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ASYMPTOTICS OF EXIT TIMES FOR MARKOV
JUMP PROCESSES I

By I. Iscoe! anp D. McDoNALD2

McMaster University and University of Ottawa

General conditions on general state space Markov jump processes are
established for the asymptotic exponentiality of the distribution of the exit
time into any small forbidden set. The error bounds for this exponential
approximation tend to 0 as the size of the forbidden set tends to 0.

1. Introduction. Many problems relating to the reliability of large sys-
tems may be described by the first hitting time 7 of some forbidden set F by a
stationary Markov jump process with stationary probability measure 7. Start-
ing from an initial distribution #, which is the stationary measure conditioned
on starting inside B = F°, we consider the asymptotic behaviour of the
distribution of the first hitting time as “B — S [which is shorthand for the
convergence: m(B) —» 1 or m(F) — 0]. We give general criteria for 7 to be
asymptotically exponentially distributed with a mean equal to the reciprocal of
the smallest real eigenvalue A(B) of an associated Dirichlet problem. Asymp-
totic exponentiality is known in some generality [see Keilson (1979)], so the
novelty here is an explicit error bound for the exponential approximation.

The bounds are of the form (see Theorem 2.8):

(1.1) |Pﬁ(1- >t) — e—A(B)tl < B(B)e—A(B)t,

where conditions are given which ensure g(B) — 0 as 7(F) — 0. An immedi-
ate corollary is

1 ‘ B(B)
E.r— <
" A(B)|” A(B)

(1.2)

(see Corollary 2.10). In the reversible case, a sharper upper bound is given [see
(2.13)] in which B(B) is proportional to A(B) and which extends Theorem 3 in
Aldous and Brown (1992). '

In modern telecommunications networks, hitting the forbidden states may
correspond to buffers or queues being filled beyond capacity, in which case
messages are truncated or lost. These large deviations can be engineered to be
highly improbable but not impossible. The distribution of and the mean time
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between such large deviations are important design features. For most practi-
cal purposes, the vital estimates from (1.1) and (1.2) are the upper bound on
the probability of hitting the forbidden set within a fixed time interval and the
lower bound on the expected value of this hitting time, since these bounds
provide a degree of assurance against catastrophic failure.

In part II of this work, the estimates above are calculated explicitly for a
Jackson queueing network where failure occurs if the number of customers in
the queue at any one of the nodes of the network exceeds some specified level.

2. Setting; results on asymptotics. We begin by giving a precise de-
scription of the setting for our results. The proofs of technical details are
deferred to the Appendix at the end of the paper, so as not to interrupt the
exposition.

Let (X,; t > 0) be a continuous-time, Markov jump process on a measurable
state space (S, ). We denote the lifetime of the process by ¢; (T}; ¢ > 0) is the
usual semigroup of contraction operators on #(S) = {f: S — R|f is bounded
and measurable}; T, f(x) = E [ f(X,); { > t]. The following theorem is taken
from Dynkin (1965) Theorem 5.4, page 137.

THEOREM 2.1. (T,; t > 0) is weakly continuous on all of #(S); its weak
infinitesimal generator —_Z is given on its domain 9,(£) c #(S) by

Lf(x) = [S J(x,dy)[ f(x) = f()],

where J(x,dy) = J(x)P(x, dy) and

J(x) = P(x,A) = P,(X,w € A),

1
E ™’
where ™D is the first jump time of the process.

We call J(x) the jump rate and J(x, dy) the jump-rate kernel.

We now assume that a stationary probability measure 7 is given on (S, ).
By the Cauchy-Schwarz inequality, 7, also acts as a contraction on L*(7) =
L*(8, .7, ). Using the density of Z,(.#) in L%(w), it is straightforward to
show that (T; ¢ > 0) is strongly continuous on L*(7). (See Lemma A.1 in the
Appendix.) As such, the infinitesimal generator —L of (T}; ¢ > 0) on L%(7)is a
densely-defined, closed operator. [See, e.g., Dynkin (1965), pages 22 and 23.] A
simple application of the bounded convergence theorem yields that 2, (#) c
2(L), the domain of L, and L|Z, () =7

We make the standing assumption that our underlying process is nontermi-
nating; that is, that { = + .

We now fix a subset B € .7 and define the stopping time

(2.1) % = inf(¢ > 0: X, € B°) ({TB <= U (X.e Bc}).
re2nlo,t]
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The “killed” semigroup [associated with (X2; ¢ > 0), the process killed
off Blis

(2.2) TEf(x) =E,[f(X,);r2>¢], «xe€B, feL*B,r).
The “killed” generator —LZ on L2(B, ) is formally defined by

23 L= [J@anlf) - 1)

+KB(x)f(x), x€B,feL¥B,n),

where KB(x) = J(x, B°), so that K3(x) = L21.
We now make the additional standing assumptions:

JI(x)m(dx) <o,  M(B) = messsupd(x) < +e.
S x€B
By Theorem 2.1, applied to (X2; ¢t > 0), { = 75 on the state space (B, /N
B), we have that the weak infinitesimal generator of (T,%; ¢ > 0) is a restriction
of —L2. Under the standing assumptions above we then have the following
result which will be proved in the Appendix.

Lemma 2.2. (TB; t > 0) is uniformly continuous on L*(B,m) and its
infinitesimal generator is — LB, which is a bounded operator of norm less than
or equal to 2M(B) on L*(B, ).

Before stating our main results we must introduce some additional notation
and definitions. To simplify many of the calculations in Sections 3 and 4, it will
be convenient to normalize 7 restricted to B, which we denote by |B, by
setting [assuming that 7(B) > 0, which we do, for the remainder of this
article]

# =48 = [w(B)] (w|B), L%#)=L3%B;#).

Using the following lemma, which will be proved in the Appendix, we may
also define the resuscitation rate R to be the Radon-Nikodym derivative of
the measure u(dy) = [gew(dx)J(x, dy) with respect to 7| B, 7 restricted to B.

LEmMMA 2.3. u < 7|Band RB = (du/dm)lp < M(B).
There are three quantities related to the kernel J which will appear in the
hypotheses and results of this and the following sections. They are the mean

killing rate and standard deviations of the killing rate and resuscitation rate
with respect to the probability 7 on B, namely,

(24) R=&%:= [ KP(x)#(dx), 1 =IKP—Rls  xg=R® =Ry
B .

We shall see below that the mean resuscitation rate coincides with k.
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We denote the adjoint of an operator A on an L2-space by A*. As  is an
invariant measure, T;*1 = 1 (= T,1, too) for all ¢ > 0, and

JTif(x)m(dx) = [f(x)m(dx), feLXS,m).

Therefore, L*1 = 0 and, of course, L1 = 0. Also, for all f€ 2(L), [Lfdw =
JL*fdm = 0. The analogous results for L? and (LZ)* are given in the next
lemma, which reveals the utility of RZ. The proof is deferred to the Appendix.

