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STRONG LIMIT THEOREMS FOR LARGE AND SMALL
INCREMENTS OF [?-VALUED GAUSSIAN PROCESSES

By MikLGs CS6RGG! AND Q1-MAN SHAO?

Carleton University and Hangzhou University

Based on the well-known Borell inequality and on a general theorem for
large and small increments of Banach space valued stochastic processes of
Csaki, Csérgé and Shao, we establish some almost sure path behaviour of
increments in general, and moduli of continuity in particular, for /”-valued,
1 < p < », Gaussian processes with stationary increments. Applications to
lP-valued fractional Wiener and Ornstein—Uhlenbeck processes are also
discussed. Our results refine and extend those of Csaki, Csérgd and Shao.

1. Introduction. A function f(x) on (a,b) is called quasiincreasing on
(a, b) if there exists a positive ¢ such that

f(x) <cf(y) foralla <x <y <b.

It is clear that if f(x) =x*L(x), a >0, x €(0,1), where L(-) is slowly
varying at zero, then f(x)/x%/? is quasiincreasing on (0, 1). Similarly, if
f(x) =x*L(x), a > 0, x € (1, =), where L(-) is slowly varying at infinity, then
f(x)/x%/? is quasiincreasing on (1, ).

For further use we quote a general estimate for the increments of Banach
space valued processes, due to Csaki, Csérgé and Shao (1992) (cf. Lemma 2.1
and Theorem 3.1 of the just mentioned paper).

THEOREM A. Let & be a separable Banach space with norm || || and let
{T'(#), t > 0} be a stochastic process with values in %. Let P be the probability
measure generated by I'(*). Let ar be a positive continuous function and by be
a nonnegative continuous function. Put a* = supy ., ap. Assume that I'(+) is
P-almost surely continuous with respect to || || and that there exist nonnegative
monotone nondecreasing continuous functions oy(h) and oy(h) and x* > 0
such that for every t > 0, x > x*,0 < h < a*,

(1.1)  P{IT(¢ + h) —T(@)l = x0y(h) + 05(h)} < K exp(—yxP),

with some K,vy, B > 0. Suppose also that o,(h)/h* and o,(h)/h* are quasi-
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increasing on (0, a*) for some a > 0 and that

br
ar

-0 qsT — oo,

oar)
Then, we have

(1.2) limsup sup sup B,Il(¢+s)-T()I<1l a.s,

T—-o 0<t<bpO<s<arp

where

_1 1( by 1 e
Br = ‘71(‘17')(;(108’;; + loglog(al(aT) + o(ap) ))) + oy(ar).

The usefulness of Theorem A alone was demonstrated in Cséki, Csorgé and
Shao (1991, 1992) for studying some path properties of [P-valued, 1 < p < 2,
Gaussian processes. Here we combine Theorem A with the well-known Borell
inequality, as given in Adler (1990), via the dual-space idea as used in Marcus
and Rosen (1992), and thus we succeed in refining the earlier results of Csaki,
Cs6rgl and Shao (1992, 1991), as well as in extending them to [P-valued,
1 < p < =, Gaussian processes, having stationary increments.

Our main, general results are summarized in Section 2, and their proofs are
given in Section 3. In Section 4 we demonstrate the use of our approach in
proving laws of the iterated logarithm (LIL) for [”-valued, 1 < p < «, Gauss-
ian processes. As further applications of our theorems, we study sample path
properties of [P-valued, 1 < p < o, fractional Wiener processes in Section 5,
and those of [P-valued, 1 < p < o, fractional Ornstein—-Uhlenbeck processes in
Section 6.

2. Increments for I/P-valued Gaussian processes. Let {Y(¢), ¢t > 0} =
{X,(), t > 0);_; be a sequence of independent Gaussian processes with
EX,(t) = 0 and stationary increments o2(h) = E(X,(¢ + h) — X,(¢))?, where
throughout this paper o,(h) is assumed to be a non-decreasing continuous
function for each %2 > 1. Put

(o]

1/p
(2.1) o(p,h)=(k2=llv,:’(h)) , p=1,

(22)  o*(h) = maxay(h),

2p '
o|l—,h|, ifl<p<2,
P

23) &(p,h)={"\2-p
' a*(h), if p>2,
p/2 o
(2.4) 67 = EIN(0, 1) = = [fa@~D2edx, p=1.
m 70
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Since E|Y(t + h) — Yfr = 8555 _10f(h), Yt + h) —Y(@#) € 17,1 <p < o,
almost surely for fixed ¢ and & if and only if
(2.5) o(p,h) <,
and Y(¢) € I? almost surely for every ¢ if and only if we have (2.5) and also

(2.6) 5 EIX,(0)F < .
k=1

Extending the results of Cséki and Csorgd (1992), Csaki, Csorgé and Shao
(1991, 1992) investigated the moduli of continuity for [P-valued Gaussian
processes with 1 < p < 2. The aim of this section is to apply the well-known
Borell inequality and our Theorem A to studying the increments for [?-valued
Gaussian processes for every p > 1. Our main results are as follows.

THEOREM 2.1. Let ap, T > 0, be a positive continuous function. Put a* =
Supr . o @p. Assume ¢(p, h)/h* and o(p, h)/h* are quasiincreasing on (0, a*)
for some a > 0 and also that

log(T/ar) —

(2.7) T loglog T
T \/2

(2.8) o(p,ar) =0(5(P,(1T)(10ga—) ) as T — =,
T

(2.9) limsup max max {0}, %(ar)

Tow (T/ap)F<j<T/ap k=1
XE[(Xy(ag) — X,(0))(X,(jar) — Xu((j + Daz))]} <0
for each € > 0. Then we have
Y (¢ +s)—=Y()le

(2.10) lim sup sup =1 a.s.
T-®0<t<T 0<s<ap c?(p, CI«T)(z log(T/aT))l/z

THEOREM 2.2. Let ap, T > 0, be a positive continuous function satisfying
(2.7). Assume a(p, h)/h* and 6(p, h)/h* are quasiincreasing on (0, a*) for
some a > 0 and

T\ V2 .
(2.11) &(p,aT)(logh—T) =o(ag(p,arp)) asT — .

T)zen we have

i "Y(t + S‘) - Y(t)”[p
im sup sup =
T—>©0<¢<T O0<s=<ap 6p0(p’a’T)
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THEOREM 2.3. Assume that &(p, h)/h® is quasiincreasing on (0,1) for
some a > 0. Moreover, suppose that

1/2
(2.13) o(p,h) = 0(&(p, h)(logz) ) ash — 0,
limeup max  max E[(Xu(h) = X,(0))(X,(jh) — X,((J = DR)]
(2.14) h_,oph—zsjshvl k>1 O'kz(h)

<0,
for each ¢ > 0. Then we have

, 1Y (2 +s) = Y(&)lir
(2.15) lim sup sup iz =1 as.
h=00<t<10<s<h G(p, h)(2log(1/h))

THEOREM 2.4. Assume that o(p, h)/h* is quasiincreasing on (0,1) for
some a > 0 and that

1/2
(2.16) J(p, h)(logﬁ) =o0(o(p,h)) ash — 0.
Then we have
1Y(¢t +s) = Y()I
(2.17) lim sup sup ( ) (e = a.s.
h—=00<t<10<s<h 6pa(p7h)

Remagk 2.1. If
(2.18) E{(X,(b) — Xi(a))(X,(d) — Xy(c))} <0
for every 0 <a <b <c <d < = and for every k > 1, then, obviously, (2.9)
and (2.14) are satisfied. In particular, if ¢2(h) is concave on (0,x) for each
k > 1, then (2.18) is true and hence (2.9) and (2.14) are satisfied. On the other

hand, as we will see in Sections 5 and 6, condition (2.9) or (2.14) is really much
weaker than (2.18).

