The Annals of Probability
1994, Vol. 22, No. 1, 145-159

THE ASYMPTOTIC DISTRIBUTION OF INTERMEDIATE SUMS

By SANDOR CSORGG! AND Davip M. Mason2

University of Michigan and University of Delaware

Let X, , < --+ <X, , be the order statistics of n independent ran-
dom variables with a common distribution function F and let %, be
positive numbers such that £, — « and k,/n — 0 as n — «, and consider
the sums I,(a,b) = Ti®*s}, . X, ., , of intermediate order statistics,
where 0 < a < b. We find necessary and sufficient conditions for the exis-
tence of constants A, > 0 and C, such that A, (I, (a, ) — C,) converges
in distribution along subsequences of the positive integers {n} to nondegen-
erate limits and completely describe the possible subsequential limiting
distributions.

1. Introduction and statement of results. Let X, X, X,,... be a
sequence of independent nondegenerate random variables with a common
distribution function F(x) = P{X < x}, x € R, and for each integer n > 1 let
X, ,< -+ =X, , denote the order statistics based on the sample X;,..., X,,.

Let {k,} be a sequence of positive numbers such that
(1.1) k,—>» and k,/n—>0 asn — o,

When the %, are integers, many authors have investigated the asymptotic
distribution of the single intermediate order statistic X, ,_, ,. [See, eg,
Pickands (1975), Balkema and de Haan (1978), Watts, Rootzén and Leadbetter
(1982) and Cooil (1985) and the references therein.] In this paper we are
interested in the problem of the asymptotic distribution of the intermediate
sum

[bk,]
(1.2) I(a,b)=I(a,b;k,)= ¥ Xoi1.i, 0<ac<b,

i=lak,1+1

where [x] is the smallest integer not smaller than x, {&,} satisfies (1.1) and the
empty sum is always understood as 0.
Consider the inverse or quantile function of F defined as

(1.3) Q(s) =inf{x: F(x) >s}, 0<s<l1.
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146 S. CSORGO AND D. M. MASON

It will be more convenient in our investigations to work with the left-continu-
ous nondecreasing function

(1.4) H(s)=-Q((1-s)-), 0<s<l1,

the increments of which

(1.5) A (a,b) :H( [bkn]) _H( [ak,]

n n

), 0<a<b,

will play an important role. Set

1.6 A* b) = An(a’b)> if An(a, b) > O,
(1.6) (@) =1{ if A, (a,b) =0,

and for ¢ = a, b and n large enough define the functions

H( [cka] WT) _H( rcknl)

+ x

VE
" " n s - ¢ kn <x < VI ,
A*(a,b) 2 -
c;x) = —cyk, —cyk,

o/
2

k
), c\/; <x < ™,

t/fn(C;

These are nondecreasing and left-continuous for each n, and satisfy ¢,(c; 0) =
0. We also need the functions

0, v < [fzenn]’
xk k., ak, bk,
o (x) = {H( n")—H(ran])}/A";(a,b), [k ]sxs[k ],
bk bk
%([kﬂ), x>[kn].

Note that ¢, = 0 on R whenever A, (a, b) = 0, and otherwise ¢, is a left-con-
tinuous distribution function on R for which ¢,(x) =1 if x > [bk,1/k,. In
what follows, the symbol = will denote weak convergence of functions, that
is, pointwise convergence at every continuity point of the limiting function in
the interval to be indicated, and —, will denote convergence in distribution.
Finally, introduce the centering sequence

[bk,1/n
(1.7) wa(a,b) = —nf
[ak,1/n

H(s)ds

and, as usual, let W(¢), ¢ > 0, denote a standard Wiener process.
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THEOREM 1. Let {k,} be a sequence as in (1.1) and fix 0 < a < b.

(i) Suppose that there exist a subsequence {n'} of the positive integers {n}
and nondecreasing, left-continuous functions ¢, and ¢, on R, necessarily
satisfying the conditions .(0) < 0 and .0 + ) > 0, such that

(1.8) Yu(c;)=¢.(') onRasn - »,¢c=a,b.

Then there exist a subsequence {n"} C {n'} and a nonnegative, nondecreasing,
left-continuous function ¢ on R such that

(1.9) o¢(a) =0, either p(©) =00re(b+)=1and ¢(*) = ¢(-)onR

and
1 [bk /1
(110) T A% 7~ I~ Z Xn” —i,n" = Mn”(a’b) 9 V(‘//a> @, (pb)
an" Aﬂ:l”(a’ b) i=[ak,,u]+1 !

as n’ — «, where

_W(b)‘//b(x) dx

V(s rthy) = [ (@) du+ [ W(x)de(x) - [

_fj)W(a)wa(x) dx + f:W(x) do(x) + (e(b +) — ¢(b))W(b)

0
+ [_W(b)wb(x) dx.

Furthermore, we necessarily have
(1.11) Yo(x) <p(a+) and ¢(x)2¢(b) -1, x€R,

and the limiting random variable V(,, ¢, ¥,) is degenerate if and only if
Yo=Y, =00n R and ¢ =0 on [a, b].

(ii) If for some subsequence {n'} C {n} and constants B, > 0 there exist
nondecreasing, left-continuous functions ¢, and ