,.| > 8n'?) <e/8% for all n > n, and m € N. See Billingsley [(1968), pages
59, 138]. Tightness follows if we show that

(41) P(m2n|gk| > 5n1/2) < /82,

m+1

To obtain (41) we compute the third moment of Y7*7|{,| and apply

m+1

Tchebychev’s inequality. Let A = E(X72111£,D% = £ 31 E(¢,{,,D. Then, from
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the Cauchy-Schwarz inequality we obtain
E(12,4,2.) < B(£2)"E(¢X?)

E(¢3) () E()

m+n

m+n 2
= m(e)”| e ) -5
m+1 m+1

Bagchi and Pal [(1985), page 399)] show that for every integer r > 1 and
p <1/2,E({?) ~n~" as n — ». Then, there exist positive constants C, and
C, such that

1/2

IA

A

IA

m+n

3
BsCl( Y k'1/2) <Cy(Vm +n — 1/77)3502n3/2.

m+1

From Chebychev’s inequality we get for § > C,/e,

m+n
P( Yo > 5n1/2) <A/(8°n%?) < C,/8°% < £/5%. m]

m+1
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