REMARK 2.2. We call attention to the normalizing constants in Theorems
2.1 and 2.3 being completely different from those of Theorems 2.2 and 2.4. The
conclusions of the latter two theorems may appear to be somewhat surprising
at first sight. We should, however, note that, under the conditions of Theorems
2.2 and 2.4, respectively, we have

"Y(aT) - Y(O)"lp ~ 6pa-(p7aT)7 T-o
and
1Y (k) — Y(O)lir ~ 8,0(p,h), h—0

and, consequently, their conclusions are like laws of large numbers. On the
other hand, the conclusions of Theorems 2.1 and 2.3, respectively, may be
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compared to large and small increments of a standard Wiener process [cf.
Chapter 1 of Csorgd and Révész (1981)].

3. Proofs of Theorems 2.1-2.4. Throughout this section we assume
p=1{Y(®),t >0} ={X,(2),t > 0};_, to be a sequence of independent Gauss-
ian processes with mean zero and stationary increments, .

af(h) = E(X,(t + h) — X,(2))",

and
o(p,h),6(p,h) and 3,

are defined as in (2.1), (2.3) and (2.4), respectively.

Lemma 3.1. Let p > 1, {£,, n = 1} be independent normal random vari-
ables with E¢, = 0 and Y7_(E¢2)P/2 < o, Then

o Bl ] oo

2

X
(3.1) 2exp| — @ , ifl<p<2,
o p/@-p)\@P/P
- 2(z7,(Ee2)” ")
2 il A 2
- >
P\ 2max,., Be7 )’ Tp=2

for every x > 0.

Proor. The idea of the proof is from that of Lemma 2.2 of Marcus and
Rosen (1992). It is well known that

© 1/p ©
(3.2) ( Z |§i|p) = sup Z ¢a;,
i=1

llellg<l i=1
where ¢ =p/(p — 1), a = (a,,a,,...) €19. Using (3.2) and the Borell in-
equality [cf. Adler (1990)], we have
. }

e 1/p e
P{ ( h |§i|p) - E( > |§i|p)
i=1 i=1
sup Y. a,& —E sup Y aé

_ P{
lellla<l i=1 llallje<1l i=1

x2
< 2exp| —-
2 Sup“alllq <1 E(Z(:; la’ifi)2

1/p

23]

(3.3)

x2

N ) 2 2
28UpP)g) 0 <1 Y7 10 E¢;

= 2exp(_
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Noting that
© e (g-2)/q o 2/q
( Y (Eg?)™™ ) sup ( > lail") :
o i—1 lalie<1 \i=1
sup ). alE¢f < L o iLfl <p<2,
llallla<l i=1 o
maxE¢?2 sup ) a?, if p> 2,
izl lalla<li=1
o0 (2—p)/p
( Y (Egl?)”/@‘”)) , ifl<p<2,
={\i=1
max E¢2, if p>2,
i>1

we arrive at (3.1) by (3.3), as desired. O

g

by the Holder inequality, it follows immediately from Lemma 3.1 that we also
have the following:

Since
/P

s

It

1/p o 1/p o 21
er) = Lmer) o[ £ (merr
i=1

1 i=1

LemMma 3.2. With p > 1, we have
x2
(3.4) P{IIY(t +h) = Y(@)lir = 8,0(p, k) +x5(p, h)} < 2exp(— —2—)

for each t,x, h > 0.

Before proving our Theorems 2.1-2.4 we present some more general re-
sults. The first one is the almost sure continuity of [”-valued Gaussian
processes, while the second and third ones are, respectively, concerned with
upper and lower bounds for the increments of such Gaussian processes.

THEOREM 3.1. Assume (2.6),

ooa-(p,e_z)
(3.5) fl——;——dz<oo
ard
3.6 “#(p,e)d
(3.6) /lo(pe )dz <o

are satisfied. Then, Y(-) € [?, p > 1, has a.s. continuous sample paths.
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Proor. The proof is along the lines of that of Théorem 2.6 of Cséki, Csorgd
and Shao (1991), using (3.4) instead of their Lemma 2.4. We omit the de-
tails. O

THEOREM 3.2. Let ap, T > 0, be a positive continuous function and by,
T > 0, be a nonnegative continuous function. Put a* = supy . ,ap,. Assume
that o(p,h)/h* and &(p,h)/h* are quasiincreasing on (0,a*) for some
a > 0 and that

1+ by

ar

(3.7 t+ap—=o asT - .

Then we have
(3.8) limsup sup sup B(p,THIY(¢+s) =Yl <1 a.s,

T-w 0<t<bpO<s<arp

where B(p, T)™" = 8,0(p, ap) + &(p, ap)2(og(br/ar) + logloglar +
1/aT)))1/2.

Proor. Recalling that

l ’ (2-p)/2p
62_P1/(2-p)(E( Z X, (¢ +h) — Xk(t)|2P/(2‘P))) ,
k=1
¥(ph) = if1<p<2,
2\1/2 .
r]?fi((E(Xk(t +h) = X,(¢)) ) ) if p>2,

and using the Minkowski inequality, we obtain
(3.9) 6(p,2h) <26(p,h) foreach h >0and p > 1.
From (3.9) it follows easily that

1 1
- s4(h+—~)(& ,1) + ——
&(p, h) i) &(p,1)

for each 2 > 0.

By (8.4), (3.10), Theorem 3.1 and Theorem A, we conclude that (3.8)
holds. O

3.10) PR+

ReMARK 3.1. Let o,(p, k) and &,(p, h) be nondecreasing functions such
that o(p, h) < o,(p, h) and 6(p, h) < 6,(p, h) for each h > 0. Assume that
g.(p,h)/h* and &,(p, h)/h* are quasiincreasing on (0, a*) for some a > 0.
Clearly, (3.4) remains true if o(p, k) and 6(p, h) are replaced by o, (p, k) and
64+(p, h), respectively. Hence, (3.8) remains valid with o.(p,a;) and
6+(p, ap) instead of o(p, ay) and 6(p, ay), respectively.
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THEOREM 3.3. Let ar and by be positive continuous functions. Assume
that (2.5), as well as

log(b
(3.11) o8(br/2z) —o agsT > o
loglog(ar + (1/a,))
and
lim sup max max {07 2%(a
(3 12) Tow (br/ap)<j<bp/ar k>1 { k ( T)

XE[(Xk(aT) - X, (0))( X, (Jar) — Xu((J — l)aT))]} <0

for each & > 0, are satisfied. Then we have

. Y(t+s)—Y(t)lw
(3.13) liminf sup sup s 21 as.
To® 0<t<byO<s<ap G(p,ar)(2log(bp/ar))

Q

Proor. Let 1 < 6 < 65/64. Define

b
A= {T:st—T 52’““}, k=0,
ar
Ay =(T:07 <3(pa) <O, T A}, —w<j<o,

b(T, ;) =inf{b;: T €A, ;}, a,;=a(T};)=infla;: T €A, ;}.
By (3.10) and (3.11), one finds that
(3.14) A, ;=0 forevery|jl > e®,
provided that % is sufficiently large. It is also easy to see that
b o b(T%, ;) - b(Ty, ;) - b(T% ) < g+l
T a(Tyy) T oa(Tiy) ~ a(Tyy) ~

(3.15) 2

Therefore
o Y(t+s)—Y(t)lw
liminf sup sup 7z
T-® 0<t<bpO<s<ar (P, a7)(2 log(bT/aT))
PO Y (t+s) = Y(t)lw
> liminfinf inf sup sup Y
koo j TE€A,;0<t<by0<s<ar 6(p,ar)(2lag(by/ar))

818 1Y (2 +s) = Y(@)llr
> lim inf min sup . sup - T2
koo |jl<e® 0<t<b(T, ;) 0<s=<a,, 0’(2 10g2k+1)

e 1Y (524 Pay,; + as,;) = Y(i2* ey ;)lir
> liminf min  max - . Y : .
koo |jl<et 0<i<2kC0 06(p,a,, ;) (2log2k)
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We proceed with the proof by considering the two cases of 1 < p < 2 and
2 < p < o separately.

