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ALGEBRAIC L? DECAY OF ATTRACTIVE CRITICAL
PROCESSES ON THE LATTICE!

By JEAN-DOMINIQUE DEUSCHEL
E T H Ziirich

We consider a special class of attractive critical processes based on the
transition function of a transient random walk on Z¢. These processes have
infinitely many invariant distributions and no spectral gap. The exponen-
tial L? decay is replaced by an algebraic L? decay. The paper shows the
dependence of this algebraic rate in terms of the dimension of the lattice
and the locality of the functions under consideration. The theory is illus-
trated by several examples dealing with locally interacting diffusion pro-
cesses and independent random walks.

0. Introduction. Let E be a Polish space and consider a Markov semi-
group {P,: ¢ > 0} acting on C(E; R), the space of bounded continuous functions
on E. Suppose that u is an extremal {P,: ¢ > O}-invariant probability distribu-
tion on E. Then by Jensen’s inequality, for each f e C(E,R),

| P, f = {fulrz, isdecreasingin ¢ € (0,x),

where we have introduced < f), = [z fdu. Under good ergodic properties of
the process, the above convergence occurs exponentially fast: Thereisa y > 0
such that

[P f = < Foulez < e F= {Foullexny, t>0and fe C(E;R);

cf. Holley and Stroock [9], Liggett [11] and Deuschel and Stroock [4]. In the
case where u is {P,: ¢ > O}-reversing, the largest such y is precisely the
spectral gap between 0 and the first nonzero eigenvalue of the generator of the
process.

The object of this paper is to describe critical situations where no such
v > 0 exists; in terms of spectral decomposition this corresponds to a continu-
ous spectrum at 0. Following Liggett [12], the above exponential decay will be
replaced by an algebraic decay. More precisely, we will find some « > 0 and
nonnegative functional V, defined on a dense subset -#(E) of L?(u) such that

IPf = {Fulize <t “V2A(f), ¢>0and fe A(E).

We will be working in the setting of attractive, linear processes. These
processes, based on the transition function of a transient random walk on Z¢,
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have the property that the semigroup P, acts linearly on linear functions.
They are critical in the sense of having infinitely many extremal invariant
distributions, the covariances of which are given by the Green function of the
random walk.

The paper is divided into three sections. In Section 1, we derive the abstract
algebraic decay results. The argument, based on the linearity and attractive-
ness of the processes, illustrates the dependence of the algebraic rate a on
terms of the dimension d of the lattice and the choice of the functional V.
Roughly speaking, we show qualitatively how local functions f have a faster
algebraic decay than nonlocal ones.

In Section 2 we present three examples of interacting diffusion processes
where the theory of the first section applies. These processes are known in the
literature as the critical Ornstein—Uhlenbeck process (cf. Deuschel [3]), the
measure-valued critical branching random walk or super random walk (cf.
Dawson [2] and Dynkin [5]) and the stepping stone model (cf. Shiga and
Shimizu [14]). Although not carried out in this paper, the same type of
technique would yield similar results for closely related processes such as
critical branching random walks, the voter model and the simple exclusion
process.

The setting of Section 3 is quite different, since there the extremal invariant
measures are of product type. We show that this increases the algebraic decay
rate @ by 1, and we give an example dealing with the counting process of
independent random walks.

Further results describing algebraic decays of infinite-dimensional critical
processes can be found in Liggett [12], which motivated the present paper.
However, they cannot be handled using our approach, since they lack the
property of linearity.

1. General results. In this section we present the general frame of
attractive critical processes on the lattice and derive the algebraic L? decay
results.

We start with some useful notatlon Let ~(Z%) be the set of rapidly
decreasing configurations x € RZ* such that Zkezd(l + |k2P|x(k)|? < o, for
all p>1. The set /’(Zd) the dual of A(Z%), is the set of tempered
configurations x € RZ’ with T, . ,«(1 + [k|)~ 2“’Ix(k)lz < o, for some p > 1.
We write [xl, = (Jx(®P)/? for the usual LP(Z%) norm, x+y(k) =
2;x(j)y(k — j) for the convolution operator and (x,y) = Ly x(k)y(k) for the
L%(7%) scalar product.

Next let I be a closed subset of R and let E = IZ° N ~'(Z%). Let #(E) be
the set of Lipschitz continuous f: E — R such that

[ f(x) —fM < X du(f)lx(k) —y(k)|, with[[s(f)]l; <,
kez?
where 8(f) = (6, (f): k € 7%} denotes the oscillation of f:

8x(f) = sup %Eyif%—,: x(k) > y(k) and x(j) = y(j) forj € 74\ {k}}
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Let L(E) be the set of linear f € _Z(E) of the form
(1.1) f(x) = Y a(k)x(k), x€E,forsomeac .”(Z%).
kez?
Finally, .#,(E) and L, (E) will denote the set of local Lipschitz and local
linear, respectively, functions depending on finitely many coordinates.