LEMMA 2.4. For all f € LX(#),
| LPfd# = [ f(y)R®(y)#(dy)
B B
and
[ (L) fd# = [ f(x)KP(x)#(dx).
B B
In particular, R® = (L®)*1 and [z RB(y)#(dy) = [z LB1d# = k.

We remark that the equality of the mean killing and resuscitation rates,
namely, “[gJ(x, B)w(dx) = [gcJ(x, B)w(dx),” just says that, in equilibrium,
the rate of flow into and out of a set B coincides.

The following simple estimates for k, x; and x, may serve to make the
hypotheses for our results more explicit and perhaps more practical, albeit less
sharp. In particular, they show that k — 0, and «;,k; = 0 as B — S, in case
M(S) < .

LEmMA 2.5.

(i) i< chJ(x)'n-(dx),
(i) k< [M(B) -®]"?,
(iii) ky < [M(B) - k]2

Unless mentioned otherwise, if w is a measure on B, a measurable subset of
S, L3(B, n) will be considered as a real vector space of real-valued functions.
One important exception will be when we discuss the spectral properties of
operators related to 7T,. In this case we, of course, must consider L% B, u) as a
complex vector space of complex-valued functions; we adopt the following
convention:

(f,8)u = [F(x)g(x)n(dx), f,g<L*(B,n).

The nature of L%(B, u) will always be clear from the context, so we shall not
adopt separate notations to distinguish the two possibilities. Note that T, and
all other related operators (such as L,T” and LZ) have obvious, natural
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extensions from real L2(u) to complex L?(u). It should be noted that the
norms of these extended operators, when bounded, do not change [see Lemma
7.5 in Davies (1980)].

The notion of a spectral gap is central to this article. We defer a detailed
discussion of it until Section 4 but remark at this point that in the reversible
case, in which 7, is self-adjoint on L2(S, 7), the spectral gap (when positive) is
the gap in o(L) c R, between the simple eigenvalue 0 and the rest of the
spectrum.

DeFINITION 2.6. If —L is the infinitesimal generator of (T}; ¢ > 0) on
L3(m),

Gap(L) = lnf{( fs Lf),n.: fe -@(L)’ ”f”ﬂ' =1, ( f 1)11' = O}
The following will be standing assumptions throughout this article:

. (X,; t = 0) is nonterminating.

. 7 is an invariant probability.

. Be . ” with 0 <m(B) < 1.

. JJ(x)m(dx) < © and M(B) == 7 — esssup, c g J(x) < .

. In the nonreversible case [i.e., when 7 is not a reversibility measure for (X,;
t>0)], k,ky > 0asB— 8.

. Gap(L) > 0.

The following theorems are the main results of this article and the proofs
are given in Sections 3 and 4. The symbol P, denotes the law of (X,; ¢ > 0)
initially (at ¢ = 0) distributed according to the probability u on (S, #); E,
denotes the corresponding expectation. Thus the process is stationary with
respect to P_.

Oud LN

o

THEOREM 2.7. If the quantities K, k, and k, [defined at (2.4)] satisfy
k < Gap(L), 4k, < [Gap(L) — &]?,

then LB and (LB)* have a common positive, isolated eigenvalue A(B) and
associated real eigenfunctions ¢ and p®B, respectively, belonging to L*(#) and
such that [gpBd# =1 and [3¢Bp® d# = 1. Moreover, 0 < A(B) =
infRe{o(L2B)}, inf[Re{o(LB) N\ {A(B)}}] > 0 and

(i) IA(B) — ikl < 2k,k,/[Gap(L) — k],
(ii) lp® = 1ll4 < 2x,/[Gap(L) — &],
167 — 1l < 2\/(Gap(L) _—5)2 + 4k .
(i) [Gap(L) — k]|” — 4Kk,
[¢Bd# - 1’ < by :
B [Gap(L) — &]? — 4Kk,

The asymptotic result (1.1) for a stationary starting measure then follows.
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THEOREM 2.8. If w(B°) is sufficiently small, then, for all ¢t > 0,

(2.5) |P,(r > t) — e AB¥| < B(B)e B,
where
1 V(Gap(L) — %)® + 4«2
2.6 B) = .
(26) £(5) (Gap(L) — &)® — 4kyky i Gap(L) — K1ke

In particular, w(B°) is sufficiently small if, in addition to the assumptions
in Theorem 2.7,

(2.7) ¢(B) =& 21ty — + (B < Gap(L),

i Gap(L) -

where

2k
(28) eo(B) = 8(Gap(L) — E)_l Gap(L) + 2M(B)(1 + m)]KT

We also have asymptotic results for a nonstationary starting measure
dm, = p,d#, with p, € LA B; #).

THEOREM 2.9. Suppose the hypotheses of Theorem 2.8 are satisfied and
is a probability measure satisfying dm, = p, d, with p, € L(B; ). Then

[P, (7> t) — e"MB¥| < exp(~ A(B))B(po, B),

where

0, B) = 2
ple ) [Gap(L) — ] — 4Kk,

2y/(Gap(L) — )% + 42 }

X

lpolla + llog — 1] it
4+ llpo — s + —————|k;.
pO pO Gap(L) K Kl

Theorem 2.8 will be proved in Section 4 by a spectral approach. There we
use the main result of Stewart (1971) on the existence and approximation of
invariant subspaces of operators to establish Theorem 2.7. As such, ¢® and
pBd# play the roles of the Perron-Frobenius eigenfunction and eigenmeasure
for the positivity-preserving operators T,2. Heuristically, at least, as B — S,
L® converges to L. Since A(S) = 0 and is an eigenvalue with corresponding
constant eigenfunction 1, it is natural to expect that ¢2 might converge to 1.
This is indeed the case; moreover, the results of Stewart allow us to give the
explicit estimates on the L2(#)-distance between ¢® and 1. The connection
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between this and Theorem 2.8 is revealed by the following:
P(r>1t) = f TB1d# and TBgE = e ABNHB,
B

The following corollary is an immediate consequence of (2.5) and, as the
proof reveals, it depends solely on the form of the estimate (2.5) and not at all
on the fact the 7 arises as a hitting time of a Markov (jump) process.

COROLLARY 2.10. Let (B,),.n be a sequence of sets in ./ satisfying the
standing assumptions for all n and lim,, _,, w(B,) = 1. Set 7, = 7B Then the
law of A(B,,)1,, with respect to P, [#, = [w(B,)]"(=|B,)], converges weakly,
as n — «, to that of a mean-one exponential random variable. Moreover,

lim A(B,)E,r, = 1,

n—o
and, for any B € . satisfying the assumptions of Theorem 2.7,
|Es5 — A(B) | < B(B) /A(B),
where B(B) is given by (2.6).

Using the estimate for A(B) obtained from Theorem 2.7(i), we immediately
get the following result.