Case I. 1 <p < 2. In this case, by (3.2) with ¢ = p/(p — 1), we have

| ¥ (220~ Va, ; + ay, ;) - ¥(i24¢Da, |,

® . -p-V/p (
2p/(2— 20p-1)/(2—p)
(3.17) = Zau(ak,j) p/2=p : Z‘Tu(ak,j) pob/2mp
v=1

v=1
X(X, (12" Va, ; + a, ;) - X,(i2%° Va, })).
Consider
£(k,Jsi)
_ E°,,°=10,,(ak,j)2(p_1)/(2_”)(X,,(i2k("'1)ak,j + ak,j) - X,,(izk("'l)ak,j))
2p/(2 _p))(p— D/p

a(p, ak,j)(£°:=10-v(ak,j)

) E‘L10,,(ak,j)2(p_1)/(2_p)(Xy(i2k(0_l)ak,j + ak’j) _ Xv(izk(o—nak’j))
h o 2p/(2—-p)\ /2 ’
(Zv=lo-v(ak,j) »/ p)

E=1,2,..., ljl <e* 0<i <229 For j k fixed and 0 <i < m < 229,
we have
E{£(k, j;0)E(R, j; m))

© -1 o

3.18 =l X Uu(ak,j)zp/(z_p) > ‘Ty(ak,j)“p—l)/(z—p) : E{(Xy(ak,j) - X,(0))
(3.18)

v=1 v=1
X(X,((m —i)2¥°" Y,  +a, ;) - X,((m—i)2¥°" Vg, ))},

by the fact that {X,(¢), ¢t > 0};_, is a sequence of independent Gaussian
processes with stationary increments. Noting that

0

[ee]

4p-1)/(2-p) 2p/(2-p)
Z U'V(ak,j) p=b/ po'vz(ak,j) = Z U'V(ak,j) P/ Py
v=1

v=1
and using the assumption (3.12), we deduce from (3.18) that
E&((R, jyi)é(R,j;m) <60 —1
(3.19) §(k,j;i)é(k, j;m)
) for every |j| <e*, 0 <i <m < 2¥2=9,
provided that % is sufficiently large. Also, clearly
(3:20) Bk, j;i) - 1.

Let {n;, 0 <i < 2%} and 7 be independent normal random variables with
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mean zero and with En?=2 -0, 0 <i < 2*@-9 and Er2 = 9 — 1. Define
T, =1+m;,0<i< 29 Note that

E&¥(k,j;i)=Eri=1, 0<i<2:0
E{é(k, jsi)é(k, j;m)}) < E{rr,}, O0<i#m<20
for % sufficiently large. Therefore, by the Slepian inequality [cf. Adler (1990)],
P{ max  £(k, ;i) < ((2 - 60)° —2(6 - 1)1/2)(2log2k)1/2}

0<i<2k2-9

om0 20 0y

0<i<2k2-9

< P{ max 7, <(2- 0)2(210g2k)1/2}

0<i<2k2-®

+ P{r = 2(6 - 1)"*(21og2*)"*}

(321) < (®((2-0)"*(2log2")" 2))2”2“3) + exp(—4log2*)

3 . 2k(2-6)
T exp(—(2—0) log 2 )
3(1 + (2 - 0)”*(21og2*)"”?)

9k(2-0) 2—k(2—0)3

<274 4 -
exp( ; )

9k@—6X0-1)

<274 4 exp(— 7 )

for every k big enough.
Putting the above inequalities together and applying the Borel-Cantelli
lemma, we conclude
Y(i2¥® Vg, . +a, .) — Y(i2*C Vg, )l;»
liminf min max ( kg k’J) ( k’J) :

koo |j|l<ek 0<i<2k@=0 0&(p,ak,j)(210g2k)1/2

(3.22)

(2 -6)"-2(6 —1)"?
>
0
which yields (3.13), by (3.16) and the arbitrariness of 1 < 6 < 65/64.

a.s.,

Case II. p > 2. Take N,, ; such that aNk,J(ak’j) = 0*(ay, ;). Clearly
1Y (i2¥¢~Va, ; + a, ;) - Y(i2*C Va,, ;)i
d:(p’ a’k,j)
Xy, (12" Va, ; +ay ;) = Xy, (1247 Va, ;)

O-Nk,j(ak,j)
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Along the lines of the proof of Case I, we conclude that (3.13) remains true in
this case as well. O

REMARK 3.2. From the proof of Theorem 3.3, one can conclude also that
(3.13) remains true if (3.11) is replaced by
br

br
=0llog— ] and — - » asT — =,

1
loglog(aT + —
a ar ar

T

ReEMARK 3.3. If the conditions (3.11) and (8.12) are replaced by

log(br/ar)
logloglog(a, + 1/ay)

— o asT — o«

and
E{(Xy(a) — X,(0))(X,(c) — X,(d))} <0
for each 2 > 1,0 < a < b < c, respectively, then (3.13) holds true.

ProoF oF THEOREM 2.1. This is an immediate consequence of Theorems
3.2and 3.3. O

Proor oF THEOREM 2.2. By Theorem 3.2, we have

1Y (£ +s) — Y(&)ll»

limsup sup sup < a.s.
T-o 0<t<TO<s<arp 6pa'(p’a‘T)
So it suffices to show that
Y (s) — Y(0)ll
(3.23) limint sup e~ YOl
T-> o<s<ap Bpo-(p’aT)
Let 1 < 6 < 65/64. Define
T
Bk={T:2ks—32k“}, k>0,
aT ’
Bk’j={T:0j50(p,aT)s@j“,TeBk}, —o < j < oo,

ak’j = a(Tk’j) = inf{aT: T (S Bk,j}‘
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Similarly to (3.10), we have
o(p,ar) <2(1 +ar)o(p,1)
and hence
B, ;=@ if|jl >e*
by (2.7), provided % is sufficiently large. Therefore

o 1Y(s) — Y(0)ll;»
liminf sup
T—oo OsgsaT apa.(p’aT)

o 1¥(s) — Y(O)lr
(3.24) > liminf min inf sup
k= |jl<et TEBy, ; 0<s<ap é,0(p,ar)

o I¥(as) ~ Y(O)le
> liminf min .
ke |jlzet  08,0(p,ay,;)

Applying Hoélder’s inequality, that is,
Elep < ( Ele)p/(2p— 1)(E|X|2p)(17— 1/@p-1)
for every p > 1 and any random variable X, we find that

(ElY(ar) — Y(O)IIf)P 77
(E||Y(aT) - Y(O)”l2£)(P—1)/P

:EIIY(aT) - Y(O)”lp =

(35510 (ar)™ "