Our process is based on a stationary, irreducible, transition matrix Q
d
on 7¢:

Q(k,j) =0, k=#j -Qkk) =) Qk,j=1,
j*k

Q(k’j) = Q(O’j - k),

its symmetrized matrix Q

Q(k,j) + Q(, k)

Q(kni) = 2 ) j>k € Zda
and the corresponding time-continuous transition functions A, and A,, ¢ > 0:
o0 tn . <) tn .
A, = —Q", A,= —Q".
! ngo n! Q ‘ n§0 n! Q

Of course A, and A, are stationary (here and below, stationary always refers
to shift invariance on Z¢) and we write A,(j — k) = A,(0,j — k) = A,(k, j). We
will assume that Q is rapidly decaying: {Q(0,k): k € 7%} € A(Z%). Using
Fourier analysis, one verifies that, for each ¢ > 0, A, maps ./'(Z%) into
A'(Z%) (cf. [14)).

Consider now a time-continuous Markov process on E with semigroup {P,:
¢t > 0}. We suppose the existence of a stationary, extremal {P,: ¢ > 0}-invariant
probability distribution 4 on E. For p > 1 and f & L?(u), we write (f), =
Jgfdw and (| fll., » = I fllLry. Our results will be based on the following
hypotheses.

(H-1) (Linearity). For each t > 0, P, maps L(E) into L(E) with
Pf(x)= Y akA,(kjx(j) =(axA,,x), x€E.
k,jez?
(H-2) (Attractivity). For each t > 0, P, maps -£(E) into -Z(E) with

8(P.f) < XL ou(f)A(kd) =8(f)*A.(), Jez°
kez¢

(H-3) (Transience). The lattice dimension d satisfies d > 3 and therefore Q
is transient. Moreover, there is a o,(un) € R* such that the covariances of u
are given by

Cov,(x(K), x(j)) = c2(w)G(kj), k,jez?,

where G = [FA, dt is the Green operator.
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(H-4) [ LP(w)-contractivity]l. Letp = 2. Then -£(E) € L*(u) and there is a
a,(n) € R™ such that

I =< Foulh . <a2(w) L 6u(£)GX§)8(f), feL(E).

kjez?

REMARK 1.2.

(i) (H-2) is called attractivity for the following reason: Assume that for two
initial configurations x and y € E we can construct two coupled processes
{X,(x): t > 0} and {X,(y): £ > 0} on the same probability space ({2, &, P) such
that PX,x) =x) =1, PX,(y) =y) =1 and Ep[f(X,x)] = P, f(x),
Ef(X(y)] =P, f(y), f€L(E), where E, denotes the expectation with
respect to P. If, coordinatewise,

(1.3) x <y implies X,(x) <X/(y), P-as,

then we get (H-2) from (H-1). Namely, take x,y € E with x(j) =y(j), j # k
and x(k) < y(k). Then (H-1) and (1.3) imply

|P,f(y) - P,f(x)| =| Ep| F(X,(¥)) - F(X,(x))]]

< X 5(FE|XG,y) - X.G,%)]
jezd

= Z 6j( f)EP[Xt(j,Y) _Xt(j,x)]
jezd

= L (A -j)(y(k) — x(k)).
jezd

Thus 8§, (P, f) < 8(f)*A (k).
(ii) For p = 2, (H-4) is of the form

Var,(f) <oi(n) X 6u(f)G(k§)8(f), feL(E),
k,jez¢

which is very similar to the estimate one obtains via Dobrushin’s contraction
technique in the subcritical regime when X;, . Q(k,j) <1 (cf. Follmer [7].
However, here we are at criticality and Dobrushin’s technique is not applica-
ble. Note also that (H-4) can be viewed as a tightening of (H-3), since (H-4)
holds for linear f € L(E).

We can now state our first main result:

THEOREM 1.4. Assume (H-2) and (H-4) with p > 2. Choose any q €
[1,2d/[d + 2]). Then there is a constant C(q,d) < » depending on q, p and G
only, such that '

sup ([P, f = <Pl i £ e L(B). Io(H)i; = 1)
<t @ dg2(u)C(q,d), t>0,
where a(q,d) = [2d — q(d + 2)]/(2q).

(1.5)
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Proor. The basic tool will be harmonic analysis as explained in Spitzer [15,
Chapter 2]. Let € = (—1r, w]? be the d-dimensional cube and A the normalized
Lebesgue measure on (—1r, w]%. For b € L%Z%), let b be the Fourier trans-
form of b:

b(6) = ¥ b(k)e™? wherek: 6 = ko' + - +k 0% andi=y—-1.

kez¢
Define
#(6) = - ¥ Q(0,k)e™? and ¢(6) = — ¥ Q(0,k)e’*?, ge¢.
kez? kez?
Then the irreducibility of Q implies the existence of £; > 0 such that
(1.6) $(6) = &,101%, 0 € ¢,

cf. [15, Section IL7]. Next let A, and G be the Fourier transforms of A,
and G:

A,(6) = exp[~t¢$(0)] and G(8) = JT(IE’ be.

