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DECOMPOSITION OF DIRICHLET PROCESSES AND ITS
APPLICATION

By T. J. Lyons anDp T. S. ZHANG

Edinburgh University

We extend the forward-backward martingale approach to Stratonovich
integrals developed by Zheng and Lyons to the general context of Dirichlet
spaces. From this perspective, it is clear that the Stratonovich integral of
an L2 1-form against a Dirichlet process is well defined, coordinate invari-
ant, and obeys appropriate chain rules.

The paper continues by examining the tightness and continuity of the
mapping from Dirichlet forms to probability measures on path space. Some
positive results are obtained for a class of infinite-dimensional diffusions.

0. Introduction. It6’s stochastic calculus has been extremely well devel-
oped in the context of semimartingales. Any function on Euclidean space
composed with Brownian motion gives rise to a semimartingale process pro-
vided it has two derivatives (or more precisely is in the domain of the Laplace
operator into finite measures). However, from many perspectives one would
like to understand the process one obtains when the function is in W, , and
has only one derivative; in this case the process will not in general be a
semimartingale. This has directed attention to the stochastic calculus of
Dirichlet processes, an extension of the notion of semimartingale. This study
of the stochastic calculus of Dirichlet processes is also important in the study
of diffusion processes corresponding to uniformly elliptic second-order differ-
ential operators in divergence form with measurable coefficients, for in this
case the coordinate functionals are not always in the domain of the infinitesi-
mal generator and so the processes will not in general be semimartingales.

The basic framework for understanding Dirichlet processes is the Dirichlet
space developed by Fukushima [6]. In this context, let {X,, P} be a nice
symmetric Markov process on a state space X which is a locally compact
Hausdorff space with countable base, and let (&, 2(&)) be the associated
Dirichlet space. For every u € 9(&£) let i be a quasicontinuous version of «.
Fukushima [6] showed that A = @#(X,) — @#(X,) is a Dirichlet process and
that Al“! admits the decomposition

(0.1) A = M1 + N

The process M!! is a martingale additive functional (a.f.) of finite energy and
the process N!*! is a continuous a.f. of zero energy. The process N/*! will only
be of bounded variation if « is in some domain of the infinitesimal generator,
and so generally Al“! is not a semimartingale. The theory of semimartingales
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cannot be used directly to define stochastic integrals against Al“]. By using a
particular linear operator and (0.1), Nakao [11] gave a definition of the
Stratonovich integral in this context and obtained some applications. On the
other hand, under the assumption that the Markov process X is conservative,
Lyons and Zheng [10] obtained another expression for Al Let P (-) =
[P, (-)m(dx) be the measure on paths corresponding to the law of X condi-
tional on X, having distribution m (not necessarily finite). Suppose m is the
canonical invariant measure for the Dirichlet space. Then

(0.2)  AM=iM -3 M -M®M,|, 0<t<T, P, ae.

Here M[“! is an (%, P,,) martingale where %, = o(X,,0 < s < ¢), and M[* is
an (&, P,,) or backward martingale where & = o(X,_,, s < t). The decompo-
sition (0.2) incorporates important cancellations pathwise and allows useful
estimates to be deduced even in situations where the original process was a
semimartingale (see Takeda [17]).

In this paper we explain in a general context how the martingales can be
used to define the Stratonovich integral of a forward and backward predictable
process against the Dirichlet process. This approach to constructing integrals
first appeared in [10], but on that occasion the forms contracted with the paths
of X, were concretely chosen.

We prove that all the integrals studied in this paper fall into the class of
Dirichlet processes. Furthermore, the integral can be constructed as a limit of
Riemann sums, making the definition of a Stratonovich integral clear and easy
to understand pathwise. In particular, we obtain the chain rule.

Another purpose of this paper is to give a criterion for convergence of
certain diffusion processes on infinite-dimensional space. Assume H is a
Hilbert space densely and continuously embedded in a Hilbert space X; X acts
as the state space for the process associated with the diffusion form &(u,v) =
J{Vu, A(z) Vv)gu(dz) (see the details in [3]). Under a reasonable condition we
obtain a tightness criterion for the measures on path space C([0,») — X)
associated with the Markov processes of a family of diffusion forms. In some
special cases, we identify the limit process.

The paper is organized as follows: In Section 1 we state the martingale
decomposition of the Dirichlet process and prove that the decomposition is
unique in a certain sense. In Section 2 we develop the Stratonovich calculus
for Dirichlet processes. The criterion for tightness of the diffusion processes on
infinite-dimensional space is given in Section 3. Finally, we give another
approach to the construction of diffusion processes on Hilbert space.

1. A martingale decomposition. Let X be a locally compact Hausdorff
space with a countable base, and let m be a positive Radon measure on X
such that supp[m] = X. Let & be a regular Dirichlet form on L%(X, m) with
the local property, and let 2(£’) be the domain of & as described, for example,
in [6]. By [6], we know that there is a diffusion process {Q, #, X,, P,, x € X}
associated with (&, 2(&)) so that if L is the unbounded self-adjoint operator
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on L%(X, m) defined by

g(fng):(_Lf,g)Lz(X,m)’ fe“@(L)’ge—@(g)9

then L is the generator of the transition semigroup of X on L% X, m). For
any additive functional A, of the Markov process, the energy of A is defined
by the formula

e(A) = lim iEm(Aﬁ).

t—0 2t
Here E,(A?2) denotes the expectation of A% with respect to P, (). Let

A#={M; M is an a.f. such that, for each ¢ > 0,
E[M?2] < 4o and E[M,] =0 q.e. x € X}.

If M € .#, then M, is a square-integrable martingale additive functional. We
say A, is a continuous additive functional of zero energy if A, is an element of
the following family:

N, ={N: N is a continuous a.f., e(N) = 0,
E [IN,]] < 4+, q.e. for each t}.

For f€ 2(&) let f denote a quasicontinuous version of f and let AL/l =
f(X,) — f(X,). Because [ is unique up to sets of capacity zero, AL/! is uniquely
defined for all ¢ P -almost surely for quasi-all x. Then it is known by Fukushima
[6] that the additive function A!/1 can be written as

(1.0) AT = MV 4+ NI Mifle #, NMf1eN,,

extending the remark that if f€ 2(L), then Al/! is a semimartingale. We
now prove (in a slightly more general context) the forward-backward martin-
gale composition for Al*! given in [10]. Consider the stochastic process on a
fixed time parameter space [0, 1]. Set &, = 0(X,, s < t), 9_; =0(X,_,, s<t)
The -martingales and &,-martingales are called forward martingales and
backward martingales, respectively. For f e 2(&), the following decomposi-
tion holds.

THEOREM 1.1. Assume that X is conservative. Then, under P,, and for any
f € D(&), there exists a continuous forward P, -martingale M, [ and a continu-
ous backward P, -martingale M/ which satisfy the following conditions:

O A(X) - F(X,) = M/ - 3 (M{ - M{_).
G) Nf =M/ + (Mf—-M{_) is a continuous additive functional of zero

energy. _ _
(iii) M/ and M/ are square P, -integrable, M{ = M{ = 0.