((8255-10f (ar))” + 8255102 (ar)

= )(p— 1)/p

(3.25)
(8255 _10p (ap))® 07

(6257108 (ar))” + 8380*7(ar)Ti_10f (ar))

I\

(p—1/p

apa'(p7 aT)
(1 + 838, 7(0*(ar) /o(p,a,))"

)(P -/p°

Therefore, by (2.11),

ElY(ay) - Y(0)ll;»
(3.26) lim inf 22 (o) = YOl
T apo-(p:aT)
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From (3.1) and (3.26) it follows that for every % sufficiently large, |j| < e*,

I¥(a,,,) = YOl
P{ 5,0(par,) <2 0}

< P{IIY(ak’j) — Y(0)li» — EllY(ay ;) — Y(0)lli»

-1, )}
< ———F8,0(p,a,
(3.27) 2 " "

(6 - 1)23,%‘72(17, ak,j) )

<2 -
exp( 6&2(p,ak’j)

T k,J
< 2exp| —4log——— a(T, )
k,Jj

<2274,
which, together with the Borel-Cantelli lemma, implies

IY(a, ;) — Y(O)l 2-6
(3.28) liminf min (@) (Ollr > a.s.
koo |jl<ek Oﬁpa(p,akyj) 6

This proves (3.23) by (3.24), (3.28) and the arbitrariness of § > 1. O

Proor oF THEOREM 2.3. From Theorem 3.3, we have

IY(2 +s) = Y(&)llir
liminf sup sup i 2 a.s.
h—=0 o<t<10<s<h 6(p,h)(2log(1/h))

It suffices to prove that

Y(t+s)—Y(t)lwr
(3.29) limsup sup sup iz <1 as.
h—0 o<t<10<s<h 6(p,h)(2log(1/h))

For any fixed ¢ > 0, put o-*(p, h)=¢ SUPo <5 <1 &(p, h)log(1/sN'%, 0 < h <
1. Noting that ¢(p, h)/h* is quasiincreasing, one can see that there exists a
constant ¢, independent of &, such that

1/2 ] 6'(]),8) 1 1/2
5 eo(p, h)(log-];) <o4(p,h) =¢ sup e s“(log;)
(3.30) O<s<h
L1\ /2
<ecyo(p, h)(log%)
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for 0 < h < 1. Moreover, o.(p, h) is nondecreasing, o-l* (p, h)/h*/? is quasi-
increasing and o(p, h) < o, (p, h) by (2.13), provided that A is sufficiently
small. Hence, using Remark 3.1, we obtain

: 1Y (2 +5) = Y(&)ll,r
limsup sup sup — Y
h—0 Os<t<10s<s<h G(p,h)(2log(1l/h)) """+ o.(p,h)

Thus, by (3.30),

<1 a.s.-

: 1Y (¢t +5) = Y(£)llir
limsup sup sup — iz < 1+ecg.
h—0 o0<t<10<s<h G(p,h)(2log(1/h))

This proves (3.29) ioy the arbitrariness of ¢. O

ProOF OF THEOREM 2.4. Similarly to the proof of (3.29), by Theorem 3.2 we
have

(3 31) i “Y(t + S) — Y(t)“lp
. imsup sup sup
h—0 0<t<10<s<h 3p0'(p:h)

On the other hand, along the lines of the proof of (3.23), we can also obtain

IY(s) — Y(O)ll;»
3.32 liminf su
( ) h—0 OssIs)h BPO'(p,h)

. A combination of (3.31) with (3.32) yields (2.17), as desired. O

4. LIL for lP-valued Gaussian processes. For results on the law of the
iterated logarithm, in general, we refer to the insightful review of Bingham
(1986) and, for real valued Gaussian processes, to Nisio (1967), Marcus (1970)
and Lai (1973). In this section we are interested in proving LIL results for
[P-valued Gaussian processes. We deal first with stationary Gaussian pro-
cesses.

Let {Y(#), t = 0} = {X,(¢), t > 0};_, be a sequence of independent stationary
Gaussian processes with mean zero, o2(h) = E(X,(t + h) — X,(t))?, of =
EXZ2(t). Let o(p, h) and &(p, k) be defined as in (2.1) and (2.3). Put

o (2-p)/2p
021’/(2"”) ifl<p<2,
(4.1) a(p) = (k§1 kx
Maxay, ° if p>2.

THEOREM 4.1. Let p > 1, {Y(?), t > 0} = {X,,(¢), t > 0}_, be independent
stationary Gaussian processes defined as above. Assume that the following
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conditions are satisfied:

(4.2) Y of <,
k=1

wo(p,e?)
4.3 —dz <
(4.3) [ de <,
44 “6(p,e ) dz < o,
(44) [ 6(pe7)dz
(4.5) limsup E{X,(0)X,(a)} <0 foreachk > 1.

Then we have

. 1Y (s)ll:»
(4.6) lim sup — iz =1 as,
T-»o<s<T G(p)(2log T)
1Y ()l
(4.7) lim sup ()l =1 a.s.

T—w &(p)(2log T)"?

Our next theorems show that the situation may be very different if X,(-) is
nonstationary.

THEOREM 4.2. Let p>1, {Y(?), t >0} ={X,(¢), t > 0),_; be indepen-
dent Gaussian processes with X,(0) = 0, EX,(t) = 0, and with stationary
increments o2(h) = E(X,(¢t + h) — X,(t))®.. Assume that o(p,h)/h* and
6(p, h)/h* are quasiincreasing on (0,x) for some a > 0. Moreover, suppose
that

(4.8) o(p,T) =o(6(p,T)(loglogT)1/2) as T — o,
. E{X,(a)(X,(Jja) — X4(a))}
(4.9) Jm max max o (@) oy (Ja) =

Then we have

. 1Y ()l
(4.10) limsup sup 7z =1 as,
Tox 0<s<T 6(p,T)(2loglogT)
Y(T
411 lim su IPCT) e ~1 as.
(4.11) p

T—w &(p,T)(2loglog T)"?

THEOREM 4.3. Assume the conditions of Theorem 4.2, except that (4.8) and
(4.9) are to be replaced by

(4.12) &(p,T)(loglogT)l/z=o(a(p,T)) as T — o,
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Then we have

(4.13) lim s e
. ——— =1 a.s,
Toe Osng 6p0'(p,T)
1Y (T)ll;»
(4.14) fim XD

T—o 6p0'(p, T)

Proor oF THEOREM 4.1. Let 0 < ¢ < 1/8. Clearly, (4.3) and (4.4) imply
f°° (5"([1, e_z)
1 V4

So, we can take 0 < § < 1 such that

dz < o, o(p,h) +7(p,h) >0 ash —0.

»6(p,8e?
(4.15) (p,5) +16 5(P.0%¢7) 4 <o,
1 ¥4
Notice that
, b sup 1Y (s)lli»
1m su S
Towo o0<s<T 6(p)(2log T)Y?
i 1Y (s)lle
= limsup sup ———— 5
ke 0<s<et 0(P)(2k)*
(4.16) .
. 1Y (id)ll:»
< limsup max P

koo 0<i<e'/s d"(p)(2k)

) 1Y (i +s) — Y(id)ll»
+limsup max sup - 12
koo Osisek/a 0<s<éd 0'(p)(2k)

Using (3.1), we get that for every % sufficiently large,
Y (id)lle .
&(p)(2k)"*

< P{lY(i8) > — EIIY(i8)lli = (1 + £)3(p)(2k)"%)

+ 2¢

< 2exp(~—(1 + e)zk).