Using (H-2), (H-4) and Parseval’s equality, we then have
12 f = <Pl p < o2(m) Lou(P NG §)3(P.S)
YJ

= G2(W)(O(P.), G 5( P, ))
< a'pz(,u,)<At*3( f),G*A, = &( f)>

n 2exp(—2td;)
) —_—
18(F)] z

= 2w 180 F)PEAL], , = o2(n)

Take g €[1,2d/[d + 2]) as above and set p'=q/(2 —q), ¢' =p' /(p' — 1).
Then, by Hélder’s inequality and the Hausdorff-Young inequality, we obtain

exp( -2t . —té
D] il 22D

Al

18(F)|

’

A p
<t7@dC(q,d)|5(f)II,
where we have used (1.6) to show

-2t

M < tl—d/(2p’)C(q, d) = t—a(q,d)c(q, d),
¢ A D

for some 0 < C(q,d) < «. O

REMARK 1.7

() The usual application of Theorem 1.4 is for ¢ = 1, which corresponds to
local functions with a(1,d) = (d — 2)/2. We have a slower convergence rate
for nonlocal functions with lim, ;4.5 a(g,d) = 0. The algebraic rate
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a(q,d) does not depend on P = 2, but of course 0,(1) depends on p. In general

we have lim, a,(n) = « and no decay occurs in the uniform norm.
(i) Note that (H-1) and (H-3) imply

sup{[12:f = (ull.zi £ L), I )] < 1)
<t™@DeZ(u)C(q,d), t=0.
Namely, take f € Ly(E) of the form (1.1). Then, by (H-1) and (H-3), we have
1B f = CFulli s = 02(1)(A, a, G+A, +a)
< o3 (u){A,*8(f),G*A,*5(f))

(1.8)

and proceed as above.

One may wonder whether the above theorem gives the correct algebraic
rate. The answer is yes for ¢ = 1 and almost for qg>1:

THEOREM 1.9. Assume (H-1) and (H-3). Then, foreach q € [1,2d/[d + 2])
and 0 <& <d(q — 1)/q, there is c(q,d, ) > 0 depending on q,d, e and G
only, such that

Sp{IP.f = < Fulls 52 £ € Lo(E) with 5 £)l, = 1)

> t_“(q’d)_eazz(,u)c(q, d,e), t>1.

Moreover, when q = 1, we may take ¢ = 0.

ProoF. Since Q decays rapidly, we have Tk e 2k1?Q(0, k) < o, and there-
fore there is &, < o such that

(1.10) #(0) <e,l0?, 6e<.

The lower bound is a simple application of (H-1) and (H-3): For given ¢ > 1
and 0 <¢ <d(q — 1)/q, let a € LY(79),

0, k=0,
a(k) = {Ikl—s—d/q k % 0,

and set a,(k) = x, . ,,a(k), k € Z?. Note that lim,  la,ll, = llal, < © and
lim, &, =48 in L%)), with

(1.11) 'lim 01°°"4/914(0)| = y(d), 6€ ¢,
6| -0

for some y(d) > 0. Next consider the sequence {f,: n € Z*} c L(E),
fi(x) = Y a,(k)x(k), xckE.

kez?
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Then (H-1) and (H-3) yield
lim | B, £, = (f)ulls 2 = 03(n) lim (a,, *A,,G*A, *a,)

. g
=02(p) |d|2eip£:_¢)

Al

and the lower bound follows from (1.10) and (1.11). Finally, for ¢ = 1, we can
simply take f(x) = x(0) and check the lower bound directly using (1.10). O

There are of course functions with a faster algebraic decay! For example, let
L¥(E) be the set of f & Ly(E) of the form (1.1) with L, _ ;«a(k) = 0, and let
us introduce the Sobolev-type norm

lally, 1 = Z k| Ia(k)l.

kez?

ProrosiTiON 1.12. Assume (H-1) and (H-3). Then there exist constants
0 < k(d) < K(d) < » such that

£~ 203(u)k(d) < sup (| P.f = (Foull o: € AG(E) with [3(f) 1,1 = 1)
<t % 2(n)K(d), t=>1.
Proor. Take f € L}(E) as above. Note that 4(0) = L a(k) = 0 and

[Va(n) - 8] =] ¥ a(k)(k-8)e’™"| < |al; 6], n,0 €€,

kez¢

and therefore, by the mean value theorem,
lal(6) < laly,il6l, 6€€.
From this and (1.6), we see that there is K(d) < « such that

| ldl2exp(—2tcf>) l&]?

-~

Al

lexp(—2t)lx,1 < K(d)t*llally,;, > 1.

A,
This clearly implies the upper bound by (1.8). For the lower bound, choose
k-1 k| = 1
a(k) — 2d ) )
0, k| = 1.
Then, as ||all;,; = 1 and
sin(6') + - +sin(6¢ 4
I ( ) ( ), > 2l0|2 on €= [0,77/2]d,
d (dm)
we get the lower bound in view of (1.8) and (1.10). O

la(o)|* =
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The above proposition is not too surprising, considering the fact that the
mean of each coordinate is a preserved quantity.

