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THE MOMENT PROBLEM FOR POLYNOMIAL FORMS
IN NORMAL RANDOM VARIABLES'

By Eric V. SLub
University of Maryland

Let Y be a random variable defined by a polynomial p(W) of degree n
in finitely many normally distributed variables. This paper studies which
such variables Y are ‘determinate,” i.e., have probability laws uniquely
determined by their moments. Extending results of Berg, which applied to
powers of a single normal variable, we prove that (a) Y is determinate if
n=1,2 or if n =4, with the essential support of the law of Y strictly
smaller than the real line, and (b) Y is not determinate either if n is odd
> 3 or if n is even > 6 such that p(w) attains a finite minimum value.
Some other polynomials Y = p(W) with even degree n > 4 are proved not
to be determinate.

1. Introduction. A great deal is known about the classical problem of
criteria under which a probability distribution u on the real line is uniquely
determined by its moments, together with the related problem of when the
polynomials form a dense set of elements of L*(R, &, ). This paper provides a
nearly complete classification of mean-square convergent polynomial forms of
finite degree in (a stationary and ergodic random sequence of) normal vari-
ables, as to whether their probability laws are uniquely determined by their
moments.

2. Preliminary survey.

2.1. Moment problems. It is well known that every finite positive Borel
measure u with a finite moment generating function

m(t) = [ p(dx) <o, 0<ltl <ty t,>0

is uniquely determined by its moments

k
=—m(t R k=0,1,2,.... .
my dtk m( ) =0
More generally, if u satisfies Carleman’s condition
(1) T (my) =,
£E=0
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then [Shohat and Tamarkin (1943), pages 19-20] u is determinate (uniquely
determined by its moments) in the ‘“Hamburger sense,” that is, among all
finite and positive Borel measures on R. Slightly less well known is the
following.

LemMA 1 (Carleman, Chihara). Suppose that the finite positive nonatomic
measure u is supported on [0,©) and satisfies the Carleman condition

- ~1/2k
(2) 2 (my) = o,
k=0
Then u is determinate in the Hamburger sense.

Proor. Shohat and Tamarkin [(1943), pages 19-20] prove from (2) that u
is uniquely determined by its moments in the ‘‘Stieltjes sense,” that is, among
positive measures supported on the half-line [0, »). By a theorem of Chihara
(1968), all measures u which are determinate in the Stieltjes but not the
Hamburger sense have atoms. The lemma follows. O

Whenever a measure u is determinate, it is easy to prove [see Corollary
2.3.3., page 45 of Akhiezer (1965)] that
(3) L*(R, #, u) = closed linear span {1, x,x?%,...}.
A simple necessary condition [Akhiezer (1965), pages 87-88] for a finite
positive Borel measure u either to be determinate or alternatively to satisfy (3)
is

- d
(4) j_wl—j—tgln(g’;(t)) dt = —oo,

where A denotes the Lebesgue measure on R, and where du /d A is defined as
the Radon-Nikodym density of the absolutely continuous component of u
with respect to Lebesgue measure. Condition (4) and the following corollary
are the tools we use to establish moment-indeterminacy for measures u.

CoROLLARY 1. Suppose X is a random variable which has a density f(¢)
with respect to Lebesgue measure satisfying

/oo —In( f(¢%))
0 1+ ¢2
Then the probability law of X is indeterminate.

dt <o and f(t)=0 fort<O0.

ProoF. Let W be a random variable on a possibly larger probability space,
with law supported on all of R, defined as eVIX] (= eVX as.) where ¢ is a
random variable independent of X such that P{e = 1} = P{e = —1} = 3. Then
the density of W with respect to Lebesgue measure is a.e. f(s) = [s|f(s?). By
hypothesis, this density violates (4). Therefore the probability measure with
density fy is indeterminate, and there exists [Akhiezer (1965), page 87] a
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function g € LAR, fw(s)ds) for which
Je(®)t"fw(t)dt =0, form=0,1,2,....

By the symmetry of fy(¢), the same equalities hold for all m if g(¢) is
replaced by g(—¢), and for £ =0,1,2,...,

» g(t) +&(-¢) ,, » g(t) —&(—1t)
j_w—————2 2 (¢) dt =0 = [_m——2
Thus at least one of the even functions (g(¢) + g(—¢))/2 and t(g(¢) — g(—1t))/2
on [0, ©), which we denote by A(-), is nontrivial and has the property
E(h(W)W?) = E(h(VIX])X*) =0, fork=0,1,2,....