CorOLLARY 2.11. If w(B°) is sufficiently small (as in Theorem 2.8), then

P.(r<t) <tA(B) + B(B)
and
ExrB > [k + 2x.x,/[Gap(L) — &]] ~'(1 — B(B)),
where B(B) is given by (2.6).

In the reversible case, in which 7 is in addition a reversibility measure for
(X,; ¢t = 0), Theorem 2.8 and Corollary 2.10 can be sharpened somewhat, with
similar expressions corresponding to (2.6) and (2.7). Accordingly, we will treat
the reversible case separately in Section 3, it being simpler to analyze from the

standard spectral theory of self-adjoint operators. The following results will be
proved there. '

LemMMmA 2.12. Let (X,; t > 0) be.reversible with respect to w. Set A(B) :=
inf o(LB). Then A(B) is an isolated, simple eigenvalue of LB. Moreover,
0 <A(B) <k — 0, as w(B°) - 0, and inflo(L3) \ {A(B)}] > Gap(L).

THEOREM 2.13. If (X,; t > 0) is reversible with respect to w, then, for all
t>0,

[1—-B,(B)|e MBY < P.(1>1t) <e MBE
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where

(2.9) B,(B) = min(—ﬂ 1) < min(L 1) -0
’ Gap(L)’ Gap(L)’

as w(B°) - 0.

CoroLLARY 2.14. Suppose that (X,; t > 0) is reversible with respect to 1.
Let (B,), <N be a sequence of sets in # satisfying the standing assumptions
for all n and lim,, _,, w(B,) = 1. Set 7, = 78 Then the law of A(B,)7,, with
respect to P, [#, = [7(B,)]~X(=|B,)), converges weakly, as n — », to that of a
mean-one exponential random variable. Moreover, for any B € * satisfying
the standing assumptions

[1 - BB)A(B) " < Egr < A(B) ™,
where B,(B) is described at (2.9).

In closing this section, a few remarks are in order regarding the novelty and
scope of the results above. Concerning Theorem 2.8, the technical assumptions
on the size of 7(B°) are imposed in order to apply the theorem of Stewart
(1971); they are connected with the separation properties of certain spectra,
which are not automatic. The conclusion of Stewart’s theorem in our context
is a result of Perron-Frobenius type. Now, such theorems are abundant in the
literature—see Seneta (1981) for the matrix case (i.e.,, with countable state
space) and Nummelin (1984) in the context of more general nonnegative
kernels on a general measurable state space. However, these latter theorems
will only yield results on the asymptotic behaviour as ¢ — « of the tail of the
distribution of 72 for a fixed subset B c S.

Our principal interest is in the asymptotic behaviour as B - S of P(72 > ¢)
for a fixed t. This behaviour was studied in a regenerative setting in Keilson
(1979). In Theorem 8.2B there, the asymptotic exponentiality of 7/E,r was
shown without imposing the condition Gap(L) > 0, where E, denotes the
expectation associated with a chain started at a regenerative point denoted by
0. The only assumption is that E,r - © as B — S. The result of Stewart
contains, in addition to statements of existence, quantitative estimates which
suffice to derive our more precise result. Concerning the hypothesis Gap(L) >
0, we will give an example below to show that the conclusion of Theorem 2.8
can fail to hold in its absence.

Note that B(B) can be of the same order as A(B). Hence, for ¢ fixed, the
error between A(B)t ~ 1 — e 2B and 1 — P,(r > t) would, in such a case, be
of order A(B)t, which means the lower bound on P,(7 < ¢) given by (2.5) may
not be better than 0. However, it is the upper bound which is of practical
interest.

Also regarding Corollary 2.10 and Theorem 2.8, it should be recalled that
the function u(x) := E, 75 is the solution to the problem

B, _
(2.10) Ly =1 on B,
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u=0 on B¢
so that Corollary 2.10 gives the asymptotic behaviour of [pu(x)w(dx), as
B — S. In the case of a countable state space S, if all states within B
communicate (within B) and B is finite, then we may clump together all the
states in B° into one artificial state and treat (2.10) as a finite system of linear
equations. However, the problem soon becomes numerically intractable as B
becomes large. Thus the explicit and asymptotically sharp estimates provided
by Corollary 2.10 and Theorem 2.8 may be more informative and efficient in
practice than an attempt to solve (2.10) directly.

Finally, we present a simple counterexample to our main results when the
hypothesis of the existence of a positive gap is not satisfied. The state space is
Z, the set of integers, and all jump rates equal 1. From 0 we jump to n > 0
with probability p,. With probability p,k,, we jump to state —m where

Zpk=17 th=1’ Zkhk<°°'
k=1
From n > 0 we jump directly back to 0. From —m we jump to -m + 1, to
—m + 2 and so on until we return to 0.
The stationary measure for this process is

7(0)p,, ifn>1,
»-n-(n) E'ﬂ'({n}) = 77(0), if n =0,
7(0)poH(-n), ifn <o,

where, for m = 1,2,...
-1
H(m) = Z h, and w(0) = |1+ (1-p,y) +p, Zkh
k=m k=1
If [ > 0, the time 7, to exceed [ — 1 satisfies, for ¢ € N,

Pi(7,>t) 27(0)py L kP (7, > t) = KH(2),
m=t

where K is some constant, since starting at —m, 7, is the sum of m
exponentials. Now, picking h,, = &(1/m?*°), we have H(t) = £(1/t'**), so
P.(r; > t) is certainly not exponentially small as ¢ — «. Consequently, the gap
must be 0. Note that the point 0 is a recurrent point, so if E, denotes the
associated expectation, then by Keilson (1979) 7,/E,r, tends to an exponential.
From the estimate above, we must conclude E,7,/A(l) does not tend
to 1.

3. The reversible case. In this section we suppose, in addition to the
standing assumptions stated in the introduction just before Theorem 2.7, that

m is a reversibility measure for the process (X,; ¢ > 0); that is, 7, is self-adjoint
on L*S,w). In terms of the jump-rate kernel, Ja, J(x A)m(dx) =
Ja,J(x, A)w(dx), for every A,, A, € /. It follows that L is self- adjoint in

L2(S m) and that L? and hence TB are self-adjoint on L2(B, #). In order to
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handle the case where L is unbounded, we utilize the Dirichlet quadratic form
[cf. Fukushima (1980)] associated with — L. [The essential technical difficulty
in the unbounded case is that functions like 15, the indicator function of B,
may not belong to 2(L); however, see Lemma 3.1 below.]

The Dirichlet form &(-,- ), associated with the infinitesirnal generator — L
of (T,; t > 0), is defined by

E(f, f)=(LfVLf),, fe2(&)=9(L)
=(f,Lf),, if fe 2(L)c 2(JL),

where VL is defined as [{VA dE()), (E(A); A € R) being the spectral resolu-
tion of the identity for L. According to Lemma 1.3.4 of Fukushima (1980),

1
fe 2(&) whenever lin(} 7(f, f-T,f), < +»
tl _
(3.1) (the limit always exists),
' 1
E(f, f) = lirf)l ?(f, f—T,f), (when finite).
tl

LemMa 3.1. Letf € L*(B, ) and denote by f the zero-extension of f to all of
S. Then f € 2(&) and &(f, f) = (f, LBf),,lB.

Proor. For fe Z,(2)c 2(L) n #(8S),

E(f ) = (f,Lf)m = [J(x) f(x)*m(dx)
(8.2)

— [F(x) [I(x, dy) F(y)m(dx).

Now, for f € %(B), choose f, € 9,(.2) such that f, = f, as n > +» (ie.,
pointwise and boundedly). Then, as n — », f, =2 f and by the dominated

convergence theorem applied to the right-hand side of (3.2) [recall
Jgd(x)m(dx) < ],

Efur fo) = [ J(2) F(@)’m(dx) = [ £(x) [ I(x,dy) fF(y)m(dx)

= (f’ LBf)quB
Since & is a closed form, f€ (&) and &(f, f) = (f, LBf), ;g in this case.
Finally, for f € L*(B, ), choose f, € #(B) with f, - f, as n — . Then,
asn - o, f, =2 fand &(f,, f,) = (f,, L), = (f, L f)wlB’ since L2 is

continuous by Lemma 6.3. Once again, by the closedness of &, fe &) and
ECF, )= (f,LPf),5. O

Proor oF LEMMA 2.12. The lemma is an immediate consequence of the
Rayleigh-Ritz and minimax variational characterizations [see, e.g., Reed and
Simon (1978), Theorems 13.1 and 13.2] of A(B), Gap(L) and the spectral gap
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of LB. Indeed,
(F,L%f)s
113
< (lBa LBIB),;T/”]-B”‘ﬁ'
=k—>0 asw(B°)—>0
by Lemmas 2.4 and 2.5(i). Also by Lemma 3.1,
. (g’ LBg)ﬁ-
sup inf ————
0+feL2(#) O+gL4f ”g”ﬁ-
(8. L%g);
T osgLa lgld
¢ & (8115, 811p)
||g113||127
. E(g,83)
inf TR
llgslim
= Gap(L) > 0.

By the minimax principle, A(B) is an isolated eigenvalue (of multiplicity 1) and
inflo(LB) \ {A(B)}] = Gap(L).

Finally, if A(B) = 0, then if ¢ is an associated eigenfunction, normalized
such that |l¢ll-z = 1, let ¢ denote its extension to S by @|B¢ =0 and set
¢ =9 —(g,1),. Then by the characterization of Gap(L) given above and
Lemma 3.1

”l/l“,,r Gap(L) < GO(J,E) = 5(5, 5) = (QD, LB‘P)TrlB = A(B) =0.

Therefore & is constant (7-a.e.). However & = 0 on B¢ and m(B¢) > 0; so
¢ = 0, a contradiction. O

A(B) = inf 10+ fe L%(B,#)

:0 ¢g1 ELZ(S’W)> 81 1 IB}

1\

:O#gze.@(eﬂ),gzll}

Proor oF THEOREM 2.13. For the upper bound, with 1 denoting the
function with constant value 1,

Pi(r>1t) = [ TF1d#
B

<IIT21ll; by Cauchy-Schwarz
< IT = e=Mox
by the spectral theorem.
For the lower bound we work in the (real) Hilbert space L%(w) = L*(S, )

and denote the inner product (-, ), simply by (-, ). Let &# denote the
(one-dimensional) subspace consisting of eigenfunctions of L2, corresponding
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to the simple eigenvalue A(B), extended to be 0 outside of B. Set
(3.3) l1=¢p0¢y, ¢H, peHt.
Then

P(r>t)= jB1 “TBldm = [B[¢ ®y] TE[¢ @ yldr

= lpli%e=2E" + [ yTPyd#
B

(3.4) > [|pl|%e B — [1 _ ”l/,”2]e—A(B)t,
since T,2 is a positive operator [in fact, o(T,2) = exp(—o(L®)t)], and, by (3.3),
(3.5) il =1 — llwll®.

Let (E(A); A € R) denote the spectral resolution of the identity associated with
the self-adjoint operator L and set

du() = (b, EQV)).
Now, E(A) = E(0) for all » € [0, Gap(L)); so, forany A, < 0 < A* < Gap(L),
p((A,X]) = (0, [E(¥) - E(1,)]¥)
= (¥,[E(0) — 0]y)
= (¢, 1) = llyll*

by (3.3). Thus w((—«, Gap(L))) = ”l/l”4. Therefore, in case L is bounded [i.e., if
M(S) < =),

112 = [~ 1du(h) = lwl* + j: JREMCY
. -

(3.6 -
) <l +[Gap(L)] " [~ Ndu(d)
Gap(L)
(3.7) < Il* + [Gap(L)] ™+ [“ad(u, B(A)9)
(3.8) = llgll* + [Gap(L)] ™" - (v, L)
(3.9) = llgll* + [Gap(L)] ™" - (¢, L)
= ligll* + [Gap(L)] " - A(B)lIglI*
(3.10) = llgl* + [Gap(L)] ™" - A(B)(L ~ llwll*)

by (3.5). The quadratic inequality between (3.6) and (3.10), for [|y||?, implies

that

(3.11) lgll? < min AB)
' - Gap(L)’ ")

The lower bound now follows from (3.4) and (3.11) since 7(B) < 1.
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In the general case where L is unbounded, we proceed as above with the
following technical modifications. Rearranging the inequality e <1 — ¢ +
t2/2, for ¢ > 0, we obtain

1 —te“’] - t/2]‘1'[l - exp(—t:/Gap(L))]

VA=Gap(L),V¢>0.

1<[1-¢/2] ;
Replacing ¢ with ¢ - Gap(L) yields
[1-¢-Gap(L)/2] " [1-e ]
<
N Gap(L) t

Substituting this into (3.6), we arrive at the following modifications of (3.7)
and (3.8):

, VA= Gap(L),Vt>0.

[1-¢ Gap(L)/Z]'lj,ool — et

W7 < gl + —d(4, E()9)
[1-t-Gap(L)/2]"'( ¢-Tu
— 4
llyll® + Gap(L) ( — )

Letting ¢ — 0* and using (3.1), we obtain in place of (3.8) and (3.9):
ol < llgll* + [Gap(L)] ~'& (v, ¥)
= Ivll* + [Gap(L)] '€(4, ¢)

= lwl* + [Gap(L)] '(¢IB, L”[4IB])
by Lemma 3.1. The rest of the proof remains unchanged. O

The proof of Corollary 2.14 is essentially the same as that of Corollary 2.10,
to be given at the end of Section 4. In closing this section it should be noted
that the derivations of the upper bound in Theorem 2.13, and hence the upper
bound in Corollary 2.14, do not require that Gap(L) > 0.

4. Gaps; proofs of general results.

4.1. Spectral gaps. We begin by recalling the notion of the numerical
range of a bounded operator A on a complex Hilbert space &## [on which we
adopt the convention (Af, g) = A(f, g) for the inner product, A € C]. The
numerical range, W(A), of A is defined by

W(A) ={(f,Af): fe #,Ifl=1}.

We recall the following well-known facts as summarized in Lawler and Sokal
(1988):

1.W(A) is convex.
2. 0(A), the spectrum of A, is contained in W( A), the closure of W(A).
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3. If A is normal, then W( A) is the convex hull of o(A). However, in general,
W(A) can be much larger than the convex hull of ¢(A), for example, if A is
nilpotent.

4. If A & W(A), then (A — A)~ 1| < [dist(x, W(A)] L.

We state one more property of W(A) as a proposition and indicate a proof,
since it will play a fundamental role in our estimates. Set

(4.1) w(A) == infRe W(A);

note that w(A) is finite since we are assuming that A is bounded: |w(A)| < || All.

PrROPOSITION 4.1. If Re A < w(A), then |(A — A)7Y| < [w(A) — Re A]™ L.

ProoF. Set I = Re ) and, for f of unit norm, let g = (A — A)~!f, so that
Ag = f + Ag. Then, taking the real part of the inner product with g,

ligli® = Re(g, f) + Re(g, Ag) = —ligl + w(A)ligl®

by Cauchy-Schwarz. Dividing by ||g|l and rearranging the inequality yields the
result. O

Now consider a complex Hilbert space H, a (bounded) operator A on H and
a fixed vector p € H. Set #'=p-={f< H: (f,p) =0} and denote by Y the
injection of % into H; Y* is the adjoint projection. Finally, set A = Y*AY:
H — H, the compression of A into .

DEFINITION 4.2.
T,=T,(A) =w(A) =infRe{(f, Af): | fl =1, (f,p) = 0}.

In particular, Re{o(A)} c [T,,»); and in case p is an eigenvector of A with
eigenvalue A such that Re A < T, it is easy to check that o(A) — {A} does not
meet the strip {z € C: Re A < Re z <T}. In this case it is appropriate to refer
to I, — Re A as the numerical gap of A (with respect to p and A). It may be
smaller than the actual gap in the real part of the spectrum of A.

An immediate consequence of Proposition 4.1 and Definition 4.2 is the
following corollary.

COROLLARY 4.3. If Re A < [,(A), then (A — A < [T,(A) — Re Al

The following proposition is a variant of a part of Theorem 2.3 of Liggett
(1989); the proof is essentially the same.

ProrosiTiON 4.4. Let (T,; t > 0) be a strongly continuous semigroup on a
complex Hilbert space H with bounded infinitesimal generator —A. Then, for
allf€ H,

IT, fIl # e~ fll, ¢=0.
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In particular, if p is an eigenfunction of A*, then, for all f € H such that
fip,

IT, fIl < e fl,  ¢=0.

Proor. Let f < H such that || f|| = 1; w.l.o.g. assume ||T, f|l # 0. Then
d
a;nthuz = —2Re(T.f, AT, f) < —2w(A) - IT,fI>.

Therefore, |T, f1I* < e B f |I>. For the second part, simply apply the
first part to #=p* and A Al H — H [since if (f,p) =0, then
(Af,p) = (f, A*p) = M f,p) =0, if A*p = Ap; similarly T(#) C # since
T/p = e*'p], recalling that T, = w(A). O

REMARK 4.5. It is important to note that in case A (and hence 7, in the
previous proposition) is a real operator on a real L*(u)-space, then w(A) and
I'(A) [which by definition would be calculated on the complexification of
Lz(u)] can be calculated as infimums using real functions f; that is, w(A) =
inf ,,_(f, Af) and T (A) =inf{(f, Af): Ifll=1, [fodu =0} if p is real.
Indeed, denoting these real counterparts temporarily by w'(A) and T,(A),
clearly w(A) < w'(A). Conversely, if f=g -+ ih with g, h € L?(u) (and real)
such that 1 = || £I” = llgl® + lI2II*:

Re( f, Af) = (g, Ag) + (h, Ah) > w'(A)llgl® + w'(A)IRI? = w'(A).

Taking the infimum over all such f then yields w(A) > w'(A). Concerning
I'(A) and I'/(A), the argument is the same, noting that if, as above, f = g + ik
and f L p, with p real, then g 1L p and & L p. Thus Proposition 4.4 remains
valid on a real Hilbert space.

Also, we remark that Proposition 4.4 remains valid (with the same proof) in
the case that A is an unbounded operator, with the understanding that, in the
definition of W(A) and Definition 4.2, f is restricted to belong to 2(A).

In particular, we can apply Proposition 4.4 to the case H = L%(S,7), p = 1,
T,=“e L% and A = L. We write Gap(L) for I',(L) and, as stated in Section
2, we assume that Gap(L) > 0. Since 7w was assumed to be an invariant
probability, then 0 is an isolated eigenvalue of L* and hence of L, and
Re(o(L) \ {0}) c [Gap(L), ®); and Proposition 4.4 describes a rate of relax-
ation to equilibrium [for a fuller discussion, see Liggett (1989), where, in
particular, it is shown that Gap(L) > 0]:

(4.2)  |T.f- ffdn|, <e | f— [fdm|,,  feL*S,m).

We now establish some simple relations between various ‘“gaps.” Recall that
we are assuming m(B) > 0 and have set # = [#(B)] x| B.
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DEFINITION 4.6.

F=18.= (LB) = inf{(f, LEf)aillflls =1, [deﬁ = 0},

[* = I‘l([LB]*) = inf{( f, [LB]*f)ﬁ: Ifllz =1, fodfr = O}.
Hence, we have the following result.
Lemma 4.7. [* =1

ReEMARK. This is a special case of the more general result w(A) = w(A*)
(since Re ¢ = Re ¢ for any ¢ € C) applied to A = L5 (see Definition 4.2).

LemMa 4.8. T > Gap(L).

Proor. For g € L%(B;#) such that [g>d# = 1 and Jgd# = 0, extend g
to all of S by setting g = 0 on B*. For n > 0, set &.(x) = g(x) if |lg(x)| < n
and 0 otherwise; and set &, = g, — [g, d7. For ¢ > 0, set

gn,e=8_1_/:Ttgn dt’ hn’e =5_1£8Tthn dt

Then g, ., h, . € 2,(2) c 2(L), /R, .dm =0 and by Theorem 2.1, Lemma
2.2 and the dominated convergence theorem ( JJ(x)m(dx) < o):

(hn,e"‘/hn,s)‘rr = (gn,e’ =‘/gn,s)‘rr
= 2. (®) [[,.(%) = &0, ()] (x, dy)m(dx)

= [2.(%) [[8(%) = 8.(1)]J(x, dy)m(dx) ase -0,

= (gn’LBgn)Tr-—) (g’LBg)‘rr asn —)00.
Therefore

Gap(L) = i {(/, 1) /'€ (L), Il = 1, [ = o)

inf{ (h, £h),/IILl%: b € 9,(7), ffdw = o}

<i {
< inf{ lim lin})(hn,e, ZLhy )/ lh, 2 llglls = 1, fgdfr = 0}
n—og— B

= inf{(g, L%g).: lglls = 1, d‘=0}
{(g g).: gl &gv

=T,(L®). 0
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4.2. Construction and approximation of Perron—Frobenius pairs. In this
subsection we prove Theorem 2.7. The tool we shall use is the following
theorem, which is the restriction to bounded operators of the main theorem
(Theorem 3.5) of Stewart (1971).