In the next section we will present a few interacting diffusion processes
where the above theory applies.

2. Interacting diffusion processes. In this section we present three
types of interacting diffusion processes which satisfy the above assumptions.
For simplicity, we will suppose that the transition matrix Q is of finite range
and that d, the dimension of the lattice, satisfies d > 3. Since Q is irreducible
by assumption, this implies transience.

Let I be a closed interval of R, and set E = IZ‘N A (Z9). Let Q =
C(0,); E) be the space of continuous paths, X,: Q — E the coordinate
mapping and {Z,: ¢ > 0} the canonical filtration. Let a € C%(I;R") be strictly
positive in the interior of I and zero on the boundary. We also assume that o'
and o, the first and second derivatives of a, are bounded. For each x € E, let
P, be the law on Q of the infinite system of Itd stochastic differential
equations

X,(k) = x(x) + [ " Y Qk.j)X,(j) ds

jez?

+ [Va(X, () dW,(k), kez?,
0

where {W,(k): ¢t > 0, k € 7%} is a family of independent real-valued Wiener
processes. Existence and uniqueness of (2.1) has been established by Shiga and
Shimizu [14]. Let C2(E) be the set of bounded functions f: E — R depending
on finitely many coordinates with bounded partial derivatives of first and
second order. We can also view the Markovian family {P,: x € E} as the

unique solution to the martingale problem for the linear operator L defined on
CZ(E) by

(2.1)

Lf(x) = ¥ |za(x(k))DE+ X Q(k,j)x(j) Dy |f(x),

kez? jez?

where D, = d/dx(k), k € 7°.
We will be interested in the following situations.

1. The critical Ornstein—Uhlenbeck process. This is a Gaussian process with
I=R and ea(x)=1,x€R;

cf. [3]. For each 7 € R, let u = w(7) be the Gaussian field on E with constant
mean 7 € R and covariances

Cov,(x(k),x(j)) = G(k,j), k,jez¢

Then u is an extremal stationary {P,: ¢ > 0}-invariant distribution (cf. [3]).
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2. The measure-valued critical branching random walk or super random
walk. Set
I=R* and a(x)=x, x€R".

This is a discrete version of the critical measure Brownian motion of Dawson
and Watanabe where the underlying Brownian motion on R? has been re-
placed by the random walk on Z¢ with transition function Q (cf. [2] and [5]).
For each 7 € (0, ), define T € E 7(k) = 7, k € Z%. Then there is an extremal
stationary {P,: ¢ > O}-invariant measure u = u(r) on E such that, for all
fe £(E),

(2.2) mP,f(v) =(f) and (x()) =7, keze

3. The stepping stone model. Set
I=[0,1] and a(x)=x(1-x), x<][0,1].

This is a popular model in population genetics (cf. [13]). For each = € (0, 1),
Shiga [13] has shown the existence an extremal stationary {P,: ¢ > 0}-invariant
measure u = u(7) on E satisfying (2.2). )

Our objective is to show that the assumptions (H-1)-(H-4) hold for the
above processes. The first step, the linearity assumption (H-1), follows immedi-
ately from (1.1) and It6’s formula (cf. [3], Proposition 2.13). Also, since Va is
Hélder-continuous with exponent %, the process is monotone in the sense of
(1.3) (cf. [14]), and (H-2) follows from Remark 1.2. Our next step identifies the
covariances of the invariant measure u.

LemMA 2.3. Set 02(u) = 3llall,, 1. Then
(2.4) Cov,(x(k), x(j)) = a7 (n)G(k,j), k,j € 7°.

Proor. Set
R(k,j) = Cov,(x(k), x(j)), k,j e 79

Then, using Itd6’s formula, one can check that R is characterized by the
following linear equations:

0= Z Q(, )R>, k) + Z Q(k,i)R(i,j) + 3(j,k)||a||,h1, j ke Zd,
iez? iezd
where
. _ 1’ j = k;
B(J»k) - {0, j #* k;

cf. [3]. By stationarity of u we have R(k,j) = R(0,j — k), j, k € Z¢, and
therefore

0=2Y Q0,i)R(0,k—j—1i) +5(,k)lall,, ;.

iez?
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Since Q is transient, 1/¢ € LY(€) (cf. [15]), and if R(0) = L, . ,¢e"* °R(0, k),

0 € €, denotes the Fourier transform of R, then the above equation yields
R(0)$(6) = o3 (un), thatis, R(6) =od(u)/d(6),

which implies (2.4) O

LemMmaA 2.5. For each f € CZ(E),
(2.6) th_l)lgo “ Ptf_ <f>,u”#,2 = 0.