In the last step we have also used the a.s. nonnegativity of X. It now follows
that the nonzero function A(yls|) is orthogonal to all polynomials in
L%R, f(s)ds), and the probability law with density f is indeterminate. O

t2RHIf 0 (8) dt.

2.2. Polynomial forms in normal variables. In this paper, we are inter-
ested in measures u which are probability laws for (mean-square convergent)
polynomial forms p(Z,, Z,, . ..) of a stationary and ergodic Gaussian sequence
Z={Z;:j=0,+1,+2,...} (of variables with mean 0 and variance 1), defined
on a probability space (2, %, P). Such polynomial forms, say of degree d < o,
can be defined as the mean-square limits of sequences of polynomials of degree
d in finitely many of the variables Z;. Another way in which polynomial forms
arise is as (constants plus finite sums of) finite-order multiple Wiener—It6
integrals I,(f},), k > 1. Here I,(-) denotes the kth order homogeneous multi-
ple Wiener-Itd integration operator [see Major (1981) or Kallianpur (1980),
Chapter 6]; f, is any integrand from the space Li’ oym Of Hermitian-symmetric
and permutation-symmetric elements of the complex space L%([—, w]*, o®*);
and o®* is the k-fold Cartesian product of the spectral measure o of the
sequence Z. (Note that o is nonatomic because of the assumed ergodicity of Z.)
It is known [Major (1981), Theorem 4.1] that every square-integrable measur-
able function Y of the variables Z; has a unique mean-square-convergent
representation of the form E(Y)+ L,.,I,(f,). The finite-order multiple
Wiener-Ité integrals arise naturally in the theory of nonlinear prediction for
nonlinear functionals of stationary Gaussian processes [Kallianpur (1980); cf.
Slud (1991)], and in the ergodic theory of such processes [Kornfeld, Fomin and
Sinai (1982)]. For an application of the multiple Wiener-It6 integrals to
central limit theory, see Chambers and Slud (1989). -

Suppose that the square-integrable mean-0 random variable Y on the
probability space (0, &, P) has the form

(5) Y= Y I(f), n<w
k=1 ‘

A central idea of the present paper is to represent Y as a polynomial of degree
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n in some normal variable U with random coefficients which are independent
of U.

LEmMA 2.  Each mean-0 polynomial form p(Z,, Z,, ...) of degree n, that is,
each square-integrable random variable Y on (Q, %, P) which can be repre-
sented in the form (5) with I,(f,) # 0, can be written in the form

n—1

(6) Y=¢q,U"+ kZ_‘,lqk(Z)U’“ +qo(Z),

where q,, is a nonzero constant, and U is a standard normal random variable
obtained as a nontrivial linear form in the variables Z;, with U independent of
the square-integrable random variables {q,(Z): k = 0,...,n — 1}.

Proor. The general finite-order Wiener-It6 integral expansion Y =
Yr_1IL,(f,) is known [Major (1981), page 12] to have the form
(7) )y e, I[1H,(U),

aa;tag+ o <n i>1

where ¥ c2(a;!" ay! -+ ) = E(Y?) < «, and H,(-) denotes the Hermite polyno-
mial of degree k& normalized to have leading coefficient 1, and where the
independent standard-normal random variables {U,} form a complete orthonor-
mal system in the range-space of I,(-). Assume that H,(U)) --- H, (U,,) with

a; + -+ +a, =n appears in the expansion (7) with a nonzero coefficient.
Possibly after an orthogonal linear transformation from (U,,...,U,,) to
(Ui,...,U},), and a reordering of indices if necessary, there is no loss of

generality in assuming that a; = n. Then Y can be regarded conditionally
given (U,, U,,...) as a polynomial of degree precisely n in U,. Since U, is
independent of (U,, U,,...) and the coefficients of U} depend on Z only
through (U,, U, . ..), we have proved the representation (6) with coefficients
independent of U = U,. Finally, observe by the Fubini theorem and square-
integrability of Y that for almost every value of U, the right-hand side of (6) is
a square-integrable function of (U,, Us,...). It follows easily that each of the
random coefficients q,(Z) for £ = 0,...,n — 1 is square-integrable. O