THEOREM 4.9. Let A be a bounded linear operator on a separable Hilbert
space #. Let 2" be a subspace and denote its orthogonal complement by %.
Also denote by X and Y the injections of 2" and %, respectively, into # and
set

B = X*AX, H = X*AY,
G =Y*AX, C = Y*AY,

where * denotes the adjoint. Set v = |G|, n = ||H|| and 6 = IT-Y", where T
is the linear operator on the space B(L, Z') of bounded linear transforma-
tions from & to % given by TP = PB — CP, and is assumed to be bijective. If
yn /82 < 1/4, then there is a P € B(Z, %) such that the range of X + YP is
an invariant subspace of A; ||P|| < 2y /8. Moreover, the spectrum of A is the
disjoint union

o(A) =o(B +HP)Uo(C —PH) =0, U oy,

and dist(a,, o) > [82 — 4yn]/s.

Theorem 4.9 simplifies greatly in the case where dim £’= 1. In this case B
and B + HP are scalar operators on &£, say B = bl and B + HP = Al, and
the operator T~ ! can be identified explicitly. Since, for arbitrary P €
B, %), TP =(b— C)P, then T 'P=(b— C) P [provided that b &
a(C)]. Thus 8 > |I(b — C)~Y~! and we obtain the following corollary.

CoroLLARY 4.10. Suppose, in addition to the hypotheses of Theorem 4.9,
dim 2'= 1, with B = bl and b & o(C) [in particular, if Re(b) < w(C)], and
K6 — C)~Y™' =8, for some 8,>0 such that yn/8% < 1/4. Then, with
B+ HP = Al

(i) A is an isolated eigenvalue of A; |A — bl < 2yn /8,:
G) if 0+fe X, then ¢ =f ® YPf is an eigenvector associated with A
and llo — fll < 2985 £II

We now apply this result to the operators LZ and (LZ)* on L%(#) with 2~
being the subspace of constant functions. Note that both operators have
obvious extensions to L2?(#) considered as a complex vector space (for the
spectral conclusions). It follows from the proof of Theorem 4.9 that P is a real
operator; that is, P maps the real constants to real-valued functions in %"

Proor oF THEOREM 2.7. The details of the proof of existence will only be
given for pZ, those for ¢Z being similar. We apply Corollary 4.10 to A = (LB)*
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and 2= {constant functions}, and begin by identifying vy, n, b and §,. First,
y = IY*[LBT X1ll; = [[L2T"1 — (1,[LB]"1) 1
= VIRE|I? — k% =k, by(2.4),

n = sup{I X*[LET" flla: I flls = 1, (1, ), = 0}
sup{[(1, [L2T" £)4|: 1 Flla = 1, (1, )4 = 0)
sup{|(K® = &1, f),|: 1 flls = 1, (1, f)+ = 0}

IK® — i1l = k4,

since KB — k is orthogonal to 1.
Now, with B = X*(LB)*X = bl,
b= (1’ X*(LB)*Xl)ﬁ = (LBI, 1); =k.

Also, by Definition 4.2 (and the ensuing remarks), Definition 4.6 and Lemmas
4.7 and 4.8 with C = Y*(LB)*Y,

infRe{c(C)} = I™* =" > Gap(L).

Therefore, since by hypothesis k¥ < Gap(L), then b & o(C); moreover, by
Corollary 4.3,

(b = €)M < [f* ~ 8] " < [Gap(L) ~&] " =557,
With this choice of §,,

yn /8% < kyky/[Gap(L) — &]* < 1/4

by hypothesis.

Thus we have the existence of A(B)and p? = 1 @ P,1 from Corollary 4.10.
(We subscript the transformations P, B, C and H from Theorem 4.9 to
connect them with p?Z; similarly, we will write P,, B,, C, and H, for the
analogous transformations to be associated with ¢Z below.) By construction
[gpBdf =1, and |Ip® — 1ll; < 2y8;! < 2k, /[Gap(L) — k]. Also, from Corol-
lary 4.100),

IA(B) — k| =|A(B) — bl < 2ynd;* < 2k1k,/[Gap(L) — k].

Similarly, we may apply Corollary 4.10 to LZ with the same 2" and %.
Since [' = I, o(LB) = ¢([L2]"), 0(C*) = ¢(C) and the b and 5, associated
with L2 coincide with those for [L2]*, we need only estimate y = y, and

=Nt

y = IY*LEX1|| = IY*KB| = |K® — k1l = «,
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n = sup{IX*LEfll+: I flls = 1, (1, f)+ = 0}
sup{|([LET°1, £)4|: 1 flla = 1, (1, f)5 = 0}
= sup{|(R® - &L, f)|:IIfl+ = 1, (1, f), = 0)

— |IR® = &1l| = «,.

By hypothesis, yn8; 2 < 1/4. Therefore we have the existence of an eigen-
vector of L2 of the form ¢ = f ® P, f with f= al, « € R, for which

f(pdeﬁ =(1®P1,foPyf).=a+a(Pl,Pl),.
Now
4K Ky
I(P,1, Py1) .| < IP]l - IPyll < 29,85 %] [27900 Y] <« —————— <1
( 1 1) 1 2 [ Y190 ][ Y200 ] [Gap(L)‘— ;?]2

by hypothesis; so we may choose a = [1 + (P,1, P,1).]"! and set ¢2 to be the
corresponding “o,” that is, ¢Z = a1 ® Py(al). Then

4y1y58,°
¢Bdﬁ—1’=|a—1|_<_ —_—
fB 1 - 4vy,v,0, 2
4Kk,

< —_12
[Gap(L) — k]® — 4Kk,
and
lpB — 1% = (a — 1)2 + a2||P21”12%

< (a - 1)+ a?|P,)?

_ 2
< —4717280 i + [1 — 4yy 6‘2] -2, [2')/ 5_1]2
B N 4')’]_')’280_2 172%0 2%0

C2y,850 —— 7
={')’2—0 1+4,y%562}

1- 4y1y280_2

and we conclude as with the previous estimate.
It remains to show that the eigenvalue A,, say, associated with ¢? coincides
with A(B) and that 0 < A(B) = inf Re{c(L?)}. First,

A(B) = A(B) - (p®,¢%), = (L] p®, ¢%),
= (pB’ LBd)B).ﬁ' - (PB, 1\2¢B) — A2.
Finally, to check that A(B) = infRe{c(L?)}, we need only show that the
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bottom of the numerical range, w(C; — P;H;), exceeds A(B)—see Theorem
4.9. For f € L¥#) with || fll; = 1 and (1, f); = 0,

(f,[C,—PH1f); =T =Pl 1H ll = T = 2y,m;85 .