Proor. Let us first look at the Ornstein—Uhlenbeck process. Let
{P;: t> 0} and {P,: ¢ > 0} be the Markov semigroups associated with the
Ornstein-Uhlenbeck processes with matrices Q' (the adjoint of Q) and Q,
respectively. One can then check that {P): ¢ > 0} and {P,: ¢ > 0} are the
semigroups corresponding to L* (the u-adjoint of L) and L=(L+L*/2. In
particular, u is {P,: ¢ > 0}-reversing and, since L and L* commute,

1P = CFulle =18 f = <F ol e

Also, u is an extremal {P,: ¢ > 0}-invariant distribution, and this implies
th_l)g”ptf_ <f>l~b||n,2 =0,

by the spectral decomposition theorem (cf. [9]).
Consider next the super random walk and stepping stone model. Since f is
bounded, (2.6) will follow from

(2.7) lim P, f=<(f), inprobability with respect to u,
n—oow
for a sequence {¢t,: n € Z*} c R* with ¢, » ». In case of the stepping stone

model, we know by Theorem 1.3 of [13] that, for each 7 € [0,1], u = u(7), we
have

(28) lim P, £(x) = (),
if x € E satisfies
lim A, *x(k) = lim P,( fi)(x) = {fy)u =7, forallk € 79,
t— o >
where f(x) = x(k). However, we know that lim,_ IP(f) — 7ll..o = 0 [cf.
Remark 1.7(ii)], and (2.7) follows.

For the super random walk, (2.8) is verified if, for all 0 < ¢ € LY(7%) with
finite support,

lim exp[ - (V,e,x)] = lim P,(exp[ ~A(e)])(%) = exp[ - (¢ — We, )],

where h(e) € Ly(E) is given by h(e)y) = Iy c zac(k)y(k), V,c: Z¢ - R is the
solution to the nonlinear integral equation

Vie(k) + 3 [A,-,+[Ve['(k) ds = A, ve(k), ke29,t>0,
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We(k) = %fw[Vsc]z(k) ds, kez4
0
cf. [5], Theorem 1.7. In order to show (2.7), it will be enough to verify
(2.9) lim ||(V,e,x) — (¢ — We, )| , = 0.
t— o

For simplicity we assume that @ = Q; the nonsymmetric case works along the
same lines. Note that

[Viel’(k) < [A, *e]’(k) < A,(0)lell; - A, *c(k),

and since Q is transient, [fA (0)ds = [,(1/¢)dA = G(0,0) < ». We can re-
place We in (2.9) by

We(k) = 1 [0 Vel(k)ds, ke z°

Using these two inequalities and the nonlinear integral equation, we get

I(Vie,x) — (¢ — We,p) |3 2

2

1

o M,
1 , 2
< *é' j;)(At—s*[‘fsc] , X — 1-) ds »
+2](A,xe,x ~p) 5.2
< ¥ A, xce(k)R(Kk,j)A,G) *e(i)
k,jez¢
1 trt 9 ,
x| 5 [ [AO A (O)cl? dsds' + 2
2
exp(—t
< [2 + 6%(0,0) ] |d|2¥ ,
Al

which converges to 0 as t —» ». O

LEMMA 2.10. Let C%(E) be the set of bounded f: E — R with bounded first
and second derivatives such that

A, = ¥ (1+Ik)*IDy fll

kez?

+ Y (1+ KDL+ [)*UDy Dy fllo<e,

k,jez¢
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for all p > 1. Then, for each t > 0, P, maps C2(E) into C*(E) and

P(f)(x) = f(x) + [LP,(f)(x)ds
(2.11) 0

=f() + [P(Lf)(x)ds, x€E,

for all f € CAE), where L defined on CXE) is given by

Ifx) = ¥ [%a(x(k))Di+ > Q(k,nx(j)Dk]f(x).

kez? jez?

Proor. Let Vy < Z? be the box [—N, N]¢. We consider a finite-dimen-
sional system defined on EN = IV~ generated by LY: C2(EN) —» C*E™N):

L) =} ¥ [a(x(k))Di > Q(k,nx(j)Dk] F).
ke Vy ieVy
The first step is to show that smoothness and boundedness of our coefficients
imply that the statement holds for LY and the corresponding semigroup {P,:
¢t > 0}. In case of the Ornstein-Uhlenbeck process, this is trivial since the
diffusion coefficient a is constant. In case of the stepping stone model, Shiga
shows that the Hille-Yoshida semigroup theory is applicable (cf. [13], 6°, page
241), and the result follows from an argument similar to that for the one-
dimensional case treated by Ethier [6]. Finally, for critical branching random
walks, one could either work with a dense class generated by exponential
functions of the form exp[—#A(c)] and the corresponding nonlinear integral
equation in order to check the Hille-Yoshida theory as in [5], or use the fact
that, due to the special nature of LY, the semigroup PN maps polynomials in
X into polynomials.
Next let us prove that, for each f€ C2(E), t > 0 and p > 1, we can find
K, <  such that

(2.12) sup | PN, < el £l
Nez*

This uniform estimate and the convergence of PN(f)tc P(f)on E will imply
the result by the standard approximation procedure (cf. [14]).
Let us write

(k) = Dy PN(f), N (k,j) = Dy D;PN(f)
and
u(k) =Dy PN (f)

o uN(k,j) =|| D D;PN(f)]..