Conditions (i), (ii) and (iii) uniquely determine the martingales.
Proor. Existence. If fe D(L), it is well known that

(1.1) M/ = f(X) - f(X,) - [TA(X,)ds, 0s<t<1,
0
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is an (%, P,,) square-integrable martingale. Since L is a self-adjoint operator
on LA X,m), {X,} and {X,_,, 0 < ¢ < 1} are identical in law under P,,. So it
follows from (1.1) that

J— - t P -
(1.2) M/=f(X,_,) - fOLf(Xl_S)ds—f(Xl), 0<t<l,
is an (&, P,,) square-integrable martingale. Combining (1.1) with (1.2), we see
that

(1.3) M/ =f(X,_,) - (N1 - NIL) - £(Xy),
(1.4) M/ + (M{-M/[_,)=-2N},
(1.5) f(X,) - f(Xo) = sM/ - 5(M{ - M{_,)

and, furthermore,
[ (M7, M7y —(MT, M )] dP,
Q

(1.6) _ U<Mf,ﬁf>l — (M, Hf)o] dp,

=28(f, f).

If fe 9(&), one may approximate it by a sequence f, € Z(L) so that
&(f, — f,f -+ JIf, —flzdm—>0 By (1.6), we can define M/ =
lim, ., Mt », where the limit of M/» is taken in L2(Q, P,) and s1m11arly
M/ =lim,_, M/~ On the other hand, from Lemma 5.1.2 of [6] we know that
there exists a subsequence {n,} such that lim, fn (X,) = f(X,) uniformly
on [0,1], P, -a.s. Therefore (1.5) holds for any f € _@((f) Since we use the
same limit procedure to get M’ as Fukushima [6], it is obvious that M/ = M/]
[as introduced in (0.1)], and (1.4) holds for f € 2(&). So (ii) is satisfied and the
proof of existence is finished.

Uniqueness. If there are two systems {"M/,'M'},(M ' *M'} satisfying
()-(iii), then

(1.7) F(X,) - f(Xo) ="M/ - 3['M[ + ("M —'M{_,)|,
(1.8) F(X) = F(Xo) =*M[ - 3|"M/ + (BEf -*H{_,)|.

Thus, "M/ —2M/ = 2('N/ - Ntf ) is a continuous martingale of zero energy.
Consequently, "M/ =2M/. Letting ¢ = 1 in the equalities (1.7) and (1.8), we
get

Mf ="M =M{ + 2] f(X,) - £(X)].
Therefore, M/ ="M/, 0 < ¢t < 1. The uniqueness holds. O

REMARK 1.2. It is possible to decompose f(X,) — f(X,) into a difference of
martingales in a number of ways. Condition (ii) forces the uniqueness.
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ExampLE 1.3. Let X =R,

df dg 1
éo(fag)= Raadﬂ', /J'=e_x2/2‘/2—7;dx,

D(&) = {E(f, f) < +», fe LA R: )}

In this case, as we know, {Q, &, X,, 0,, P,, x € R} is the Ornstein-Uhlenbeck
process, that is,

Xt=X0+B,—f0thds,

where B is standard Brownian motion on R. Let f(x) = x; this allows one to
decompose X. The forward martingale part M, of X is B,=X, - X, +
[¢X, ds. Using symmetry, the backward martingale is given by

M,=X,_,-X - [ 'X,ds+ ['X,ds.
0 0
One may readily check that X, — X, = 1M, — ¥(M, - M,_),0<t < 1.
2. Stratonovich calculus for Dirichlet processes

2.1. The definition of Stratonovich integrals. In this and the following
sections, we fix a Dirichlet space (&, 2(&), LA X, m)). Let {Q, &, X,,6,, P,,, P,,
x € X} be the associated diffusion process. Assume that X is conservative and
that it satisfies the “champs de carrée.” That is to say, there exists a linear
subset C; of 2(&) N Cy(X) and a quadratic functional f— f from C, into
the positive cone in L2(X, m) with the following properties:

(i) Ciisacoreof (&,2(&));

(2.1.1) (ii) 28( fh, f) — &(h, £?) = fhfdm, for any h € C,.

For f, g € C,, we define a map I'(f, g) = :(f + g — (f — g) from C; X C; to
LY(X, m). Then (see [4]),

(2.1.2) lehll“( f, fydm <lkl£(f, f), f, heCy.

Let h € 9(&) N L. By Theorem 1.4.2(ii) in [6], one can choose a sequence
{h,} so that

&,
h,—>h, h,eCylh,l.<M.

It follows that fh, converges to fh weakly in the Hilbert space (&}, 2(&7)
[where &(f, g) = &(f, &) + a(f, &)r2x, m)), and h,, converges to h in m-mea-
sure. Replace A by Ak, in (2.1.1) and let n — «. Then (2.1.1) holds for any
h e 9(&) N L”. From (2.1.1) and (2.1.2), we know that the form I is uni-
formly continuous and so extends uniquely to a positive symmetric bilinear
continuous form from 2(&)) X 2(&)) to LNX, m).
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ExampLE 2.1.1. Let X = R¢,

& i fj —af—agd (&) D C(R?
Whenever & defines a Dirichlet form on L%(R¢, dx) then
of og
r =2 i .
(f’g) i,Zja”axi axj

For f € 2(&), let MT and M/ be, respectively, the forward martingale and
backward martingales described in Theorem 1.1. We have remarked that the
martingale M’ can be identified with the additive functional M/} and so
there is a smooth measure u s, corresponding to the bracket (M Iy of the
additive functional M’. A function f is a local Dirichlet function [ie., f€
2,,(&)] if one can find f, € 2(£) and an exhaustion of X by open sets U,
such that f, =f on U,.

We have the following proposition for u /.

ProposiTiON 2.1.1. Let f € XE),.. Then sy is absolutely continuous
with respect to m; moreover,

d
—;}% —T(f, f) whenfe 9(&).

Proor. By Theorem 5.2.3 in [6] and by (2.1.1), it is easy to see that, for
fe 2&)NL, pyy <m and du,,/dm =T(f, f). However, for h € B

and u, v € 2(&), the following inequality holds:

(2.1.3) (\/jxhdu<u> - \/thd“o»

(See the proof of Lemma 5.4.6 in [6].)
Given f e 9(&), we take a sequence {f,} € 2(&) N L* such that &(f, —
f, fn —f) = 0as n — « Then (2.1.3) and the property of I' yield

2

< 2|kl (u — v,u — v).

hd = lim | hd = li hI'(f,, f,)dm = | RI'(f, f) dm.
[hdu s, = lim [ hdu,, = lim [ hT(f,, f,) dm = [ BT(F, £)dm

n—o

So ., is absolutely continuous with respect to m and du ;,/dm = I'(f, f).

If fe 2(&), and m(K) = 0 (K is a compact set), we choose a relatively
compact open set U D K and [, € 2(&) with property fi; = f on U. Then
por(K) = p . (K) = 0. Therefore, p ., <m. O

This yields the immediate corollary:

COROLLARY 2.1.2. Forfe (&), (M), = [{T(f, fXX,)ds.
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Using the symmetry of time reversal, we also obtain

(2.1.4) (MY, = fotr( £, F)(X,_,) ds.

Hereafter, we denote u,, by 1, M’ by M, M’ by M, and so forth, unless
confusion would arise.

Let u be a bounded measurable function on X and let U” be open sets
such that U” 1 X and u|y» € LA X, u).