Hence )
1Y (i8)ll;»

4.17 limsup max —————5 <1+ 2¢ a.s.
(4.17) ke Ozizetss G(p)(2k)2

by the Borel-Cantelli lemma.
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In terms of (3.4) and Lemma 2.1 of Cséki, Csérgé and Shao (1992), we have

(p,3e ‘"‘)

P{ max sup |Y(s+id) — Y(id)lr > x|F(p,8) + 16[ — L
O<i<e®/5 0<s<é6

o(p,de” 2) }

+48f°°(;(p,6e Z)dz+6 o-(p,6)+6f .
1

2
5219-ek-6“1-exp(—~2-)

for every x > 0. Therefore, by (4.15), (4.3) and (4.4) we have

P{ max sup [Y(s +i8) — Y(id)llr = eo-(p)kl/2>
O<i<e®/5 0<s<é6

< P{ max sup [[Y(s +id) — Y(id)llw»

l1<i<e®/5 0<s<o

8—1

2 —=6(p )kl/z(&(p ) + 16[ —(p,ae ) )

©o(p,de” z) }

+48f:° p,6e“2)dz+6 o-(p,8)+6f ;

k
_219, k.a—l (_ )
< e exp 882

<e*
for every k& big enough. This proves

_ Y (is +s) — Y(i8)l:»r
(4.18) limsup max sup 172
k> O<i<e/50<s<s &(p)(2k)

<& a.s.

by the Borel-Cantelli lemma again. We conclude from (4.16), (4.17), (4.18) and
the arbitrariness of ¢ that
1Y (s)ll:»

4.19 limsup sup <1 as.
( ) Towo 0<s<T O'(p)(2].0gT)1/2 .

We prove next that

1Y (s)llzr
(4.20) liminf sup iz 21 as.
Too gcs<T o-(p)(2log T)

We divide the proof into two cases.
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CaseI. 1 <p < 2. For any fixed 0 < ¢ < 1/8, take N such that

(2-p)/2p
) > (1 - £)é(p).

N
(4.21) ( Y, o2p/@p)
k=1

Note that

. 1Y ()l
liminf sup — Y
T-= o<s<7 6(p)(2logT)

(ZV_, X, (s)P) "

1/2

[\

liminf sup -
T-» o9<s<T 6(p)(2logT)

(4.22) |EN_aXP~D/@-PX, (5)|
liminf sup —

T-w 0<s<T ¢(p)(2log T)/* (TN ,o2P/C-P) P72

I\

|):£\7=102(p—1)/(2—p)Xk(s)|
(1 —¢)liminf sup /2 2
T 0zs<T (LN ,0%P/@P) " (2log T')"/

1\

by (3.2) and (4.21) [ef. (3.17)].

Clearly, {Yy(s), s > 0} = {TN_,02P~ /@) . X, (5) /(EY_,02P/@~P)/2 5 >
0} is a stationary Gaussian process with EYy(s) = 0, EY:2(s) = 1. Further-
more, it follows from (4.5) that lim sup,, _,, E{Y,(0)Yy(a)} < 0. Consequently,
.using a theorem of Nisio (1967) [cf. Lai (1973)], we obtain

1Yy (s)l
(4.23) lim sup ——E(—ll—/—z- =1 as,
T-xo<s<T (2log T')

which, together with (4.22), implies (4.20), by the arbitrariness of ¢, as desired.

Case II. p > 2. In this case we can take N such that

oy =max o, =0 .
N = X Ok (p)

Obviously, [[Y(s)ll;» = |Xx(s)]. The rest of the proof is exactly the same as that
of Case I

Putting the above inequalities together, we arrive at (4.6).

To show (4.7), it suffices to verify that

1Y (T)ll;»
(4.24) lim sup (Il a.s.

>
T-w &(p)(2logT)"?
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For each 0 < ¢ < 1, we have

¥ ()l )
P(T<H2T{U(P)(21°gt)l/2 =1 })

sP( U {M— >1(1 - e)(2log(2T))1/2})
T<t<2T

é(p)

“ 1Y (e)lee <- )(log(2T))1/2
OStET&(p)(zlogT)Vz log T

-1-P

-1 asT — o,

by (4.6). This proves (4.24). This also completes the proof of Theorem 4.1. O

ProoF oF THEOREM 4.2. Using Theorem 3.2 with b, = 0 and ay =T, we
obtain immediately

1Y (s)ll:e
(4.25) limsup sup iz <1 as.
T—»o 0<s<T 0'(p,T)(2lOglOg T)

So, it suffices to show that

. 1Y (7))l
(4.26) lim sup iz 21 as.
T-o &(p,t)(2loglogT)

Again, we consider two cases.
Case . 1<p<2 For 0<eg<1/8, take T, = e* . Similarly to (3.17),
write
. 1Y (T)ler
lim sup — Tz
too 0(p,T)(2loglogT)
- limsu IY(Ty) ;e
> lims
(4.27) hw ¢(p,T)(2loglog Ty) 2

i _10y(T)* PP X(T,)
> nfsup - 20/@—p) 172 T 2
»e (Z7o100(Th) )77(2(1 + #)log k)
Put #
_ Iiao(TW)* YO X(Ty)

(o (T ) k=12,...
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Then, {¢,, k& > 1} is a Gaussian sequence with E§, = O; E¢2 =1 and
lim sup E{&.€,} ’

n=% gy —k>n
{g?ﬂgizp/(z—p)( T,) + £2_,0.(T,)*P~ /2P A
X (T, ) 2P~/ @ P E[ X,(T,)(X(T,) —Xi(Tk))]}

1/2

= Jm i oo 2p/@—p)) /2 (o 2p/@=p)
m—k=n (Zi=1a'i(Tk) ) (Zi=1a'i(Tm) )
<0

by (4.9), the fact that T}, log T, = o(T}, ;) and by the assumption of ¢(p, h)/h"
being quasiincreasing. Applying Nisio’s methods (1967) [cf. Theorem 2 of Lai
(1973)], we have

&r
4.28 lim sup ——*—— =
(4.28) b’ (2log &)

which, together with (4.27), yields (4.26) by the arbitrariness of &.

a.s.,

Case I. p>2 Let T, =e*", ¢ >0. Choose N, such that oy(T},) =
(p, T}). Then

) Y (T)ll:» . Xn(T)
lim sup — Tz = lim sup
T-w 6(p,T)(2loglogT) k- on(T;)(2(1 + ¢)log k)

12"

Along the lines of the proof of Case I, one can arrive also at (4.26). This
" completes the proof of Theorem 4.2. O

Proor oF THEOREM 4.3. According to Theorem 3.2 with b, = 0 and a, =
T, we have

(4.29) I ¥ Cs)llr
. msup sup T p/7 =
T—oo 0<s<T 8p0(p’T)

Hence, we need to show only that

Y (T )llze

. liminf ——————— 8.
(4.30) im in 5,0(p.T) >1 as

Set
T, =et/lek |k =1,2,....
It is easy to see that

Tyi1.