From (2.11) we obtain the equations

d
= [0 = LA (k) + L Q) f(), keVy,

jeVy
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where LY is the diffusion operator LY + 1a/(x,)D,, and

— (k) = Li;fN(k§) + L @k VLI + L @G,V k)

ieVy ieVy
1
+ 580k §)a" (x) £ (), kjeVy,

where LY. =LY + a (xk)Dk + 3@/ (x;)D;. Integrating with respect to the
semlgroups generated by L¥ and Lk . respectlvely, and taking the supremum
norm on both sides, yields the followmg integral inequalities:

ul() < ui() + 3 @Gk, DIful (@) ds
jeVy
and

uf(kj) <ul(kj) + T QD) [ul(i,j) ds

IGVN

+ X 1QG DI [wl (1) ds+ 3y wlla’ll [ (5, k) ds.
ieVy
Since Q is of finite range, (2.12) follows from Lemma 4.2 and Lemma 4.3 of
[14]. O
We are now ready to prove the main step, namely, the L?”-contractivity:

THEOREM 2.13. Foranyp > 2 and f € L(E),
la II,L p/2

(2.14) | = <Eullip < (p = ) —57=K8( ), G*8(£)).

Proor. By approximation, it is enough to prove (2.14) for f € C(E) with
(f) =0.For t > 0 write f, = P,f € CAE) (cf. Lemma 2.10). Slnce CXE)is
an algebra, ¥ o f, € C%(E) for any ¥ € C4R;R) and

L(¥ef) = (Ve f)Lf, + 5(¥"° [)T(f 1),
where ¥'(2) = dV(2)/dz and
L(f, ;) = (L(f?) - 2f,If,) = ¥ a(x)IDi fil%;

kez¢

cf. [4]. In particular if, for any & > 0, we choose ¥,(z) = (22 + £)?/? with

¥(2) =p(p = (=2 + )" X2 +e/(p = ) =p(p - D(%(2) ",
then we have

L(¥, f,) < (Yo f)If, + 3p(p — 1)(¥,° £,)' "*"T(f,, f,).
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Using (L(¥, < £,)), = 0, we obtain
d 2 _ -
=g (Yo 7 = = W £ £ L

< (p = Do £ 22T, 0 1) T PT(fry )
where
T(f £) < L a(xe)du( )™
kez?
Hoélder’s inequality implies

(O ) TPT(f ) < X (A Wo £2)' 2P a(x) Wubi )

ke z¢

T (o £ axg ) 20 Pow( £)°
kez9

-2
=<1Ps°ft>;lL /p“a”n,p/2 Z ak(ft)za
kez? )

IA

IA

but, by (H-2), this shows

d
~ (Ve £ < (p = Dllalluse T 8u(£)°
kez?

< (p = Vlall,, oA, *8( )5
2/p

On the other hand, since f is bounded, Lemma 2.5 implies lim, , (¥, > f,)5
= g, and we obtain

© d
o FY/P _ g = — — (W o FN/P
<q’s f># € j;) ds <‘I,e fs>ﬂ dS

<(p- 1)||a||ﬂ,p/zf0 1A, *3(F)]|3 ds

lall., /2

= (p — )24 £), G+ 3( 1)),

and the result follows by letting ¢ \v 0. O

REMARK 2.15.

(i) It should be noted that, apart from Lemma 2.5 and the first step of the
proof of Lemma 2.10, we do not use the explicit form of the function a. In view
of Ethier’s one-dimensional result [6], one expects that Lemma 2.10 holds
under quite general assumptions.

In particular, referring to the stepping stone model, we could look at a very
general class of interacting diffusion processes in population genetics, where
the diffusion coefficient @« € C%(I; R") satisfies a(x) > 0, x € (0, 1) and a(0) =
a(1) = 0. Recently, Cox and Greven [1] have shown the existence of stationary
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extremal invariant distributions {u(7), 7 € (0, 1)} satisfying (2.2). It is clear
that (H-1)-(H-3) hold and therefore one has the lower bounds of Theorem 1.9
and Proposition 1.13. The only step missing in the proof of the L~”-contractiv-
ity is Lemma 2.5. Actually, it is very likely that a modification of the coupling
technique of [1] would imply (2.6).

(ii) Another setting where the theory applies is the potlatch- and
smoothing-type processes treated in the last chapter of Liggett’s book (cf. [10],
Examples 6.6 and 6.12). The linearity (H-1) is shown in Theorem 2.2 of [10].
The coupling techniques used for the proof of the attractivity condition (H-2)
are explained in the first section of Chapter IX of [10], [cf. also [10], (2.16),
(2.18) and (2.20)]. Also the covariances of the invariant distributions, condition
(H-3), are expressed in terms of the Green function for the random walk [cf.
[10], Theorem 3.17, equation (3.20)]. A verification of the LP-contractivity
(H-4) would then imply the full results of Section 1.

We conclude this section with the following observation: The idea in the
proof of Theorem 1.4 is first to determine the correct algebraic rate for linear
functions in L(E) using the linearity of the semigroups {P,: £ > 0} and the
covariance structures [cf. (1.8)] and then to use a comparison argument based
on the monotonicity or attractiveness of the processes. The functional [15(-)ll,
is well adapted for comparison with linear functions, but would not work for
polynomials. Actually, we expect a different decay for these functions. This fact
can be explicitly verified for the Ornstein—Uhlenbeck process.

We need to introduce some additional notation: Let &Z,(E) be the set of
polynomials on E of degree less than or equal to n, n € Z*. Foreach n € Z*
define 8™ Cy™(E) = C5(E) U Z(E) - LN(®,7%)

84 k) (f) = sungkl...Dknf(x)l, (ky,...,k,) e ® 77,
xe n

.....

” 5(n)( f)”l = Z 6(k1 ..... kn)( f)

THEOREM 2.16. Consider the critical Ornstein—Uhlenbeck process and de-
fine iteratively DMV(u) = C5(E),

D™(u) = {fe" C3™(E): (Dy, ... Dy =0, for all

(k;,....,.k,)e @ 7%and1l<m <n - 1}.
Then, for each n € 7™, there exists 0 < ¢"(d) < C™(d) < « such that
£@/27 070 (d) < sup{[|Pf = (Flulls ot £ € DP(w) with [5(F) ] = 1)

<¢@2-dnomy(gy, t> 1.
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Proor. We proceed by induction. The case n = 1 is covered by Theorems
1.4 and 1.9. Assume that the upper bound holds for n — 1, n > 2, and take
f € D"(u) with { f), = 0. Then, using the ideas of the proof of Theorem 2.13
with ¥y(2) = 22, we get

(ZN)HRﬂﬁ2=£<TU§ﬂRJ)LmV=L Y (|DW(P.F)), ds.
kez?
However, for the Ornstein—Uhlenbeck process we simply have
DUP.1) =B T Dif-A(k=3)| = BD()+A M), ke %> 0

jez?
(cf. [3D, where D(f)*A (k) = X;,«D;f - Ak — j) € D" (u) by assump-
tion. Therefore,

2
IP.(D(f)*A (k).

< §7(0A=/DOCD(d) |5 D(D( f) * A, (R))],
and the upper bound follows from (2.17) and (2.18) if we can find C™(d)
(0, ») such that

T 60D £)*AK) [} < s~¢2E™(a) 6™ £) ]

kez?

(2.18)

This a simple consequence of (1.6) and the following inequalities:

¥[8 (D(F) A, X))

kez?

IA

Z ( E 5(k1 ,,,,, kn)( f)As(kn - k)
(k,

kez?

..... (D] T A&

Lreeos ke, z2¢ kez¢

=[16™C£) I lexp(~258)l,1 < s~2/2C (@) |7 £)]I3.
As for the lower bound, take f, of the form

fix) = Y bpx(0),
m=0

IA
—_———
(a
7
g
=

where b, = 1/n!and b,,, m =0,...,n — 1, are chosen such that
(D§fr =0, m=0,...,n—1.

In other words, f, is the nth Hermite polynomial associated with the normal
law of mean 7 and variance {|x(0) — 7|*), = G(0,0). Note that f, € D"(E)
with [|3(f,)ll; = 1. Using this f, and the same inductive procedure as above,
the verification of the lower bound is left as an exercise. O
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3. Independent random walks. In the previous section we looked at
attractive linear processes, the covariances of which were given by the Green
function of a transient transition function. In this section we will assume that
(H-1) and (H-2) holds, but replace the transience assumption (H-3) by the
following:

(H-5) (Independence). The {P,: t > 0}-invariant measure pu is of the form
w = [y p, where p € M,(R) satisfies

o5(p) = ( IR ylpp(dx)pwy))l/p <@ forsomep > 2.

We derive L? algebraic decay in this situation and show that the counting
process of independent random walks satisfies this hypothesis.

Note first that (H-5) implies L”(u)-contractivity; more precisely, we have
the following lemma.

LEMMA 3.1. Assume (H-5) for some p > 2. Then there exists a constant
¢, € R* depending on p only, such that

(3.2) If = <Foll, <c,02(p) ¥ 6u(f)?, feA(E).

kez?