Define T, = inf{t, X, ¢ U"} and Tn = inf{¢t, X,_, € U"}. We have

B[ [ ) dnn| - B[ [Mux)r(r £,
(2.15) -° 0

< [ B X)xun(0)T(S, [) dm < +o

So the It6 integral [ju(X,)dM, is well defined; by symmetry, so is
f(fu(Xl—s)dMs' )

DerFINITION. The Stratonovich integral of u(X,) with respect to the
Dirichlet processes f(X,) is

(2.16)  [u(X)edf(X,) 2§ [u(X,)dM, - é/ll_tu(xl_s) dM,.

The use of Stratonovich’s name is justified by Theorem 2.3.1. It is obvious
that the definition can be extended to the case where u is a time-dependent
measurable function satisfying [J/xu®(x,8) dtdu ,, < .

2.2. The properties of the Stratonovich integral. In this section we study
the Stratonovich integral and obtain some useful properties.

DeFINITION 2.2.1. An R'-valued stochastic process A, is said to be of
0-quadratic variation if

(2.2.1) lim Y, (4,, —A,) =0 inP

m?

for any sequence {7"} of partitions of [0, 1] with §(+") — 0.

DeriNiTION 2.2.2. We call the stochastic process Y, a regular Dirichlet
process if the following decomposition holds:

(2.2.2) Y,=M, +A,.

Here M, is a martingale and A, is of 0-quadratic variation.



DECOMPOSITION OF DIRICHLET PROCESSES 501

First we remark that the Stratonovich integral [{u(X,)o df(X,) is bilinear
with respect to z and f. The main result of this section is the following.

TueoreEM 2.2.1. If u € LX(X, du ), then [ju(X,)-df(X,) is a regular
Dirichlet process and the martingale part is [{u(X,)dM/.

Proor. Since [qu(X,)odf(X,) = 3 [fu(X)dM[ — L1 u(X,_,)dM], it is
sufficient that N, = [fu(X)dM[+ ! ,u(X,_,)dM[ is a process of zero
quadratic variation. We divide the proof of this fact into four steps.

Step 1. Assume u € 9(&) and f € D(L). By Theorem 1.1(ii),

— 1
Mf=M[,- M- 2[1_th( X,) ds.

Now, take a sequence {r" = (¢)} of partitions of [0, ¢] such that the mesh
size 6(r") = max(¢,, — ¢]') converges to 0. For simplicity of notation, we
write ¢; for ¢/', M, for M/ and M, for M/, unless it is otherwise specified. Put
"=y =1-1¢;,...,8 =1). Then {#"} is a sequence of partitions of [1 —
t,1] and 8(7*) — 0.

Because u € 2(&£) we may assume that it is quasicontinuous and, in
consequence, u(X,) is continuous for all ¢ with probability 1. We write

Zn u(Xl_ii—l)(Mfz - Mf;—l)

= ;u(Xl_fl_l)(Ml—f, - Ml—fz—l)

—2Xu(Xy ) [ ULA(X,) ds

(2.2.3) )
= Z"u(Xtt+l)[Mtt+l N M’fz] N ZZnu(Xtin)'/;.HlLf(XS) ds

_ Znu(Xti)[Mti+l - Mt,] - 2;u(XtH1)ftti+1Lf(Xs) ds

- Z(u(XL‘iH) - u(th))(Mtin - Mti)'
Since u € 2(&), we have that

m*

(224) lm ¥ (u(X,,)-u(X,))(M,,  -M)=(M* Ml inP

"
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Hence, it follows that

1 _ . . _
%L_tu(xl_s) dM, = r}lﬁggu(xl_&_l)(% -1, )

= _‘21'31_1}:0 Zu(Xt,)(Mt,“ - Mt,)
— lim ¥ tﬁ)/ “ILF(X,) ds

—%’}I_I)I:o Z(u(XtH-l) - u(Xfi))(Mtin - Mti)

-~ [u(X) aM, - [w(X)LA(X,) ds = $O0%, MO,
Consequently,

fotu(Xs)odf(Xs) —fu(X)dM ([u(X)dM +[ u(X1 ,) dM,

=ju(Xs) dM, + fu(Xs)Lf(Xs)ds + XM, MY,
0 0
is a regular Dirichlet process.

Step 2. Assume u € 2(&) N L*, f e D(&). Choose f, € D(L) such that
E(f,—f, f,—f)— 0. Consequently, I'(f,, f,) = I'(f, f) in LY X;m). Put
M! = M[», and so forth. Let

t 1 —
No= s fu(X,)dM, + 5[ u(X,_,)dM,,

t 1 —
NP =g [w(X)dMy + 5[ u(X,-,) dM).

As before, we must show that N, is of 0-quadratic variation. Let {r™} be a
sequence of partitions of [0, 1] such that 6(+™) —» 0 as m — «. Then

Z(N,H N,)" <22[(N W N = (N, =N +2Z( - N2
However,

B[ T, - M) - (v, =N |

éZ([“‘u(Xs)dMs - f”“u(Xs)dMs)z

+1 m(fl

T

“u(X,_,)dM, - / u(x1 s)dM"”

ty1
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2

IA

2
e x|

1_t1+1

! E(ft'“u(Xs) dM/[~f

T i

IA

% mE(‘/;tHluz(Xs)r(f_fn) f_fn)(Xs) dS)

T i

LB D - £ 85

tiv1

< B[ [ (ROT(F~ fo £ F)(X) ds)

= [@@T(f = o = f)(x) dm,

and by our choice of f, this goes to zero.
So for ¢ > 0,

P(Z (M, ~N) > ]
(225) < ([ (=1 - 1)) dm

+ P

&
(N2, =N >

T

Letting m — «, and then n — « in (2.2.5), we get that N, is of 0-quadratic
variation, that is,

[ tu( X,)odf(X,) isaregular Dirichlet process.
0
Step 3. Fix ue Z(X)NLA(X,m), f€ 2&). Then Pu € 9(&) and

lim,_, o P,u = u in L% X, m). This shows that a sequence {«,} can be chosen
satisfying u, € (&), lu,ll. V llull. < A, lim,_, qu, = u (m-a.e.). Hence,

(2.2.6) lim [ (u, - u)’T(f, f)dm = 0.
n—oowo’x

Put

t 1 —
N=zfw(X)dM, + 3] w.(X,,)dM,,

t 1 —
NS =g [ un(X)dM, + 5[ u(X,,) dM,.
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Let {r™} be a sequence of partitions of [0, 1] with 8(+™) — 0. Then

B 21N~ M)~ (v, 8]
= %ZME(];tt+l(u(Xs) - un(Xs)) dMs)

+%2E(/1_tl (u(Xl—s) - un(Xl—s))dMs)

< %ZmE(/:‘“(u(Xs) — u,(X,))T(f, f)(Xs)dS)

(X)) — u (X)) (X ) ds)

1+

+1 ZE(jll
< B( ['u(X,) — w (X)PT(F, )z as|

< [ (w(x) = u,(2))’T(f, £)(x) dm.

Thus, for £ > 0,

P(TZm;(NtM - N,)*> g)

4 €
S 5[ w0 ~w, P TF, £y dm o+ P SN, - N> 5 .
First let m — . It follows that
lim sup P(Zm:(Ntm - Nt,)Z > s) < ;[X(u(x) - un(x))zf‘( fy F)(x)dm.