2.3. Some known results. The previously known results on moment-
determinacy of variables Y of the form (5) are as follows. Berg (1988) proves
that the law of a monomial Z¢ in a single normal variable Z is determinate if
d=1, 2, or 4, and is indeterminate otherwise. Using a result of McKean
(1973) (“the Eidlin-Linnik-type” tail-probability bounds), Nualart, Ustiinel
and Zakai (1988) prove that for all homogeneous finite-order multiple
Wiener-1It6 integrals I,(f}), the absolute moments m, = E|I,(f,)|" satisfy the
Carleman condition (1) (indeed, have finite moment generating function) for
k < 2 and violate the condition for £ > 2. The same methods show that in the
case k =4, the law u of Y =I,(f,) satisfies the Carleman condition (2).
Moreover, I,(1) = H(Z)/4! [Major (1981), Theorem 4.5], which is evidently a
continuously distributed random variable since there are only three values of
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Z for which H(Z) is 0. Since the polynomial H,(z) + 6 = (22 — 8)? has
minimum value 0, it follows by Lemma 1 that the law of H,(Z) + 6, and
therefore of H,(Z), is determinate in the Hamburger sense.

3. Classification of moment-determinacy. The main results of this
paper classify the moment-determinacy of laws of polynomial forms Y =
p(Z,, Z,,...) of finite degree n in Gaussian variables Z; from an ergodic and
stationary sequence.

THEOREM. Suppose that the random variable Y = p(Z,,Z,,...) on the
probability space (Q, &, P) is a polynomial form of degree n > 1, that is, has
the form (5) with I.(f,) # 0. Let supp(Y') denote the support of the law u of Y,
and suppose q,, > 0 in (8). Then we have the following:

(i) is determinate if n = 1 or 2, or if n = 4 and supp(Y) # R.

(ii) w is indeterminate if n is odd and greater than or equal to 3.

(iii) If n = 6 is even and Y can be expressed as a polynomial R(W) in
finitely many normal variables Wy, ..., W, with R(w,) = inf(supp(Y)) > —
for some w, € R™, then u is indeterminate.

Gv) If n > 4 is even, if Y = R(W) can be expressed as a polynomial in
finitely many normal variables, and if R(W) has leading term Wjdg(W) with
respect to some variable W;, where d > 3 and g(W) does not involve W; and
either d is odd or g(W) can take on negative values, then u is indeterminate.

ReEMaRks. (a) If the degree n of p(:)is 1 or 2, then Y has a finite moment
generating function [McKean (1973) and Nualart, Ustiinel and Zakai (1988)],
so that the law of Y is determinate by the Carleman criterion (1). More
generally, for polynomial forms Y of arbitrary degree n, McKean’s (1973)
extension of the “Eidlin-Linnik’’ bounds immediately implies that there exists
a constant C such that for all positive integers &,

[ElYIk]1/2k

(b) If p(-) depends on only a single variable Z,;, then cases (i)-(iii) are
exhaustive. The classification of moment-determinacy is then the same as that
given by Berg (1988) for powers Z".

(c) For polynomials p(-) in several (but finitely many) variables, the classi-
fication of moment-determinacy is more complicated in depending not only on
degree but on support (and perhaps other properties as well: cf. Proposition 1
below). Note that cases like Y = Z{ + Z, with even degree and supp(Y) = R do
occur. Moreover, we give examples in Section 4 of two-variable polynomials
Y = p(Z,, Z,) not covered by (i)-(iv) which do not satisfy (1) or (2) but do
satisfy (4) and violate the hypothesis of Corollary 1.

(d) The assumption that the variables Z; appearing in p(-) are taken from
an ergodic and stationary sequence is nonrestrictive if there are only finitely
many of them, since an orthogonal linear change of variables could then be
chosen to make them independent and standard normal (or degenerate at 0).

< Ck™/4.
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The proof of the theorem will follow from four lemmas exploiting the special
properties of polynomial forms. We begin by giving an explicit representation
(and a simple proof of existence) for the density of Y with respect to Lebesgue
measure, a density which was first shown to exist by Shigekawa [(1980), page
286] using the machinery of the Malliavin calculus.

LemMA 3. Let Y =p(Z,, Z,,...) be a polynomial form of degree n, as in
the theorem, and let its representation (8) with properties given in Lemma 2 be

n—1
(8) Y=Q(U,V) =q,U"+ X qu(Z)U" + qo(2),
k=1

where V=(q,(Z), k=0,...,n — 1) is independent of U. The density of Y
with respect to Lebesgue measure exists and is equal to
_1)

Proor. Observe first that @(u, V) given by (8), considered as a polynomial
in u for fixed V, can for some value of ¢ and u = u (possibly depending on V
and ¢) satisfy the equalities

Q
EZ(U’V)

(9) fy(t) =E[@m) % ¥ e 2
u: Q(u, V)=t

Q
Q(uy, V) =t and E(uO,V) =0

for at most n values of ¢, since @(-, V) has an inflection point or extremum at
each such u . For fixed V and all other values of ¢, the variable

-1

Q
a_u—(u’v)

(10) (2m) 2 E e
w: Q(u, V)=t

is well defined and finite, since @(-,V) is smooth and at most n-to-1 as a
mapping on R. Indeed, according to (a slight extension of) the standard
change-of-variable formula for smooth monotonic functions of real random
variables with densities, expression (10) is the conditional density of Y given
V, and so for each value V must integrate to 1 in the variable ¢ with respect to
Lebesgue measure. It follows by the Fubini-Tonelli theorem that fy(¢) given
by (9) is a density with respect to Lebesgue measure. Since expression (9) is
the expectation over V of the conditional density of Y given V, it is the
unconditional density of Y. O

The polynomial property of @(-,V) is used further through the following
bounds, and through an estimation of volumes of inverse images contained in
Lemma 6.
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LEmMA 4. Let Q(u) =qy+ qu + -+ +q,u” be a polynomial, and let
t € R. Then for a universal constant C, which does not depend on @,

n

sup{lul: Q(u) =t} < ( )> Iqjl/lqnl)(l + lt/q,1""),

(11)sup{,%(u) n g,

:Q(u)=t}sC(E

) (Ig,| + lg,I*/ el "= D7),

Proor. If Q(u) = ¢, then for some 8 € [—1,1],
n—1
ltl = g, lul® + 6 ¥ Ig,l max(1,lul"""),
j=0
so that, in the case lu|l > 1 + £2Zlg;l/lg;l ,

-1 -1/n
lul < [¢1*"1q,|” 1/”(1— Y lg;llq,) ~Hul™ 1)
Jj=0

n 1/n
< It/qnll/"( >z lqjl/lqnl) :
Jj=0

which immediately implies the first bound in (11). To obtain the second bound,
use the first to say that for any u for which @(u) = ¢,
1/2 ) }f -1

S £ )

n n—1
" gl i/m
<n| ) 95 1+ ,
j=0 19,

proving the second part of (11) with C, = n2""1. O

l—(u)

n

qn

A combination of ideas from Lemmas 3 and 4 yields a useful lower bound on
the density found in Lemma 3, a bound which finds application in proofs of
indeterminacy via criterion (4).

LEMMA 5. In the notation of (8), let A (V) denote{u: Q(u,V) =t} for fixed
V and t, where the degree n of p(Z) = Y = Q(U, V) is at least 1. Then there
exist constants K, and K, which may depend on n and Q but not on t, such
that
—In fy(t) < —In P{A,(V) # ¢} + K,
(12) ' ‘
+log(1 + EC™D/") + Ky(1 + 167
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PrOOF. According to (9),

1 . 9Q -
—]. _ E| — —(1/2)sup{u’: u € A(V)} 3 - .
n fy(¢) < —In (mI[A,(V)ﬂS]e uelgtf(‘v) E (u,V) )
Next, by the conditional Jensen’s ineduality,
—In fy(t) < —In P{A,(V) # ¢}
— Elln e—(1/2)sup(u2:uEA,_.(V))
T
inf ‘Q A\ B AV
X o In —(u, #* .
v 7 (oY) (V) # ¢

Then by (11), with the notation M(V) = L7_lq ;(Z)I/ lg,| for fixed V,

—In fy(2) < —In P{A/(V) # ¢} + E{%[M(V)(l n |t/qn|1/”)]2

+1n(C, M"(V)V27 (Ig,| + lg, I/ "1el "™ "))|Aadv) # ¢>}.

Since Y = Q(U, V) does possess finite moments of all orders [McKean (1973)],
it follows from the Fubini-Tonelli theorem that

for every m > 1, E{[Q( U, V)]zmIU} < o almost surely.

By (8) and Fubini-Tonelli, the moments of each coefficient gq,(Z) are finite, for
k=0,...,n — 1. Therefore all moments of M(V) are finite, and (12) follows
immediately from the last bound on —In fy(2). O

LEMMA 6. Assume that n > 2 is even and that p(Z) = Q(U,V) in Lemma 3
is a polynomial form R(W) in a finite number m of independent #7(0,1)
random variables W, W,,...,W,,. Let v, denote the multivariate-normal
law 10, 1,,) on R™, with I,, the identity matrix. Assume also that the (con-
stant) leading coefficient q, of Q(-,V) is positive and that for a fixed real
t,, there exists z, for which p(zo) = t,. Express the vector V =
(qo(@), (D), ...,q,_(D) as a polynomial vector function V = y(W) of the
m-vector (W, W,,, ..., W), with degree at most n. Let w, € R™ be such that
b(wy) = vy = (qo(Z¢), 41(Z0), - - -, 4, _1(Zo)). Then constants c, and c,, not de-
pending on t,, exist such that for all s > 0, )

In P{A,,,(V) * ¢} = In[v{w € R™: A, . (¥(W)) # }]
(13)

>c,tm ln_( ) — ¢y In(1 + llw,ll) — llwoll?,

1 +.ltl

where In~(x) denotes min{In(x), 0}.
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Proor. All notation not defined in the statement of the lemma are as
in Lemmas 3 and 5. Observe first that the family of measurable sets
{w: A, (#(w)) # ¢} is increasing in ¢ by the intermediate value theorem.
Moreover, if A,(#(w)) is nonempty then so is A, ;((W')) whenever

n—1 . .
Yo lg(w),;, — (W) lull <6  forevery u in A,(¢(W)).
j=0
By the first part of (11), all » in A, (¢(w)) must satisfy
lul < M(g(w))(L + lt/q,1""),

where we recall that M(v) =1+ X?_,lv;l/q,, and we conclude that if
A(y(w)) # ¢ and [[y(w) — (W)l < B[M(://(w))(l + 1¢/q,I"/ ™1™, then

(14) Aps(P(W)) # ¢,

where |lull; for u = (ug, uyq,...,u,_;) € R"” denotes L |u ;. Now fix ¢ = ¢, to
be the hypothesized value such that p(z,) = ¢,, take w, an element of R™
such that ¢(wy) = vy = (qo(2¢), ¢1(Z¢), . . ., 4, (Z¢)), and fix u, € A, (Y(w,)).
We learn from (14) with s = 6 > 0 that

{W: lly(w) — vl < S[M(Vo)(l + |to/‘1n|1/n)] ‘"}

c{w: A, (¥(W)) # ¢}

Each of the n polynomials ¢(w); in w has a representation

(15)

(16) b)) = DO, i,y a) [TH, (1),

where the summation is over m-tuples a with ¥ e, <n, and there are
(m,’: ") such m-tuples. Since the W, are independent .#70, 1), the variables

H,(W,)/Vk! for distinct (i, k) are orthonormal, and
17 T[C9(ayas,. . an)’al e ayl=Eg;1(B) <

a

Recall that (w,) = v,; next apply the representation (16) to (w); and to the
difference (w); — ¢(w,);, and (17) and the Cauchy-Schwarz inequality to the
resulting sums, to obtain for all w and j,

vl < [Bla, @) - T [T How) | o
(18) Ww(w); - (vo)* < | Bla, (@)]

m . m 2 1
X il;llHa,(wi) - il;llHai((WO)i)] T_
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We must next estimate the relative sizes of terms H,(z) and z. There exists
a constant K, such that for all » > 0and £ =0,1,...,n,

(19)  max{{H,(2)l,|H},(2)l: lzl <7,k =0,...,n} <Ky (1 +r)".

Now by (18) and (19), for constants C and C’ which can depend on m, p(-),
and R(-), for all w and w,,

M(v,) < C(1 + lIwll™)
and
(W) = Vol < Cliw = woll(1 + (Iw = wol + liwol)" ).

Now choose

ssmin{l, —" i — T n}
CmC(1+ (1 + lwoll)™ ) (1 + liwoll™) (1 + 1t6/q,1" ™)

Then according to (15) and our bounds on M(v,y) and I[l¢(w) — vyl
lw — wyll < ¢ implies AtO +s((w)) # ¢. Note that for some constant c* < 1,

)(1 + |IW0||)—n(n+1)} ’

> min{1,c*
€ mm{ c(1+|to|

so that

In(¢) > In(c*) + ln_( ) —n(n + 1)In(1 + [lwyll).

1+ |2,
Finally, fix w, and estimate the v,, probability of the ball {w: [[w — w,|| < &}
from below as the product of its volume (= constant times &™) by the lower
bound (277) "™/ exp(— (|lw, |l + €)?/2) of the v,, density on the ball. Then (13)
follows by taking logarithms and collecting terms, using (|lw,ll + €)?/2 <
lwoll® + 1. O

Proor oF THEOREM. As mentioned in remark (a) following the statement
of the theorem, the cases with n = 1 or 2 have been treated by Nualart,
Ustiinel and Zakai (1988). In the case where n = 4 and supp(Y) # R, with
g4 > 0 in (8) for some choice of U and V, the intermediate value theorem
applied to Q(-, V) implies that the support of the law of Y is a half-line [¢, «).
The Eidlin-Linnik-type upper bound of McKean (1973) cited in remark (a)
immediately implies that the Carleman condition (2) holds in the form

L A{E(Y -0

k} ~1/2k < o

By Lemma 1, the law of Y — ¢, or equivalently of Y itself, is uniquely
determined by its moments as a measure on R. This proves case (i).

Suppose next that n > 2 is odd [case (iD)]. Then A, V) # ¢ for every fixed ¢
and V, and the random variable Y = Q(U, V) obviously has the entire real line
for its support. Integrating (12) against (1 + ¢2)"! d¢ on R shows that the law
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of Y does not satisfy the necessary condition (4) for determinacy. The same
idea works in case (iv), but the proof is a little more difficult: This case of the
theorem is an immediate corollary of Proposition 1(8) stated and proved
below.

Finally, suppose that n > 6 is even and that Y = Q(U,V) = R(W) is ex-
pressible as a polynomial in an m-vector of normal variables W, which may
without loss of generality be assumed to have independent components with
mean 0 and variance 1. In Lemma 3, there is no loss of generality in taking the
leading coefficient ¢, to be positive (otherwise replace Y by —Y). Now in case
(iii), assume also that supp(Y) = [¢,, ®), ¢, > —, and that there exists w, €
R™ with R(w,) = ¢,. If A,(-) is as defined in Lemma 5, then A, (¢(w,)) # ¢.
Put s =¢ — ¢, in Lemma 6, and substitute (13) into (12), to find that the
density fy(¢) [which is 0 on (—, ¢,)] satisfies, for all ¢ > ¢,

—In fy() < Ky + In(1+ @) + Ky(1 + /")’
(20)

+ ¢y In(1 + lwoll) + llwll*.

— —_ 1 -
¢; —mln (1 it
Corollary 1 applied to the random variable X =Y — ¢, shows that X and
therefore Y has indeterminate law. Case (iii) is proved. O

The technique of proof via Lemma 6 which has been used in part (iii) of the
theorem can yield a more refined result in some cases not covered by the
theorem. However, the examples of Section 4 show that the same technique
cannot be used in all such cases.

ProposITION 1. Assume that Y = R(W) is a polynomial of even degree
n > 4 in finitely many (m) independent standard-normal random variables
W,, and (without loss of generality) assume that the leading coefficient q,, in
its representation (6) is positive. Suppose that C >0 and 0 <y < 3 are
constants and that one of the following conditions holds:

(@) n =6, supp(Y) = [¢;,), t; > —, and for all N > 0 there exists wy €
R™ for which |lwyll < CN” and R(wy) < t, + 1/N;

(B) supp(Y) = R, and for all N > 0 there exists wy € R™ for which |lwyll
< CN?” and R(wy;) < —N.

Then the law of Y is indeterminate.
Proor. First, in case (a), for all N >0 and ¢ >¢, + 1/N, put ¢, =

ty +1/N,s =t —t, and wy = wy in Lemma 6, and combine Lemmas 5 and 6
as in deriving (20) to obtain for some constants K;,

1
—In fy(t) <K, + Ky(1 + |t|1/”)2 +K, ln(t -t - N) + llwyll?.
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Therefore, with possibly different constants K}, for s > 1 /N,

2 1
—In fy_,(¢) <K;+ Ky(1 + IsI™)" + Kj ln(s - N) + [lwyll?.

Apply this bound first for N =1 and s > 1, and then successively .for all
integers N > 1 and s € (1/N,1/(N — 1)] using the bound lwyll? < C2N%.
Recall that 2y < 1and n > 6 to check that —(1 + s?)In fy_,(s?) is Lebesgue
integrable on (¢;, ), and Corollary 1 implies that the law of Y is indetermi-
nate.

Similarly in case (8), we put to = —N, s =t — £, for ¢ > —N, and w, = Wy
in Lemma 6 to obtain as in (20) for some constants K, for ¢ > —N,

Cln fy(t) < Ky + Kp(1+ HY™) 4 KgIn(z + N) + Iwyl™.

Applying this bound first for N = 0 and ¢ > 0, and then successively for all
positive integers N and ¢ € (~N,— N + 1], using lwyll? < C2N?Y, we con-
clude that —(1 + #2)~1In fy(¢?) is Lebesgue integrable on R. Since ) is
violated, the law of Y is indeterminate. O

As mentioned in the proof of the theorem, case (p) of the proposition holds
in case (iv) of the theorem. The requirement that ¥’ contain both a term q,U"
and a leading term W}dg(W) in W;, where U and W, are jointly normal and not
perfectly correlated, implies condition (B) with y = 1/d. This explains why
polynomials like Y = Z{ + Z, or Z{ — Z are not covered by the theorem, and
a calculation along the lines of Example 2 shows that these polynomials cannot
be proved either determinate or indeterminate by the methods of this paper.

Throughout this section, we have focussed on polynomial forms in normally
distributed random variables. It is clear that some of the same techniques
apply with nonnormal distributions such as gamma. For example, the theorem
for the case of a polynomial Y = p(Z) in a single normal variable follows
immediately from Corollary 1 and Lemma 5 (since A, is then a nonrandom
set), and the steps of Lemmas 3 and 5 apply with straightforward modifica-
tions if Z is distributed with the I'(a, A) density

xetete 2 /T(a) fort>0.

The result of Targhetta (1990), that Z" for Z ~ ['(a, A) has indeterminate law
for n > max(2, 2a), can thus be improved slightly and generalized to arbitrary
polynomials in a single gamma variable. The result is:

PROPOSITION 2. Suppose that Y = p(Z) is either a monomial ZP or a
polynomial of degree n in the I'(«, \) distributed random variable Z. Then the
law of Y is determinate if B or n is less than or equal to 2, and is indetermi-
nate otherwise.

Proor. The determinate cases follow’ immediately from the fact that Z*#
has a finite moment generating function on an interval around 0 if B <1,
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together with the Carleman condition (2) and the fact that the law of either Z#
with B < 2 or p(Z) with degree 2 has support equal to a half-line [¢, ). The
indeterminate cases follow by condition (4) and Corollary 1 together with the
inequality

—In fy(t) <c; +cyIn(l + e[V ™) + ¢4ltl", ¢ > inf(supp(Y))

(which is valid also for monomials if 8 > 2 replaces n), proved exactly as in
Lemma 5 by the method of Lemmas 3 and 4. O

4. Examples not covered by the theorem. If Y = p(Z) is a polynomial
of even degree 4 or larger in finitely many independent .#7(0,1) random
variables, then it may happen that neither the theorem nor Proposition 1
applies to establish the determinacy or indeterminacy of its law. We give two
examples, with supp(Y) = [0, ) and R, respectively.

Exampie 1. Let Y = p(Z,, Z,) = [(Z§ + VZ? — 2Z,Z2 + 1(Z2 + 1),
where Z, and Z, are independent standard-normal. For every fixed value of
2,, the minimum of p(z,,z,) occurs at z; =22/(1 + z3) and is equal to
—(1 +22)/(1 + z3). Thus supp(Y) = [0, ). The asymptotic behavior of the
moments EY”* is the same as that of the moments of S = (Z; + VZXZ3 + 1).
Since the law of S is indeterminate according to part (iii) of the theorem, it
follows that the moments of S and hence those of Y do not satisfy (2). We
calculate in the following lemma that —In fy(¢) is asymptotically equal to a
constant multiplied by 1/[¢| as ¢ converges to 0, so that (4) holds and the
hypothesis of Corollary 1 is violated. Therefore it is not clear whether Y has a
determinate law in this example. Note that this example corresponds to the
" case y = 1 in the setting of Proposition 1(«). Examples of the same type can
be constructed with higher even degrees by replacing Z3 with Z2*, & > 2.

LEMMA 7. For Y =[(Z3 + V)Z? — 2Z,Z% + 1I(Z3 + 1), as t decreases to 0,
In fy(f) = —1/(2¢) + o(1/2).