431) T,., T, =o(T,), log—tt_
( ) k+1 k ( k) Tk+1_Tk

= o(loglog(Ty+, — T4))-
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We have also
limi Y (T)l:»
iminf ————
T—o 5p0(p,T)
 timing Tl swp WD) YTl
T koo SPO'(p,Tk+1) koo T,<T<T,,, SPO'(p,Tk+1)
(4.32)
o Y (Tl
> liminf ——

k—oo 5p0'(p, Ty1)

: IY(2+s) = Y(2)ll,r
— 2limsup sup sup

koo 0<t<Ty,; 0<s<Typ~T, 9p0(DsThi1)

Similarly to the proof of (3.23), using (4.12) we can obtain that
IY(T, 1)l
(4.33) timing 2 Ol
k—o Spo-(p’ Tk+1)

From (4.12) and Theorem 3.2 it follows that

. IIY(t + S) — Y(t)”lp
(4.34) limsup sup sup <
koo 0<t<Th,, 0<s<Ty, —T, SpU(P’ Thi1—Th)

a.s.

Since o(p, T)/T* is quasiincreasing on (0, ), we find that o(p, T}, ; — T}) =
o(o(p, Ty, 1), as k > », by (4.31). Therefore
IY(t+s) = Y(t)lw»

4.35) limsup sup sup =
( ) k—o 0<t<T),, 0<s<T} 1—T, Spo-(p’Tk+l)

This proves (4.30) by (4.32), (4.33) and (4.35), as desired. O

REMARK 4.1. Corresponding to Theorem 4.2, we have the following conclu-
sion. Let p > 1, {Y(¢), ¢t > 0} = {X,(¢), ¢ > 0f;_; be independent Gaussian
processes with X,(0) =0, EX,(¢) = 0, o2(h) = E(X,(t + h) — X, ()% As-
sume that &(p, h)/h® is quasiincreasing on (0, 1) for some « > 0. Suppose
also that

1/2
(4.36) o(p,h) = o(o'-(p,h)(loglog Z) ) ash -0,

. EXk(a)(Xk(ja)\_Xk(a))
(4.37) limsup max -
am0  1/azjzlog(1/a) k=1 a,(a)o,(ja)

Then we have

, 1Y (Rl
(4.38) lim sup — . iz =
r—-0 &(p,h)(2loglog(1l/h))



1P-VALUED GAUSSIAN PROCESSES 1979

REMARK 4.2. Similarly to Theorem 4.3, we present the following result.
Let {Y(2), t > 0} = {X,(¢), ¢ > 0};_, be independent Gaussian processes with
X,000=0, EX,(t) =0, o2h) = E(X,(t + h) — X,(#))%2. Assume that
o(p, h)/h* is quasiincreasing on (0, 1) for some « > 0 and that

1/2
(4.39) a(p, h)(loglog z) =o(o(p,h)) ash — 0.

Then we have

1Y (Rl

4.40 T
(4.40) n08,0(p, h)

5. Fractional Wiener processes. Let {£(2), £ > 0} be a centered Gauss-
ian process with stationary increments. £(¢) is called a fractional Wiener
process (or Gaussian self-similar process) of order y if E¢%(¢) = t%7, where
0 <y <1 When y=1/2, &&) is the well-known Wiener process. For the
increments, as well as the Lévy moduli of continuity for Wiener process, we
refer to Csorgé and Révész (1979, 1981) and to Révész (1982). Similar quanti-
ties for general fractional Wiener processes were studied by Ortega (1984),
Grill (1991) and many others (cf. e.g., the references cited therein). As an
application of our previous theorems, this section is devoted to studying
sample path properties of [?-valued fractional Wiener processes.

Let p > 1, {c,, n > 1} be nonnegative numbers. Put

© 1/p
(5.1) c(p) = ( z Ci’) ,
k=1
2
c( P ), ifl<p<?2,
(5.2) &p)={ \2-p
maxcy, if p>2.

Let {Y(2), ¢ > 0} = {c,&,(8), t > 0);_,, where ¢,(¢) are independent fractional
Wiener processes of order y, 0 < y < 1. Set 02(h) = c; E£7(h) = czh®". Define
o(p, h) and &(p, k) as in (2.1) and (2.3), respectively. Clearly, we have

(5.3) o(p,k) = k'e(p),  &(p,h) = h'é(p).
Assume q
(5.4) 0< f, cf <.

k=1

Then, by Theorem 3.1, Y(-) € [? has a.s. continuous sample paths. Noting
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that for each 2 > 1,a > 0, j > 2,
Ecyép(a)(crér(da) — c,ép((J — 1)a))

oi(a)
_ Eg(a)(6Ja) — &(( - Da))
E¢}(a)

1 2 . 2 .
S+ D7+ (- D™ - 25%)

and
lim ((j + 1% + (j - 1) - 22) =0
Jo®

we see that conditions (2.9) and (2.14) are satisfied. We can also verify that
(4.9) and (4.37) are satisfied. Hence, from Theorem 2.1, 2.3, 4.2 and Remark
4.1, we obtain Theorem 5.1 immediately.

THEOREM 5.1. Let p > 1, {£,(¢), t > 0} be independent fractional Wiener
processes of order vy, 0 <y < 1. Let {Y(#), t > 0} = {c,&,(¢), ¢t > O} _,. Assume
that (5.4) is satisfied. Then we have

(5.5) lim su 1Y (h)llie -
' w0 RE(p)(2loglog(1/h)) "

IY(t +s) — Y(£)ll»

5.6 lim sup sup = a.s.,
(56) h—00<t<10<s<h h?é(p)(2log(1/h))"?

1Y (T)ll;»
(5.7) lim sup ()l =1 a.s.

T—» TYé(p)(2loglog T)"?
and

. 1Y(¢+s) = Y(2)lr
(5.8) lim sup sup - iz =1 as,
T—®0<t<T 0<s<ar a}é(p)(2log(T/ayz))

for any positive continuous function a, with lim, _, . log(T/a,)/loglog T = .

A particular case of (5.7) with ¢, =1for 1<k <d, ¢, =0 for £ > d and
v = 1/2 may be of independent interest.

CorOLLARY 5.1. Let W(¢) = (Wy@),...,W,(¢)), t >0 be a standard d-
dimensional Wiener process. Then we have :

oW (TP
(5.9) limsup( W) )1/2
T-» (2T loglog T')

Z;'i= |m T |p 1/p
(5.10) limsup( I Wi(T) )1/2
T-w (2T loglog T')

=d@ P/ g5.ifl<p<2,

=1"a.s.ifp=2.
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6. Fractional Ornstein-Uhlenbeck processes. Let {Y(¢), ¢t > 0} =
{X, (), t > 0);_; be a sequence of independent Ornstein—Uhlenbeck processes
with coefficients y, and A, that is, the X,(-) are centered stationary Gaussian
processes with

(6.1)  E(X,(s)X\(¢)) = -:—’ exp(—Alt —sl), k=1,2,...,
k

where y, > 0, A, > 0.
The process Y(-) was introduced by Dawson (1972) as the stationary
solution of the infinite array of stochastic differential equations

dX,(t) = =M X, (2) dt + (27,) 2 dW,(¢), k=1,2,...,

where {W,(¢), t > 0f;_, are independent standard Wiener processes. The
properties of Y(-) have been extensively studied in the literature. Continuity
properties of Y(:) were investigated by Dawson (1972), Iscoe and McDonald
(1986, 1989), Schmuland (1987, 1988), Marcus (1988), Fernique (1989, 1990,
1991) and Iscoe, Marcus, McDonald, Talagrand and Zinn (1990). Moduli of
continuity of Y(-) as an [P-valued process for 1 < p < 2 were discussed by
Schmuland (1990) and by Cséki, Csérgé and Shao (1991, 1992).
It is easy to see that

&)1/2 Wk(eZ/\,,t)

{Xk(t)7 t= 0}:=1 and {()‘k ekt , 620

k=1

have the same distribution, where {W,(¢)};_; are independent standard Wiener
- processes. Hence, without loss of generality, we can write

Ve )1/2 Wk(e2/\kt)

62)  X(0) = (~ -y

t>0,k=1,2,...
/\k

e

and keep the path property of Y(-) without change. This relationship and the
notion of fractional Wiener processes lead in a natural way to introducing
fractional Ornstein-Uhlenbeck processes and to studying their path be-
haviour, as we do in this section.