Then, let n — «. We have

lim P(Z(Ntm -N,)*> s) =0,
that is, [fu(X,) df(X,) is a regular Dirichlet process.

Step 4. Fix u e L*X,u.;), f€ 2(&). Choose a sequence {F,} of
compact sets such that F, 1 X. Set u, =(((—n) V) An)x,. Then u, €
#,(X) N LA(X, m), and

[ (#(x) = u,(2)’T( £, £)(x) dm > 0.



DECOMPOSITION OF DIRICHLET PROCESSES 505

Set

t 1 —
No= [ w(X)dM, + 3 [ u(X,,) dM,,

N = [un(X,)dM, + 3 [* u,(X,_,)dM,.
0 1-¢

By the same method as in Step 3, we can conclude that N, is of 0-quadratic
variation and [{u(X,)e df(X,) is a regular Dirichlet process. O

COROLLARY 2.2.2.
< [u(X,)-df(X,), [‘v(&)odg(&)) = [u(X,)u(X,)T(f,8)(X,) ds,
0 0 0
forf, g € 2(&), u € LAX: ppy) and v € LAX: p ).

Proor. Let

N} = [u(X,)edf(X)) = [u(X,)dM],

NZ = [o(X,)odg(X,) = [w(X,) M.

Then N and N? are of 0-quadratic variation and

<f0tu(Xs)°df(Xs),fOtv(Xs)odg(Xs)>
_ </:u(Xs) dm/, O‘U(Xs) de> + <f0tu(Xs) M, Nf>

+ <N [v(X,) de> +(N} NP
0
It is not difficult to show that
([fu(x) amf, Nz = (N2, ['o(X) dbig) = (NN =0, Prae.
0 0

For instance, to show that ( [(u(X,)dM/[, N?) = 0, let {r"} be a sequence of
partitions of [0, ] such that §(+") — 0. Then,

E
(2.2.7)

T i

Z (fti+1u(Xs) dMsf)2

_ E(/:u2(XS)F( f, F)(X,) ds

< [uP()T(f, £)(x) dm < +o.
X
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For any ¢ > 0, we have

2
P (Z(ft’“u(Xs) dMsf)(Ntfﬂ—Ntf) > e
T" t;
t 2 2
<P Zﬂ((l;'l“u(Xs)dMsf) Zm(M,?“_Nt?) > €
t 2 2
<P Z(fi“u(Xs)dMsf) (N2, - N2) >e,
(2.2.8) A ™
2
Z(ft‘”u(Xs)dMsf) sM)
" t;
. 2
+P Z(f‘”u(Xs)dMsf >M)
T t

1 . .
+ —M/Xu (x)T(f, f)(x) dm.

sp(T(vz,-m)'> o

First let n — «, then let M — « in (2.2.8). It follows that

<ftu<Xs>dMsf, Nf>= lim ¥ [*u(X,) dM{(N2, - N2)=0. O
0 n—ow nJt

We have defined the Stratonovich integral of u with respect to f(X,).
Moreover, the map can obviously be extended to the linear space H of formal
linear combinations h = Yu ; dg;, where u; € L(X,m) and g, € 2(&). It is
an important but easy observation that the mapping h — ¥; [ou AX) dME is
an isometry if we impose the inner product

(h,K) & [ ¥ u;u;T(g;, 8y) dm
JsJ'
on H, and use the L%, P,) norm for the martingale. It follows that the
integral and martingale decomposition

Jh(X)odX, = T [u;°dg;(X,)
= %(Mt - (Ml - Ml—t))’

have meaning for any element of H (the completion of H, in { , )). One can
view H as the space of L? differential forms on X. Some caution is required
because if w is a differential form on a manifold M, then there are many ways
to write it as a sum {Lu; dg,}. However, one readily checks that distance
between two such sums with respect to the inner product ( , ) defined here
will be zero if the Dirichlet space arose from a uniformly elliptic operator.
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As a corollary, one learns, for example, that if X, is a uniformly elliptic
diffusion on R2, then the area integrals [(XdY — Y dX) exist from quasi-every
starting point. To show that the area swept out about the initial point of the
diffusion is also finite and well behaved, one observes that

J(X = X,)dY - [(Y - Y,)dX
(2.2.9) t t
= (fOXdY— fOYdX) —X,(Y, - Y,) + Yo(X, - X,);

the first right-hand expression makes sense for all ¢ and almost all X, Y,; the
second right-hand expression makes sense for all X,,Y, and all £. The
theorem of this section cannot be used directly because the differential form w
integrated in the left-hand side of the expression is not backwards predictable.

2.3. Pathwise approximation to Stratonovich integral. In this section, we
prove that the Stratonovich integral [[u(X,)odf(X,) can be approximated
pathwise. Let 7™ be a sequence of partitions on [0, ¢] with §(7"*) — 0. Assume
uel¥X:u ) N (&), f€ 2(&). We have the following main result.

THEOREM 2.3.1.

[u(X,)°df(X,) = lim ¥
0 n—o 3

inP,.

u(XtiH)z-l- u(Xti) ( f(Xti“) — f(th))

To simplify notation, here and in what follows we leave the dependence of ¢,
on n implicit. Convergence is interpreted as convergence in P,,.

Proor. Let M/ be the backward martingale part of u(X,). Denote M/
and M/, respectively, by M, and M,. From the decomposition of f(X,), we

have
Z u(XtH»l) 2+ u (Xti)

(F(X.,.,) = F(X)s)

1o u(X,,) tu(X,)
= E Zn : 2 (Mti+1 - Mti)
w(Xy,) tu(Xy) = o
2 Z — 9 : (Ml—ti _Ml—t,H)'
Denote this expression to be 11 — 11}, where
Iln _ Z u(Xti+1)2+ u(Xti)

- Du(X)(M,., M)+ 5 T(u(X,,) - w(X )M, , - M,).

"

(M, - Mt,—)

i+1
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Since u, f € 2(&), we have
lim I} = lim Yu(X,)(M, - M,)
n—oo n—o o

+%r}l_l’ﬁ° Z(u(Xtiu) - u(Xti))(Mti+1 - Mtl)
= ,[tu(Xs) dMs + %<Mu, Mf)t
0

- /:u(Xs) dM, + %[Otr(u, £)(X,) ds.

By an essentially symmetric argument,

n— o

. 1 — — = o
lim I} = fl_tu(Xl_s) dM, + %[(M“,Mh - <M“,M>1—t]

= fl u(X,_,)dM, + %ftl“(u, £)(X,) ds.
1-t 0

Consequently,

lim Z u(Xti+1) + u(Xt,)

B o 2

(F(X..) — (X))

- 310 - Jim if

L 1 —
- g fu(X)aM, - 5 [ u(X,_,)dM,

= [u(X)edf(X,).

The theorem is proved. O

Set 7, = inf{¢ > 0, X, € G°}. For a compact set G, we have the following
corollary.

CorOLLARY 2.3.2. Ifu,=u, andf; =f, on G, then
fotul(Xs)odfl(Xs) = /:uz(Xs)ode(Xs), t<1g, P -a.e.
Suppose u € D(&) N LA X, pfy), [ € D(&). Then define
(2.3.1) /:u(Xs)ostfé /Otu(Xs)odf(Xs) - /:u(Xs)dMsf— L(M®, M7,

We call [(u(X,)odN/[ the Stratonovich integral of u(X,) against the zero
energy process N7,

COROLLARY 2.3.3.

u(X, )+ u(X,
(2.3.2) /tu(Xs)ostf= lim Z ( tl+1)2 ( t,) (Ntf
O n—w ‘rn

- N/).

1+1
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ProOF. Since

X +u(X
Z u( tl+1)2 u( tz) (Ivt{;l _le)

T

(2.3.3) _y U

™

Xt,+1)2+ u(X,) (F(X.,,) - f(X.))

u(X + u(X
— Z ( tz+1)2 ( t;) (MtH-1 _ Mti),

"

by Theorem 2.3.1 and (2.3.3), it is not difficult to see that (2.3.2) holds true. O

REMARK 2.3.4. Note that the definition of the Stratonovich integral here
and Nakao’s definition in [11] are consistent. In fact, recall

(234) [w(X)odf(X,) =3 [u(X,)dM! - L[" u(X,_,)dM],
0 0 1-¢
and Nakao’s definition,
(2.3.5) [u(X,)odf(X,) =u M/ +T(u M),
0

Here I' is a special functional; see the details in [11].

It is obvious that (2.3.4) and (2.3.5) are the same when u € 2(&£), and
fe 9(L). For u € 2(&) N LAX,dpn), f€ 2(&), by a limit procedure and
the properties of the two definitions, we can see that they are also equal.

2.4. It6’s formula for Dirichlet processes. In this section we give a chain
rule for Dirichlet processes. Take u,...,u, € 2(&),. We can assume, by
modification on sets of capacity zero, that they are quasicontinuous. If ® is in
C'(R™), then it was shown in [10] and would easily follow in the more general
context introduced here, that the usual change of variable formula holds, so
that

cD(ul(Xt)1 cees un(Xt)) - CI>(u1(XO), cees un(XO))

241 oo 0D
4D = L[5 (X)edui(X,).

l

From this, ®(u(X,),...,u ,(X,) is a Dirichlet process. It is interesting to
express its 0-quadratic variation part in terms of those for u,. In the case
where ® is C2, this can be done explicitly as the following theorem of Nakao
[11] shows. We present two proofs here. The first shows that the result follows
easily from (2.4.1). The other is a proof closer to the classical approach.
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THEOREM 2.4.1. If ® € C%(R"), then the following holds:
D(uy(Xy),. . un(X)) = P(ur(Xo), .., u, (X))

oo
= L [0,(ui(X,),...,un(X,)) M
170
2.4.2 noo
( ) +Z[ch,.(ul(xs),...,un(Xs))odN:i
1
t
FEE [0 (X, (X)) KM, M),
l’j
Here
o i d @ "
i(xl""’xn) - axi(xl’“"xn) an ij - axiaxj(x17'~-’xn)‘

FirsT PROOF. Let 7™ be a sequence of partitions on [0, ¢] with §(+™) — 0
as m — +o. From the assumption ® € C2(R™), it is known (see, e.g., [6]) that

D;(uy(x),...,u,(x)) € 2(&) foreachi <n.
Using the fact

n d
M!(uy,...u,) =Y, /t%(ul(Xs),...,un(Xs))dMs“z, for y € C}(R™)
j=17009%;
(see [6]), together with Theorem 2.3.1 and (2.4.1), we have
Puy(X,)s s un(Xy)) — P(uy(Xo), ..., un(Xo))

no O,(uy(X, )so o un(X,,)) + Oiuy(X,)s o un(X,))
2

X (ui(th+1) - ui(th))'

Splitting the sum, this equals

CDi(ul(thﬂ), cee un(XtJ_“)) + CI>i(ul(th), e un(th))

s m — m 2
i=1

X (M — M)

Jj+1
.\ i m ¥ CDi(ul(thH),...,un(th“)) + d>i(u1(th),..., un(th))
i=1M7® om 2
X(Nt;‘-:-l - Mul)
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Using Corollary 2.3.3, this becomes

Y. lim Z’n:d>i(u1(th), ooy un(X,j))(M“‘

12
ti+1

- Mtl;i)

x(M:, — M)
+ é[otcp,.(ul(xs),...,un(Xs))odN:i.
Identifying the limits with the It6 integral and simplifying, we obtain,
i§1 /:(I)i(ul(Xs)’ cs (X)) dMy
n

+3 Y (M) P,

i=1

~

+3

d)i(ul(Xs), e un(Xs))o dN}i
i=1"0

= iél j:q)i(ul(Xs)’ cee un(Xs)) dMsul
+ i;[;@(ul(xs),...,un(Xs))ostui

t
FEE [0, (0 X,), o 0, (X)) M, M9,
l"]
This ends the first proof. O

SEcoND PROOF. For simplicity, we only deal with the case n = 1. First of
all, we note the fact that u (X,), i = 1,...,n, is a continuous process, because
u; is quasicontinuous and X, is conservative. Since u;, i =1,...,n, are
bounded, we can assume that ® € CZ(R). Take a sequence 7" of subdivisions
on [0, ¢t] with 8(7™) - 0. By Taylor expansion,

D(u(X,)) — P(u(X,)) = §[d>(u(Xti+l)) - o(u(X,))]

(24.3) = DX (X))~ u(%)

D Ouu(X,)(1(X,.) ~u(X,))

—I"+ 1
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Here u( X, ) is a random intermediate point between u(X Jand u(X, ).
Now we write II" =II + II}, with

17 = FE0u(u(X,))(#(X, ) - u(X,))"
g = $ 2 (ufu(X,)) - @u(w(%,))) (u(X,) - (X))’

Let u" be the random measure
2
ZZ(u( t+1) u(th)) 5

on [0, 1], and let u be the random measure on [0, 1] generated by (M *, M*),.
Then for all ¢ € [0, 1],

(2.4.4) 1[0, ¢] > w0, ¢],
(2.4.5) Z&Iim sup P, (u"[0,1] > M) = 0.

In fact, (2.4.4) follows by definition. For the proof of (2.4.5), it is sufficient to
note the fact

Elw(0,1]| = TE(u(X,.,) - u(X,))’
< Y (i1 —t)E(u,u) < E(u,u) < o.
From (2.4.4), (2.4.5) and Lemma 2.2 in [12], we have that
(2.4.6) lim 11} = %/Ztl)u(u(Xs))d(M“,M“}s inP,,.
On the other hand, .
|II;

2
Oufu(X,)) - @u(u(X,))| L (u(X,,,) - u(X,))"
Since u(X,) is unlformly continuous on [0, 1] and

. 2
tim T (u(X, )~ (X)) - e, 3,
it follows that lim, _,, II g =0.
Now, we look back at I™ = I + I} + I}, where

It = Ty (u(X,)(M, - M),

Iy - Z (I)l(u(th)) +2(I>1(u(th+1)) (Nt?ﬂ _ M?),

T

I = - 5 Z(0(u(X,,.)) - @(u(X)(Nx, - N2).
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Then,

(2.4.7) lim 17" = /:d>1(u(Xs))dMs“.
Since ®(u) € 2(&),, it follows by Corollary 2.3.3 that
(2.4.8) lim I3 = fotcbl(u(Xs))ost“.
However,

i+l

1/2
2
BII3| < 4(@(w), ) ES (N, - M) 0.
So, letting n — « in (2.4.3), we complete the proof of the theorem. O
3. Application to diffusion processes on infinite-dimensional space.