Since A(B) < i + 2ym,8; ", it suffices to ensure that k + 4y;n,85' < [, or,
by Lemma 4.8, that k + 4k,k,/[Gap(L) — k] < Gap(L), which was hypothe-
sized.

Finally, to show that A(B) > 0, we use an argument similar to the one used
in the proof of Lemma 2.12 combined with the truncation and smoothing used
in Lemma 4.8. Extend pZ to be 0 off B and for n > 0, set g,(x) = pB(x) if
lp2(x)| < n, g,(x) = 0 otherwise. Then for £ > 0, define %, g, , and &, , as
in the proof of Lemma 4.8. By the definition of Gap(L),

”hn,ell‘ﬂ' Gap(L) = (hn,e?jhn,e)‘n' = (gn,e? jgn,e)fr'

Then by the dominated convergence theorem ([J(x)w(dx) < «), we can let
e — 0 to obtain

Ik, |l Gap(L) < (8> -Z8n)w = (8n> LP81).,-

Now, letting n — «, we conclude that

Ip® — [p® dmll.Gap(L) < (p®,L%"), = ([L"T p?, p®),

— A(B)m(B).

Therefore if A(B) = 0 then p2 would be constant (7-a.e.). However p2 = 0 on
B¢ and 7(B¢) > 0; so the eigenfunction p® = 0, a contradiction. O

4.3. Proofs of Theorems 2.8 and 2.9 and Corollary 2.10. Before giving the
proofs of Theorems 2.8 and 2.9 and Corollary 2.10, we first establish an
underestimate of the gap T,s(L?).

LeEmMA 4.11.  Under the hypothesis of Theorem 2.7,
T 5(L?) = Gap(L) — &o(B),
where &,(B) was given at (2.8).
ProOF. Given f € L%(#) such that ||fll; = 1 and [fp? d# = 0, decompose
fepB=alog

for some @ € Rand g L 1in L%#), where 1 denotes the function on B with
constant value 1. Note that

a=/(a1 +g)d7-”r=/(f+p3)dﬁ-=ffdﬁ+1=ff(1—pB)d7?+1.
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Therefore,
lo = 1 < I fll+llp2 = 1z =1Ip® - 1]|5

and

If—glls <la =1 +pZ - 1ll; < 20p®% - 1]5.
Also

lglls <llg = Flla + 1 flls <1+ 2lp® - 1|5,

gl = (Iflls = I f— glls)” = 1 — 4llp® — 1],
Therefore,

I(F, L®f), - (8, L%g),| <[(f-s, LPf), + (&, L% f-gl);]
<IL2I-[Ilf = glls + liglall £ — glls]
< 2LP) - lp® = 1la- [1+ 1 + 2)p® - 1)4]
= 4IL2) - p® - 1l - [1 + I0® - 1114].

We can now compare the two gaps. Given & > 0, if now f is also chosen to
satisfy (f, L®f), < T,z + ¢, then

Lo > (f,L%f); — e > (g,L%8); — 4ILB] - 1p® — 1ll5 - [1 + lIp® — 1ll5] — ¢
> [ llglls — 4ILB1 - 1p® = 1l - [1+ 1Ip® — 1ll5] — e
> Gap(L) - [1 — 4llp? — 1ll5] — 4ILZI- 1B — 1s - [1 +11p2 — 1ll] — ¢

by Lemma 4.8. Since & > 0 was arbitrary, the lemma then follows from the
estimates:

B 2K, ..
lp® — 1l < Gan(L) 7 [cf. Theorem 2.7(ii)]
and
ILB|| < 2M(B). ]

Proor or THEOREM 2.9.
—A(B
|Pﬂ,0(7' > t) — e MBY

- ’ fBTtBl dmy — fB[Tth)B]pB d#

S-l(pO - PB’TtB[l - d)B]).ﬁ,I
+I(pB’TtB[1 - d)B])ﬁ-l +|(TtB¢B’ Po — PB)ﬁ,
< [exp(=T,a(LB)t)] - 167 — 1ll5 - llpo — oIl

+[exp(—A(B)t)] -’j;}(d)B - 1)p, dﬁ-’

(4.3)
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by Cauchy-Schwarz and Proposition 4.4 (with p =p® and u=#, T,=T/2
and A = L®) for the estimate of the first term. For the second term we have
used the facts: [T,BT*pZ = e A®B)¥pB and (p5,1 — ¢$58), =1 — 1 = 0 by Theo-
rem 2.7. Then, by Lemma 4.11, the last estimate is less than or equal to
B(py, B,t)exp(— A(B)t), where

B(po, B, t) =11® — 1ll; - llpll
+ g2 = 1ll: - llpg — p®ll
xexp([A(B) — (Gap(L) — (B))]¢)
< B(po, B)

by Theorem 2.7(ii), provided A(B) + ¢,(B) < Gap(L). This is guaranteed if
(2.7) holds by Theorem 2.7(i). The term llp, — p2lls < llpg — 1lls + 11 — o5+
and the latter is estimated using Theorem 2.7 O

Proor or THEOREM 2.8. The proof follows by taking 7, = 7 and p, = 1in
expression (4.3):

|Py(r>t) — e” AP =’f TB1d# — j [TEpB]|p? d#
B B

< [exp(—FpB(LB)t)] llgB — s - 1 = pBlls

+ [exp(—A(B)?)] )[ $pBdA -1
B
Then, by Lemma 4.11 and Theorem 2.7(ii) and (iii), the last estimate is less
than or equal to B(B,t)exp(— A(B)t), where B(B,t) is given by
4Kk,
(Gap(L) — k)* — 4kyk,

Gap(L) — &)° + 4«2
><{1+ v aifasz) _); exp([A(B) —(Gap(L)—s(B))]t)}

< B(B),
provided A(B) + ¢,(B) < Gap(L). Again, this is guaranteed if (2.7) holds, by
Theorem 2.7(i) O

Proor or CoroLLARY 2.10. For 6 > 0,
|E;[exp(—6A(B)7)] — (1 +6)

=‘9/we"”Pﬁ(A(B)T <t)dt - Ofwe“’[l —e!]dt
0 0
<6 'B(B)fme_("“)’ dt by Theorem 2.8

0

= [6/(6 + D]B(B) -0
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as m(B°) — 0. By the continuity theorem for Laplace transforms, we obtain
the first part of the corollary. For the second part,

|E,r — A(B) Y = ‘fmpﬁ(T >tyde — [ (e AP dtl
0 0

< B(B)[me_A(B)t dt, by Theorem 2.8
0
=B(B)/A(B). o
APPENDIX

Proofs of lemmas in Section 2. In this appendix we give the proofs of
Lemmas 2.2, 2.3, 2.4 and 2.5. We begin with three preparatory lemmas. We
assume the notation introduced in Section 2; in particular, we assume the
standing hypotheses stated after Definition 2.6.