Let {£(2), t = 0} be a fractional Wiener process of order y, where 0 <
v < 1. A stationary Gaussian process {X(¢), ¢ > 0} is called a fractional Orn-
stein—Uhlenbeck process of order y with coefficients ¢ and b if

1 2bt
{X(t),t =0} and {(2) /zg(eth)‘,tzO}

b
have the same distribution, that is, EX(¢) = 0, and

a
(63) E{X(t)X(S)} — 57)_(eZyb(t—s) + e2yb‘(s—t) _ Ieb(t—s) _ eb(s—t)lz‘Y)’

for all ¢, s > 0, where a > 0, b > 0.
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Clearly, {X(¢), ¢ > 0} is the usual Ornstein—Uhlenbeck process if y = 1/2.

In what follows, we will always let {Y(2), ¢ > 0} = {X,(¢), t > 0};_, be a
sequence of independent fractional Ornstein—Uhlenbeck processes of order y
with coefficients y, and A, where 0 <y <1, v, >0, A, > 0. Put

af(h) = E(X,(t + h) — X,(1))”
= k(g 4 (eMh — e Muk) — g2k m2hk),
k

for h >0,k =1,2,....Let p > 1. Define o(p, h), 6(p, h) and §, as in (2.1),
(2.3) and (2.4), respectively. As consequences of our previous theorems, we
have the following results.

(6.4)

THEOREM 6.1. Assume

o0 Vi p/2
(6.5) o< Y (—) < o,
k=1\2%
wo(p,e*)
. _— <
(6.6) j(; . dz < oo,
6.7 “#(pe ) dz < .
(6.7) [ é(pe7)
Then
1Y ()l
(6.8) lim sup (s)ll iz =1 as,
T2 02527 6(p)(2log T)
1Y (Tl
(6.9) lim sup ()l = a.s,

T-wo &(p)(2logT)"?

where &(p) = (Tp_ (/AP /@ PY)E-P/2P 4f 1 <p <2 and d&(p) =
maxkz1(7k/)‘k)l/2 ifp = 2.

THEOREM 6.2. Assume that &(p,h)/h* is quasiincreasing on (0,1) for
some a > 0. If

1/2
(6.10) o(p,h) = o(d’-(p, h)(log Z) ) ash - 0,

then

. 1Y (t +5) = Y(&)l:»
(6.11) lim sup sup — iz =
h—00<t<10<s<h '0(p, h)(2log(1l/h))

If (6.10) is replaced by

1/2
(6.12) o(p,h) = 0(0"(p, h)(loglégz) ) ash — 0,
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then

(6.13) lim su [Y(R) = YOl =1 as
' hoo G(p,h)(2loglog(1/h))" .

THEOREM 6.3. Assume that o(p, h)/h* is quasiincreasing on (0,1) for
some a > 0. If

1 1/2
(6.14) &(p,h)(loglog z) =o(o(p,h)) ash -0,
then
IY(h) — Y(0)ll;»
. li =1
(6.15) noo 8,0(ps k)

If (6.14) is replaced by

1 1/2
(6.16) a'-(p,h)(logz) =o(o(p,h)) ash -0,
then
”Y(t + 8) - Y(t)“lp
6.17 lim sup sup =1 a.s.
( ) h—00<t<10<s<h 8p0(psh)

The corollaries below give specific meaning to our theorems above in
terms of the coefficients y,,A, and of the order y of the fractional
Ornstein—-Uhlenbeck processes involved.

COROLLARY 6.1. Assume
Y p/2
(6.18) 0< ¥ (ﬁ) NP < o,
1

Then we have

: 1Y (£ +s) - Y(O)ler
(6.19) lim sup sup s =1 as,
h—=00<t<10<s<h ['(D, y)h7(2log(1/h))

. IY(R) — Y(0)llir
(6.20) lim sup iz =1 as,
n-o T(p,y)h"(2loglog(1/h))

where
(o \P/2P @-p)/2p
( v (X—) “(22,,) 2P/ 7P , ifl<p<2,
E=1\1%
F(p7 7) = 1/2

Y& y .
— - (27,) 7, ) > 2.

?g(Ak) (214) ifp
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COROLLARY 6.2. Assume vy, =k A, =Fk® where b>0. If b —a >
(2/p) + 2yb, then

IY(t+s) — Y(&)llr

6.21 lim sup sup =1 a.s,,
( ) h=00<<10<s<h [(p,y)h"(2log(1/h))"?

WY(R) — Y(0O)ll;»
(6.22) lim sup (2) — (Ol -1 a.s.

r-o [(p,y)h"(2loglog(1/h))"*
If 2/p <b —a <(2/p) + 2vyb, then

(6.23) y 1Y (¢ +s) = Y(&)lr
. im sup sup o =1 a.s.,
h=00<t<10<s<h 8pA(p’ 'Y)h((b /2 =1/pb

L ¥R YOl
(6.24) hlll}) SPA(p,y)h((”‘“’/2b"1/pb =1, a.s,

where

27 pat@1=2y)b)p/2~-p)
ron - | P L
27, lfp = 2’

o 2-p)/2p
) , ifl<p<2,

1 s
A(p,Y)p = Zj; y—(((b—a)p—2)/2b)—1(2 + (e — e_y)zy ey _ ezyy))p dy.

ProOF OF THEOREM 6.1. Let
(6.25) f(x) =f(y,x) =(e*—e *)> —e®* — ™% x>0,0<7y<]L.
It is easy to see that

(6.26) f(x) +2~(22)” asx—0
and
(6.27) f(x) ~ —2ye 207V% —e=3% g5 x — o,
By (6.3), we have
E(X,(0) Xi(a)} = = 52~ f(Me0).
k

Therefore, (4.5) is satisfied by (6.27). The conclusion now follows from
Theorem 4.1 immediately. O

Proor oF THEOREM 6.2. By Theorem 2.3 and Remark 4.1, it suffices to
verify that

lim sup max max
h—>0 logl/h)<j<1/h k=1
(6.28)  ElXu(h) - X, (0)(Xu(k) — X((G = DM _

i (k)
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and
BTP st s < m ot
(6:29)  El(Xu(h) = X(0)(Xah) = Xu(m)} _
ox(h)oy(jk) -
We have

(6.30) o(h) = %(2 +f(Axh)),

Fi(x) = (@y)((e — e (e" + %) + e B — ™)

= 2ye2*((1 — e 2) Y1 + e72) — 1 + e~ %7*
(6.31) ( )
> 2ye®*((1 —e ) (1 + e %) — 1 + e~ %)
= 2ye?*(e~¥* —¢7%*) > 0 for all x > 0,
f'(x) = 29((2y = 1)(e* — ™) *(e* + e7*)*
(6.32)

+(e* — e %)% — 2ye?r* — 2ye~27),
It is easy to see that
(6.33) f'(x) <0 forallx > 0if0 <y <3.