3.1. Tightness for Dirichlet processes on infinite-dimensional space. In
this section, we intend to use the martingale decomposition to establish the
tightness of some simple classes of infinite-dimensional Dirichlet processes.
Our methods are strongly influenced by Takeda’s use of the decomposition in
the finite-dimensional situation [17].

One should always be cautious about tightness results because there are
very simple examples to show that the limiting process need not in general be
the .process associated with the limiting form.

In certain rather special situations it is relatively easy to establish the
relevant continuity theorem. We outline two. First, we look at situations
where some monotonicity is present. Second, we treat the case where the limit
is a Markovian measure. If we restrict ourselves to a Gaussian environment,
we can establish quite explicitly the Dirichlet form of the limit process as the
limit of the sequence of the Dirichlet forms (Theorem 3.1.3).

In this subsection, our state space is a Hilbert space E. Let H be a Hilbert
space such that H is densely embedded in E by a Hilbert—Schmidt map.
Identifying H with its dual, we obtain that E' c H C E. Define the linear
space of finitely based smooth functions

FCAE) ={u: E—>R| 3l,,...,1, €E, fe CAR™
such that u(z2) = f(I(2),...,1,(2)), z € E}.

For k € E \ {0}, u € FCy(E), define the following Gateaux-type derivative
(in the direction of k) by

(3.1.1)

du(z + sk)

s K z€E.
s=

d
(3.1.2) ﬁu(z) =
Denote the unique element in H representing the continuous linear map
h — du(z)/dh, h € H, by Vu(z). Let L™(H) be the family of all bounded linear
operators on H. For each n > 0, let u* be a probability measure on (E, Z(E))
with supp[u”] = E and let A™(2): E —» L*(H) be a strongly measurable map
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into the bounded positive self-adjoint operators on H for which the condition

)4 (@) lmn(dz) < +o0
holds, and for which the following symmetric form on L%(E: u") is closable:
&E(u,v) = fE( A™(2) Vu(z),Vu(z)) g du”,

(&) = FCL(E).

Denote the closure on L%(E, u*) by (&,, 2(&,)). In this case, it is known from
[3] that there exists a diffusion system {Q, %, %, X,,0,, P}, x € E} whose
Dirichlet form is (&£,, 2(&,)), where Q = C([0,%) — E) and X is the canonical
process with associated o-fields # = 0(X,, 0 <s < +») and &, = o(X,, 0 <
s < t). Let P, be the probability measure on path space () defined by

(3.1.3)

(3.1.4) P,() = [ Pr()w"(dx).

Since H — E densely by a Hilbert—Schmidt map, we can find an orthonor-
mal basis {e,|n € N} of (H,{ Yg) and A, > 0, n € N, with A% < +oo, which
is such that {¢, = e, /A,, n € N} is an orthonormal basis of (E,{ )g) and

(3.1.5) (e,, hYg = N2(e,,h)y forall h € H.

The following theorem is one of the main results in this subsection.

THEOREM 3.1.1. Suppose that the following hold:

(i) sup [ [| A" (2) [z w" (d2) < 423
(ii) sup[lzl% w(dz) < +oo;
n 'E
(iii) - {p*,n=>0}istighton (E, #(E)).

Then {P,, n > 0} is tight on C([0,») — E).

Proor. For [ € E’, condition (i) implies that
1P du < WFfglel® d < .

From this and the result in [3] we conclude that 1(z) € 2(&,). Consequently,
it follows from Section 1 that, under P,,

<éi’ Xt>E - <éi, X0>

(3.1.6) _ ) )
= M7 — [ M (vr) - Mj_(vr)], 0<t<T.
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Here M/ is a square-integrable martingale with initial value zero and
_ t _ —

(3.1.7) (ME) = [(A"(X,) Ve X,), Ve X,)) g ds.

Here, y; is the backward shift operator, that is, X,(y;) = X;_,, ¢t < T.

We denote M/ =M;, E, = Ep for simplicity of notation. By (3.1.5), it
holds that

V’éi = A.iei S H.
Therefore, for 0 <s <t < T,
(3.18) (&, X,- X5 = 3(M; - Mi) = }(Mi_(vr) - Mi_(v1))
and, by symmetry,

E,[(e, X, - X% < 2B,[(M] - M| + 2B, [(M}_, - M}_,)']

< CE[( [(ar(x,) Véi<Xu>,Vé,-(Xu>>H‘du)2]

. CE[( [ A (X,) Ve (X,), Ve X)) du)]

-t

<CE,

(L’( A(X,)A e, Azl Hdu)z]

+ CE, ([TH( AY(X,) e, ey du)z]

-t

< O, [ 14 (X0 a2 = 5)at
B [ 140 (X oy (¢ = )¢

< 20(¢ = 8)* i [ 1 4"(2) [up” (d2).
Here we have used the fact that u” is an invariant measure of the diffusion
system {X,, %, P, x € E}. The quantity C is a constant.
Set a; == <g;, X, — X,)%. Then
1/2 1/2
E,(a;a,) < (E,(a?))"*(E,(a3))

< 200X (¢ = 5)° [ || A"(2) [rom w7 ().
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Thus,
E(IX(0) - X(0) s = B, Sa) - DE(00a)
i, J

< L20NX(t = 8)° [ 14" (2) [rm w7 (d2)
t,J

w  \2
<20] ||An(z)uiw<mu"<dz)(2)~%) (t—s)*
1
Consequently,

supE,(|| X(t) — X(s)|%)

(3.1.9) < 2Csup [ | A"(2) [ w'(d2) ( ZA) (t =)

<M(t - s)?,

where M is a constant independent of n, and therefore, by Kolmogorov’s
criteria,
(3.1.10) }}inh suan( sup |X(¢) —X(s)|>p|=0 foranyp > 0.

lt—sl<h
t,s<T

Let p} denote the distribution of X,, under P,. Then {p.t =u", n>0}is

tight. Comblnmg this fact with (3.1. 10) we have that {P,, n > 0} is tight on
C([0,») — E). The proof is complete. O

Although the sequence {P,, n > 0} above is tight, it will not in general
converge. In some special cases one can identify a limit. We first explain one of
these. In addition to our previous assumptions, fix

(3.1.11) AY(z) =1y, du*=¢2dpu,
where u is a probability measure on (E, Z(E)) with supplu] = E and suppose
(3.1.12) lz2lg € LP(E:p) forany P > 1.

Assume the form &(u,v) = [z{Vu(2), Vv(2))y du, X&) = FCH(E) is clos-
able on L*(E, u). Let {Q, &, %, X,, P,, x € E} be the diffusion associated with
its closure (&, 2(&£)) on L2(E w. Deﬁne the probability measure P on () by

(3.1.13) P() = [P,()du.
E
We introduce the following conditions:
(D 0<¢;<¢y,< -+ <1,p-ae., ¢, lin L*(dup),

(I1) 1<e¢,,uae, ¢, = lin L*(du).

n
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We are going to prove that P, converges to P provided (I) or (I) is fulfilled.
First, if (I) is true, then following the proof of Theorem 7 in [1] exactly, the
finite-dimensional distributions of P, converge to those of P. Thus by Theo-
rem 3.1.1, we have that P, converges to P in the Prohorov topology.

Now assume (II) holds. Note that the gradient operator V with domain
FCX(E) is closable on L%(E, u"), where u" = ¢2u. We still use V to denote
the closure of V on L*E, u") for convenience. Set

B(F) = [{VCF), V(F)nei du,

(3.1.14)

(k") = {f € LX(E,n); h"(f) < +}
and
(3.1.15) R(F) = [{VCF),Y(f Pudn

D(h) = {fe L¥E,u); h(f) < +=}.

Then (A™(f), 2(h™)) and (h(f), 2(h)) are closed forms on L2(E, ). Denote
the generators of (A", 2(h™)) and (h, 2(h)) on L*E,pn), by H" and H,
respectively. We have the following theorem.

THEOREM 3.1.2. H?" converges to H in the strong resolvent sense.
PROOF. Set @, = sup,. , ¢ Define symmetric forms (2", 2(h")) as
B(F) = [{VCF), V(Pmes® du,

(k") = {f€ L*(E,p): B*(f) < +x}.
Then (A", 2(h")) is a densely defined closed form on L*(E, u). In fact, since
@, = SUpP;» , ¢ € LAE, ), we have that FCZ(E) ¢ 2(h™). So (A", 2(h")) is
densely defined. Clearly (2", 2(kh")) is closed.
Let {R"} be the resolvent associated with (2", 2(h")). Denote by (R") and
(R,) the resolvents associated, respectively, with (", 2(h")) and (h, 2(h)).
Since @,, > ¢, > 1, we have that

(3.1.16) (Rif,f) < (R:f,f) <(R.f,f) for feL*E,u).

On the other hand, from ¢, |1 and Theorem 6 in [1] it follows that
lim, , (R*f, ) = (R,f, f). Thus we deduce from (3.1.16) that
lim, ,(R2Xf, f) = (R_f, ). By the polarization identity, we have that

(3.1.17) lim (R*f,g) = (R,f,g) for f,g € L*(E,u).
n—oo
This implies the strong convergence of R”f to R, f and ends the proof. O

Once we have the above theorem, one can follow exactly the proof of
Theorem 7 in [1] to show that the finite-dimensional distributions of P,
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converge to those of P. This together with our tightness criteria gives the
convergence of P, to P on Q in Prohorov topology. Thus we finish the first
part of the discussion.

The rest of this section is devoted to discussing the convergence problem in
the situation where u is a centered Gaussian measure on E with covariance
space H, that is, (H, E, u) is an abstract Wiener space, u” = ¢2 du and we
also assume the following conditions hold:

(i) A™(2) = 1,4, ¢, > ¢ in L***(E:u) for some ¢ > 0;
(ii) there exists a constant C > 0 such that ¢, >C >0 for n > 1.
Let (&,, 2(&,)) be the symmetric form on L*(E: ¢* du) defined by

Golu,0) = [(Vu(2), Vo(2))ne® dp,

9(&,) = FC3(E).

By assumption (3.1.18)(ii), it follows that (%, .@(%)) is closable on
LAE:¢?du). Let {Q, #, %, X,, P,, x € E} denote the diffusion associated
with its closure (&, 2(&,)). We introduce the probability measure P, on () by

(3.1.20) P,(+) = fpx(')(pz du.

Suppose that P, converges to some probability P, where P is Markovian
(i.e., X, is a Markov process under P). Because the time reversibility obviously
carries over from P, to P, one expects to be able to show that P is Dirichlet.
In fact, one can give an explicit characterization of the associated Dirichlet
form & on the space F#C;(E). Furthermore, providing ¢ € D} (the Sobolev
space in the Malliavin sense, defined below), one can show that P is actually
equal to P,, and therefore P, — P,. We explain the above description in detail
in the rest of this section.:

Now fix an arbitrary limit point P of the tight family {P,, n > 0}, and
assume that P is Markovian [ie., E [ f(X)|F]=E| f(X)IX,] if s > ¢, for
any f € %,(E)]. By choosing a subsequence, we suppose that P is the limit of
{P,,n>0).

First we prove that X has a stationary measure ¢?du under P. Since
P, > P as n > +u, we have E (f(X,) - E(f(X,)) as n —» « for any f €
C,(E), where E(f(X,)) denotes the expectation of f(X,) with respect to P.
However,

E,(f(X)) = [ f(2)6i(2) dn = [ f(2)¢*(2) dn s n > +;

therefore, {X,} has the marginal distribution ¢?du under P. Note that, for
any T > 0, {X,(w), 0 <¢ < T} and {X;_/(w), 0 < ¢ < T} have the same distri-
bution under P,, n > 0. This implies that {X,(w)} is also reversible under P.

Let P, be the semigroup associated with {Q, &, %, X,, P} and let P;* be the
semigroup associated with {Q, &, X,, P, x € E}. Then from the preceding
discussion, we see that P, is a self-adjoint contraction semigroup on L*(E, ¢2u).

(3.1.18)

(3.1.19)
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PropoOSITION 3.1.1. For g € L*(dw), P/'g converges to P,g in L% E, > du)
as n — oo,

Proor. First we show that P"g converges to P,g weakly in LXE, ¢%dpu).

Since C,(E) is dense in L%(E, ¢®du), by the contractivity of P> and P,, it is
sufficient to prove

lim [ (PFf(x))g(2)#"(x) du
= fE(Ptf(x))g(x)soz(X) du  for f,g € C,(E).
In fact,
lim [ (P7f(x))g(x)e”du = lim [ (Prf(x))e(x)¢i(x) du

= lim E,[ f(X,)g(Xo)] = E[/(X,)&(X,)]

fE(Ptf(x))g(x)<p2(x) du.
On the other hand,

lim [ (Prg)’e*du = lim [ (Plig)gel du
= lim [ (Ppg)ge?dp = [ (Pyg)ae?dp
now/pg E

= [ (Pg)’¢*du.
E

Hence we conclude that P/"g — P,g in L*(E: ¢*du) as n — «. This ends the
proof. O

Let us denote by (&, 2(£)) the Dirichlet form on L%*(E, ¢ du) associated
with the semigroup P,. Set R” = [e *P/ dt and R, = [e *'P,dt. Let D} be
the completion of FCi(E) under the norm |ull3 = [/IVul% du + [u? du]*/?
Recall the following definitions used in [9].

DEerFINITION 3.1.1. A measurable function u defined on E is said to be Ray
absolutely continuous (abbreviated RAC) if, for any h € H, there exists a
measurable function %, on E such that the following hold:

D) @,(2) = u(2) p-ae., z € E;
(ii) @,(z + th) is absolutely continuous in ¢ for each z € E.

DeriniTION 3.1.2. We say that a measurable function # on E is stochasti-
cally H Gateaux differentiable (abbreviated by SGD) if there exists a measur-



520 T.J. LYONS AND T. S. ZHANG

able map Vu: E — H such that, for any A € H,

;[u(z +th) —u(z) — t(Vu(z),h)y] —» 0 in probability u as ¢ — 0.
The map Vu(z) is called a stochastic Gateaux derivative of u.

We have the following characterization result for (&, 2(&)).

THEOREM 3.1.3. Assume (3.1.18) holds. Then FCy(E) c (&) and for
any f € #,(E), R, [ is Ray absolutely continuous and stochastically Gdteaux
differentiable. Moreover,

(8.1.21) &(g, R,f) = [E<Vg,VR1f>H<p2du forg € FCy(E).