LeEmMma A.1. Let (9; t = 0) be a contraction semigroup on L*(m) such that,
forall t > 0, (HB(S)) c H(S), and the restriction of (J,; t > 0) to B(S) is
weakly continuous (in the bounded-pointwise topology). Then (7; t > 0) is
strongly continuous on L*(m). In particular, the semigroups (T,; t > 0) and
(T2; t > 0), associated with the underlying and killed processes, are strongly
continuous on L%(m) and L*(#), respectively.

Proor. Let f & %(S). Then by hypothesis there exists a 8, > 0 such that
Vax eS8, lim, o 7, f(x) = f(x) and sup, ., .5 17, f = fll < . Therefore, by
the bounded convergence theorem

17, f = fllz = fs|9;f(x) — f(x)’m(dx) -0 ast—0*.

If now f € L¥(w), set f, = flyf/<py + 21(ssn — nls<_,) Then fe B(S)
and f, —;2 f, as n = », by the dominated convergence theorem. Then

1F:f = Flle < Z: UF = £l + 12 = Fulle + 1 £ = £l

<20f, = Ffllz= + |7 fo = Full,

limsupllZ, f = fll- <2lf, = fll. >0 asn — co.
£10
The application to (T,; ¢t > 0) and (7,%; t > 0) is justified by Theorem 2.1. -
Note that both semigroups do act on their respective L2-spaces because
is an invariant probability. Indeed, with A = S (respectively, B) and
{ = +o (respectively, 72), if f,g: A » R are measurable, f = g m-a.e., and
Jaf2dm < o then TAf = TAg mae. (TS = T,); for

[rl(r-o)*]dn < [T2](F-2)"|dn = [(F-7)" dm =0

where f, g denote the zero-extensions of f and g, respectively, to all of S.
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The fact that T/fe L*(A,w|A), with |TAfl. < fll,, follows from the
Cauchy—-Schwarz inequality. O

As noted after Theorem 2.1, the infinitesimal generator — L of (T,;t = 0)on
L3(m) is a densely defined, closed operator, and, moreover, 9,(2) c 2L),
the domain of L, with L| 9, (.X) = 7.

Lemma A2, [[J(x, dy) f(y)m(dx) = [[JI(x, dy) f(x)m(dx) =
JJ(x) f(x)m(dx) for all measurable, nonnegative f.

Proor. If fe %(S),thenV t > 0, [T, f(x)m(dx) = [f(x)m(dx). If further
fe€ 9,2), then [Lf(x)m(dx) = 0 (by differentiating d/dtl,+ and using the
bounded convergence theorem). By Theorem 2.1 and our integrabililty as-
sumption on oJ, we can rearrange the last equality to yield the conclusion of
the lemma in this case (with both sides being finite).

For general fe€ #(S), 3 f, € 9,(£) with f, = f, as n > » (ie., point-
wise and boundedly). Applying the lemma to f, and letting n —.o, using the
bounded convergence theorem, yields the desired conclusion for f. Finally, if
f =0 and measurable, we can apply the previous result to fA n and let
n — »; by the monotone convergence theorem we obtain the lemma as stated.

0O

We have the following preliminary result for L2, defined at (2.3).
LEmma A.3. L2 is a bounded operator, of norm < 2M(B), on L%(B, ).

Proor. Let f denote the zero extension of f to all of S. Then LZf(x) =
J(x) f(x) — [gd(x, dy) f(y). Clearly, IIJ - fll, < M(B) - | fll.. By
Cauchy-Schwarz, our boundedness assumption on J and Lemma A.2 (applied

to £2),
]B[ [ e N 1(5) ()| m(dx) < M(B) - [ [ J(x,dy) F(9)*m(d)
= M(B) - [J(x)f(x)*m(dx)

<M(B)*: fo(x)2rr(dx).

Note that L? is well defined on equivalence classes. Indeed, if % > 0 and
h = 0 m-a.e., then for 7-a.e. x € B:

LPh(x) = [S [2(x) = ()] (x,dy) = - /S R(y)J(x,dy);
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so by Lemma 6.2,

fBILBh(x)Iw(dx) < j:g/:gﬁ(y)J(x,dy)w(dx) = fSTL(x)J(x)ﬂ-(dx) =0.

Therefore LBh = 0 7-a.e. Thus if f= g m-a.e., we can apply the latter result
to the positive and negative parts, & = (f — g)%, to obtain LBf = LBg m-a..
O

Proor oF LEMMA 2.2. Denote by —_.7 the weak infinitesimal generator of
(T3 t > 0). By Theorem 2.1, .2 is the restriction of L? to Z,(.2) c #(B).
By the bounded convergence theorem,

Tf(x) ~ f(3)
I

2

+ LBf(x)| m(dx) >0 ast—>0+.

Thus the infinitesimal generator, —L say, of (TtB, t > 0) on L% B, ) coincides
with —L2 on Z,(.2). Since L is closed, L? is continuous (by Lemma A.3)
and Z,(.7) is weakly dense in %#(B) [see, e.g., Dynkin (1965), 1.15 B, page
40], and hence strongly dense in L% B, 7), then 9(L) = L% B, =) and L = LB.
The bound on ||L2||,, was derived in Lemma A.3. O

Proor oF LEmmA 2.3. Let A € N B. Then
w(A) = [ [14()9 (x, dy)m(dx)
< [ [ 1) (x, dy)m(dz)

- j:gj;slA(x)J(x,dy)w(dx) by Lemma 6.2

<M(B) - w(A). O

ProoF OF LEMMA 2.4. For f e L*(#), denote by f the zero extension of f
off B. Then substituting f into Lemma 6.2 and rearranging yields

foBJ(x,dy)f(x)w(dx) - foBJ(x,dy)f(y)w(dx)
+/B/BCJ(x,dy) f(x)m(dx) = chfBJ(x’dy) f(y)m(dx),
that is,
fBLBf(x)ﬂ-(dx) = fo(y)RB(y)ﬂ_(dy)’

Dividing by m(B) yields the first result. The remaining results are evident
from the facts LZ1 = KB and (LB)*1 = R2. O
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Proor orF LEMMA 2.5. Substitute f= 1p. into Lemma A.2. After some
rearranging this yields

[ J(x, B)m(dx) = [ J(x,B)m(dx).
B B¢
The estimate in (i) then follows. Estimate (ii) follows from

ki= [[K? ~&] d# = [ [KP) d# - &

<M(B) - [ K" d#=M(B)&.
B
Estimate (iii) is similar. O
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