That is, o2(h) is concave on (0, ) if 0 < y < 1/2. Hence, according to Remark
2.1, (6.28) and (6.29) are satisfied in this case.
We consider below the case of 1/2 < y < 1. We have

E{(X,(h) — X,(0))( X, (Jh) ~ X,((j — 1)h)}
o7 (h)
_ F(JAek) + F((J = 2)Aeh) = 2f((J — 1)A,h)
2(2 + f(A4h))

(6.34)

_ OMR)
2(2 + f(A4h))’
for every h > 0, j = 6, k > 1 and for some (j — 2)A,h < £ < jA,h, by (6.3)
and Taylor’s formula. Clearly, f(x) is an increasing continuous function with

2 + f(x) > 0 for each x > 0. Hence it follows from (6.26) that there exists a
constant C = C(y) > 0 such that

(6.35) 2 + f(x) = min(x2",C) forall x > 0.
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We deduce from (6.32) that
/(%) < 2y((2y — 1)(e* — e™) *(e* + e7%)" + €¥* — 2ye™")

8e—2x
1+ —| -1
(1-e™)

— 2yx —2x\27 26_2x ’
= (2y)(2y — 1)e (1-e"%) (1+1———e_T) -1

<2y(2y - 1)e2vx((1 _ e—2x)2'y
(6.36)

16y(2y — 1)e 20—
<
(1—e2)*™>
64e 21—
= . 2—-2y
(min(x, 1))
—(1—y)x
- Cye -7
= x2—27 )

for all x >0, where C, is a positive constant, depending only on vy. A
combination of (6.34), (6.35) and (6.36) yields that for j > 6, ~ > 0, £ > 1, and

F1(E)(Ah)" 4C,e7PU/PNR . (A, h)?
2+ F(Ah) (JAxh)?™® - min((A,2)™,C)
4Cye_(1_7)(j/2))\kh . ()tkh)%
T P min((A,h)7,0)

4C 227 . g~ =7x
< ———2|1 + sup

= 22
J v x>0 C

(6.37)

This proves (6.28) by (6.34) and (6.37).
In the rest we check for (6.29) in the case of 1/2 <y < 1.For A > 0, j > 6,
k=1,2,..., by (6.3), we can write

E{(X,(h) — X,(0))(X,(jh) — X,(h))}
ow(h)a,(Jh)
_ F(Apgh) = F((J — DAR) — f(Ah) — 2
2(2 + F(Ah))4(2 + F(iAh))*
f(Auih) = F((J — DAgR)
T 22 + £(Xh)) A2 + F(JAR))
f'(E)Ash
2(2 + f(A4h)) (2 + f(JAh))
for some (j — DA h < & <jA,h. '

(6.38)

1/2°
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In terms of (6.31), we have

8(e* — e *)> 71, ifo<x <1,
2(e®D¥(e* + e ) + e 2 — e ifx > 1,

(6.39) - 48 - x2r 1 if0<x <1,
- 4 - e_2(1_7)x, ifx = 1’
< 150x2" " 1e~20-Yx forall x > 0.

Similarly to (6.37), one can arrive at (6.29) by (6.38), (6.35) and (6.39). This
completes the proof of Theorem 6.2. O

Proor oF THEOREM 6.3. This is an immediate consequence of Theorem 2.4
and Remark 4.2. O

ProoF oF CorOLLARY 6.1. By Theorem 6.2, it suffices to show that, as
h -0,

© oy \P/2 /p
(6.40) o(p,h)~hv(Z(A—") (2Ak>”°)
k=1 k
and
(6.41) G(p,h) ~T(p,v)h".

For any 0 < ¢ < 1/2, by (6.26), there exists n > 0 such that
(6.42) (1 —¢)(2x)” <2+ f(x) < (1 +¢)(2x)” for0 <x <m.

- Write
o(p.h)"= ¥ (—Z—) (2 + F(Ah))
_ _7_ p/2
(6.43) - (A) @+ 7(hh)

+ ¥ (ﬁ) (2 + F(Ah))”

Ayh>n Ak
=3, + 3.
From (6.42), we get

v \ P2
@-or T[] @0
’ AkhS'n Ak
(6.44)
Vi p/2 »
<3, <(1+e)h?r Y, (X—) (2x,)7".

Ayh<n k
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As to 3,, we have

(6.45) S, <2r/? Y

( Ya )p/2 oP/2pYpP
—_ <
Ayh>n

p/2
%) g,
Ap

"’ )‘k>77/h(/\k

Since

Vi p/2 > [y, p/2
Yy (—) (2)\k)yp -y (——) (2)tk)7p ash—-0
Ah<n VAR =1\

and

Ye p/2
Y (7\—) NP =o0(l) ash—0,
Ap>n/h k

we conclude from (6.43)-(6.45) that (6.40) holds true. Similarly, we have
(6.41). It follows from (6.40) and (6.41) that (6.10) and (6.12) are satisfied and
that ¢(p, h)/h” is quasiincreasing on (0, 1). This proves (6.19) and (6.20), by
Theorem 6.2. O

PROOF OF COROLLARY 6.2. When b — a > (2/p) + 2vyb, it is easy to see that
(6.18) is satisfied. Therefore, (6.21) and (6.22) hold true by Carollary 6,1. We
next deal with the case

2 2
(6.46) — <b—-a<—+2yb.
p p

Noting that

1 .o
A(p’ ‘)’)p = ‘b—'/;) y_(((b~a)P—2)/2b)—l . (2 + f(y))p/z dy’

when f(y) is defined by (6.25), we see that
(6.47) 0<A(p,y) <,

by (6.26) and (6.46).
We first show that

(6.48) o(p,h) ~ A(p,y)h®=a/20=1/pb a5 b — 0,
By (6.26) again, there exists a positive ¢, such that

(6.49) f(x) +2<8x% forall0 <x < ¢,.

For any 0 < ¢ < min(ey, 1/2), write

p/2
o= T (2] @+ roun)”

Akh_<_£ k

Ya p/2 . /2
(6.50) tr (XZ) 2+ f(Mh)

. (ﬁ)m@ )

Ah=1/e \ Ak
= Il + Iz + 13.



1P-VALUED GAUSSIAN PROCESSES 1989

Using (6.49), we have
(6.51) I, < 8PhP Z EUa+@y=Db/Dp o Cg@+2byp=(b=a)p)/2b . p(b—a)p=2)/2b
koh<e

where, and in the sequel, C denotes a positive constant, depending only on a,
b, p, and vy, whose value may be different from time to time. As to I, we can
obtain

(6.52) I,<2° Y kCar/2 £ Ceg®map=2)/2b . p(b=a)p=2)/2b
k®h=1/¢

Since f(x) is an increasing continuous function, we have

Y RCor2(2 4 f(kbR))P?
e<kbh<1/e

I

(653)  ~ [Py Goawr(a 4 f(y0h))"* dy

(e/h)l/b
h((b—a)p—2)/2b o-1/b /2
—(((b—a)p- - p
= — ) y~(b=a)p=2)/2b) 1(2 +f(y)"" dy,
€

as h — 0. Now (6.48) follows from (6.50)-(6.53) and the arbitrariness of e.
Correspondingly, one can derive

0(hmin(%((b-a)/2b)-(2-P)/2Pb) . logl , ifl<p<2,
(6.54) &(p,h) = h
O( h™intr (b-a)/20)) if p>2

Consequently, (6.14) and (6.16) are satisfied by (6.48), (6.54) and (6.46), and
our conclusions, (6.23) and (6.24), follow from Theorem 6.3 and (6.48). The
proof of Corollary 6.2 is now complete. O
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