If ¢ is also in DI, then (&, 9(&)) = (&,,2(¢,)) and hence P, > P, as
n— +o,

Proor. We prove this theorem along the lines of [2]. Let g € FC(E).
Since g € N,2(&,) and liminf, ,, &(g,8) < +x, it is easy to see that
FCR(E) € (&) by Proposition 3.1.1. Let fe€ %,(E). Since R}f - R,f in
w-measure ¢ by Proposition 3.1.1 and [|R?fll. <l fll. < 4+, we have that
lim,_ ., R}f=R,f in LP(E:u), for any P > 1. The idea now is to use the
derivatives of the functions R} f to construct a ‘‘derivative” for R, f.

Since

[ JIVRIf a0 du = E(RIf, BEf)
= _n1(Rilf, R{Lf) - (Rilf, Rff)Lz(“")
= (Rilf7 f)Lz(qog,dp.) - (Rff, Rff)Lz(qD%d,LL)
< 2||f||3>supfcp,2l du < +o,

we can assume that ¢,VR]f converges weakly to some function K(2) €
L¥E - H,dup).

Since 1 /¢, is bounded and converges to 1/¢ in L?, one can easily establish
that, for any h € L™(E - H, u),

(3.1.22) ’}i_r)r;fE<h,VRff>de = fE<h,¢—1K)Hdp.

By (3.1.22) and Lemma 1.1 in [9], it follows that R, f is RAC and SGD, and
VR,f= ¢ 'K(z) € LA(E - H, ¢*> dp), which completes the proof of the first
part of the theorem.
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In the following, we will show that &(g, R, f) = [z(Vg, VR, fdre?dpu for
& € FCy(E). We have shown lim ¢, VR}f = ¢ VR, f weakly, so that

[E<Vg,VR1f>Hcp2dy. - ’}ig:o[E@pVg,sonVRff>H dp.

However,
M(chg,svnVRi‘f)H du — [E<<Pan, ‘PnVR{Lf>Hdl-".
1/2 2
< [waltice, — o7 au] " exiorerit au)
E E
1/2
<M([ (o= V'du) o
E

Hence,

fE<Vg,VR1f>qu2 du ’}l_l)r:0 fE< Vg, 02 VRIf) pdp

= lim [(Vg,VRif)no}dpn = lim &,(RIf, g)
= lim [£,(Rf. 8) = (R"f, &) txsy aw)]
= lim [(f, &) 1xezaw — (RIf, &) L2g2 a) -
It is obvious that
lim [fee?dp = [fgg?dp,
n 2 _ 2 _ n 2 _ n 2
[gRifehdu ~ [ gRife*du = [ gRife} du — [ gRife?dp
E E E E

+ [ gRife* du — [ gRyfe?du—o0.
E E
Therefore,
fE<Vg, VR, f)ne®di = (f,8) 22 aw) — (Rif, &) L2otam = €(&, Ry f).

We have identified the form & on the space FC(E) as claimed in the
theorem.
Finally, if we have ¢ € Dj, then by integration by parts we obtain

(Ve, V)
(3123)  &(g R,f) =fR1f(—Lg— —Z—g ?dp,

where L is the Ornstein-Uhlenbeck operator on E. Note that {R,f, fe
Z(E)} ¢ 2(&) densely. It is clear by (3.1.23) that g€ L) and Lg =
Lg + (Vo,Vg)/@, where _# denotes the generator of (&, 2(&)) on



522 T.dJ. LYONS AND T. S. ZHANG

L*(E, ¢®>dp). Consequently, according to the uniqueness result in [13], we
conclude that (£, 2(¢£”)) must be (&, 9(&,). The theorem is proved. O

3.2. Another approach to the construction of diffusion processes on Hilbert
space. In this section, diffusion processes on Hilbert space will be constructed
by using the decomposition given in Section 3.1. We adopt the same state space
and notation as in Section 3.1. Let m be a probability measure on (E, Z(E))
such that supp[m] = E, jIIzII%m(dz) < 4 oo,

Assume that the symmetric form

é(u,v) = fE(Vu,Vv)H dm,

2(&) = FCy(E)

is densely defined and closable on L2(E: m). We use & to denote the closure
of &.

THEOREM 3.2.1. There exists a diffusion process on E such that its Dirichlet
form is (&, 2(&)).

REMARK. The result stated in Theorem 3.2.1 is not new. See [3] for details.
We give another approach here.

Proor. Let {e,}  E’ be an orthonormal basis of H such that {e} =e,/A,}
is an orthonormal basis of (E,{ , >g) and e}, h)r = A,{e,, h)n, for h € H,
with

(3.2.1) Y AL < 4o,
1

Let X =T13_,R,. Here R, is the one-point compactification of R. Define
the continuous injection i: E — X by

i(2) = (eyf2),...,e,(2),...).

Set m =voi~' By i we obtain an image form (&, X&) of (2, D(&)) on
L*(X, m). Then (&, 9(£)) is a regular and local Dirichlet form (see [14]). So by
[6] there exists a diffusion process M ={Q, ¥ {X},.o, P, x €X} on X
associated with (&, 9(&)). We identify i(E) with E. Then, P, (X, € E) =
m(E) = 1, for any ¢ > 0. [Here, P,(-) = [P,(-)m(dx).] Let #° = o(X,, 0 <
s < +o)and £° = 0(X,, 0 < s < ¢). Denote by ™ (resp., #%,™) the comple-
tion of ° (resp., completion of %° in %™) with respect to P,. By
Theorem 4.1.1 in [6], we know that M is a strong Markov diffusion process
with respect to .%,™. On the other hand, from the definition of & we can see
that

ex € P(&) and &(ey,ex) = [(Ver,Vel)(x)m(dx).



DECOMPOSITION OF DIRICHLET PROCESSES 523

Consequently, under P,,, the decomposition of e(X,) — e*(X,) in Section 1 is
as follows:

(3.2.2) en(X,) —er(X,) = %Mteﬁ - %(M;;(‘YT) - M;"“_t(w))
Using the same method as in Theorem 3.1.1, we get from (3.2.2) that

© 2
(3.2.3) E,||X, - X,||5< M(Z)@n) (t—s)? O0<s<t<T.
1

Here E,, means expectation with respect to P,. From (3.2.3), it is
well known that there exists a continuous process X, on E such that
P(X,=X)=1 __ .

Next we show Cap(X — E) = 0. [Here Cap(X — E) denotes the capacity of
X — E with respect to the Dirichlet form (&, 2(£)).] To this end, we set

G.X—E = il’lf{t > O, Xt EX_ E}.
Then we know that Cap(X — E) = 0 if and only if
Pm(ax_E < +(X)) = 0.

', since X, is a continuous process on E, it is automatically a
continuous process with respect to the topology on X. However, we know that,
for each t> 0, X, =X, P, -ae. So there exists a set N € 4™ such that
P _(N) =0 and, for o € N, X,(w) = X,(w) for all ¢ > 0. This indicates that

{ox_g < +®} CN.

Under P,

Consequently,
P,(0x_p < +) =0, thatis, Cap(X —E) = 0.

Once we have Cap(X — E) = 0, following the same argument as in [9] we see
that a diffusion process X, does exist on E.
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