Proor. For p(zy,2,) =[(24 + D22 — 22,22 + 122 + 1), ¢>0, and 2z,
fixed,

{z1:p(21,25) <t}
Sinee Z, = Z2/(Z3 + 1) + h(Y,;Zz), where the function % is defined by

= {z1:
h(t,2) = J(e(z" + 1) - 22 = 1) [{(z* + DV2? + 1),

2
2

(1+25)

1
= (Z+1)(zE+1)

22+1
zg+ 1

zl_ t_

the density of Y at ¢ > 0 is given in terms of the standard normal density ¢(-)
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/I ) ] ?(23)
(D2 GEH D922 1 1) (25 + 1)A(t, 25)

x{cp '+¢(*h(t,22)+ (z;—il))}de,

which for small positive ¢ is asymptotically equal to

2
1 22 exp{—%[z2 +2t/(1 +2%) ]}
Jltemeaitomgy 7557 (1+2%)(1 +2%)

2

2
h(t,zz) + m

2.

Since the inequality (z* + 1)t > (2% + 1) for small ¢ requires that z exceed a
quantity asymptotically equal to 1/V%, the logarithm of the last expression is
easily shown to be asymptotically equal to —1/(2¢). O

ExamplE 2. Let Y =p(Z,,Z,) = (Z? — 1XZ2 + 1), where Z, and Z, are
independent standard-normal. For every fixed value of z,, the minimum of
p(z, 2,) occurs at z; = 0 and is equal to —(1 + 22). Thus supp(Y) = R. It is
easy to check [and follows from the lower bounds of Nualart, Ustiinel and
Zakai (1988)] that the sequence of moments m, = E(Y*) does not satisfy (1).
Moreover, we calculate in the following lemma that —In fy(¢) is asymptoti-
cally equal to a constant multiplied by |¢| as ¢ converges to —o, so that (4)
holds. Therefore it is not clear whether Y has determinate law in this
example. Similar examples can be produced for arbitrary even degree n > 4
simply by replacing (22 — 1) by polynomials (H,,(z,) — ¢) for m > 2, where
¢ > min{H,,(2): z € R}, in which case the inequalities of Nualart, Ustiinel and
Zakai (1988) again show that Y = (H,,(Z,) — c)1 + Z3) does not satisfy (1).

LemMma 8. For Y =(Z2 — 1XZ2 + 1), as t approaches —x,
In fy(t) = £/2 + o(t).
Proor. For fixed ¢ and z,,

(2 (22— 1)(22 + 1) < ¢} = {zlz el < V1 +¢/(22 + 1)}

so that
e o(2) .
Fr(t) = ‘[\/ltl—l (2% + Y1 +t/(2% + 1)
t
X{qo 1+22+1 + ol — 1+m }dz,

from which it follows easily that In f,(¢) is asymptotic to —¢/2. O



2214 E. V. SLUD

Acknowledgments. I am grateful to S. Kotz for the Berg reference, to
John Horvath for useful conversations about classical moment problems, and
to an Associate Editor and referee for their careful reading of the paper leading
to corrections and improvements.

REFERENCES

AKHIEZER, N. I. (1965). The Classical Moment Problem and Some Related Questions in Analysis.
Oliver and Boyd, Edinburgh.

BERG, C. (1988). The cube of a normal variable is indeterminate. Ann. Probab. 16 910-913.

CHAMBERS, D. and SLup, E. (1989). Central limit theorems for nonlinear functionals of stationary
Gaussian processes. Probab. Theory Related Fields 80 323-346.

CHIHARA (1968). On indeterminate Hamburger moment problems. Pacific J. Math. 27 475-484.

CorNFELD, I., FoMIN, S. and SiNAIL, YA. (1982). Ergodic Theory. Springer, New York.

KALLIANPUR, G. (1980). Stochastic Filtering Theory. Springer, New York.

MaJor, P. (1981). Multiple Wiener-It6 Integrals. Springer, New York.

McKEeaN, H. (1973). Wiener’s theory of nonlinear noise. In Stochastic Differential Equations
(J. Keller and H. McKean, eds.) 191-209. Amer. Math. Soc., Providence, RI.

NuaLart, D., UsTONEL, A. and Zakar, M. (1988). On the moments of a multiple Wiener-It6
integral and the space induced by the polynomials of the integral. Stochastics 25
233-240.

SHIGEKAWA, I. (1980). Derivatives of Wiener functionals and absolute continuity of induced
measures. J. Math. Kyoto Univ. 20 263-289.

SHOHAT, J. A. and TAMARKIN, J. D. (1943). The Problem of Moments. Amer. Math. Soc., New York.

Srup, E. (1991). Multiple Wiener-It6 integral expansions for level-crossing-count functionals.
Probab. Theory Related Fields 87 349-364.

TARGHETTA, M. (1990). On a family of indeterminate distributions. J. Math. Anal. Appl. 147
477-479.

STATISTICS PROGRAM
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND 20742