Proor. The argument, based on Rosenthal’s inequality, is quite standard.
We may assume that f € _Z,(E) depends on x(k,),...,x(k,) only. Set &, =
{D, E} and o7, = o(x(k,),..., x(k})), and write

f={fhw= XA, whereA;=E,|[flo] - E,[flez_,].
j=1
By Rosenthal’s inequality (cf. Theorem 2.11 of [8]), there is a C, < » such that

”f_ <f>#”§,n = Cp E;L

(élEn[Ail%-ll)m] . JéEﬂ[Aﬂ)-

Also, we have

E,[ 8%ty (5(ky), ..., x(k, ;)

(B 1] (x0ky), o 0,0) )

—B,[ flog](x(ky), ., x(k;_),5)) p(d2)p(dy)

IA

2[[(z = 9)?p(d2)p(dy)di(f) < 03(p) i ()™
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Similarly one shows
B[] <o (1)*[{ fle = yiotan) | o(d2)

<o (1) [[lz = yPo(d2)p(dy) = 02 (p)di( f)".
Putting things together, we obtain

n p/2 n
| F=<Fullpn <G, oz”(p)( Y ow(f)’|  +op(p) ¥ (f)”
j=1 j=1
n p/2
< 2Cpa:(p)( )y 6k,<f)2) . =
j=1

In the independent case, the formulation of the upper bound is the fol-
lowing:

THEOREM 3.3. Assume (H-2) and (H-5) for some p > 2, and choose q €
[1,2). Then there is C(q, d) < « depending on q, p and Q only, such that

sup{|P. £ = <Pl i £ 2(B), 1) = 1)
< t_B(q’d)C(q, d)opz(p), t>0,
where B(q, d) = d(2 — q)/2q = alq,d) + 1.

(3.4)

Proor. The proof is almost the same as the proof of Theorem 1.4. Here
the Green operator G is replaced by the identity I, and G by the constant
I = 1. The absence of the pole |8] "2 in @ is responsible for the faster decay
B(qg,d) =1 + alq, d). Using (H-2) and (3.2), we have

1P f = (Pl n < cp02(0) L 8(P.f)

jezd

= ¢, (p){8(P,f),8(P,f)
< ¢, 02(p)(8(f)*A,,8(f)*A)

= ¢,0%(0)| 1807 exp(~2:3)], .
Now take ¢ € [1,2). Let p’' = q/(2 — ¢)and ¢’ = p'/(p’ — 1). Then by Holder’s
inequality and the Hausdorff-Young inequality we get (3.4) from the above
inequality as
el 187 Fexn(~2t) [, , < e 8 IY ollexn(— 26l
< t7@DC(q,d)3( f)ls,
where we have used (1.6) in
c,llexp(—2td)llx, » < t72/@PIC(q,d) = t7P@DC(q,d),
for some 0 < C(q,d) < . O
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We state, without proofs, the corresponding lower bound and faster decay
on L}(E). The argument follows the same ideas as the proofs of Theorems 1.9
and 3.3:

THEOREM 3.5. Assume (H-1) and (H-5). Then, for each q €[1,2) and
0<e<d(g—1)/q,thereisaclqg,d,e) > 0 such thot

sup ([P, f = Flulli 2 £ € Lo(B) with I3 )l = 1}

>t PaDec(q,d,¢), t> 1.

In the case g = 1, we may take ¢ = 0.

ProrosITION 3.6. Assume (H-1) and (H-5). Then there exists 0 < k(d) <
K(d) < « such that

o) = swp {1 (Pl £ TE) with (Pl = 1)
<t~@/2-1K(d), > 1.

REMARK 3.7. Note that independence implies a faster algebraic decay
B(q,d) = a(q, d) + 1 than in the slowly decaying covariances of Section 1.

We conclude this section with an example showing that the above theory
applies to the countlng process of independent random walks.

Let E = N’ 0 #/(Z%) and set Q = D([0, »); E), the space of right-continu-
ous paths. Let X,: ) — E be the coordinate mapping and let {%,: ¢ > 0} be the
canonical ﬁltration. Consider the linear operator L on £y (E):

Lf(x) = ¥ Qkjx®[f(x*)) - f(»)],
k,jez?

where

x(1), ifi # Kk,j,

2®i(i) = {x(k) — 1, ifi=Kk,

x(j) +1, ifi=j.
Then {P,: x € E} is the Markov family associated with the unique solution to
the martingale problem for L at x € E, and {P,: ¢t > 0} is the corresponding
Markov semigroup.

For each x € E, the process can be constructed as the counting process
associated with a collection

gk 1 <n <x(k), ke 7% ¢t > 0with £k = k
t 0

of independent random walks on Z¢ with transition function Q:
x(k)

X.(3) = )R X(j}(ftk"): jez?.

kezdn=1
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Fix 7 > 0 and let p = p(7) be the Poisson distribution on N with intensity 7. It
is a well-known fact that u = I'T, . ,¢p is an extremal stationary {P,: ¢t > 0}-
invariant probability measure.

A simple application of Kolmogorov’s forward equation shows that the
process is linear and (H-1) is satisfied. By construction, the process is mono-
tone in the sense of (1.3); thus, (H-2) holds. Finally, the Poisson distribution
has moments of all orders, that is, 0,,(p) < « for any p > 2.
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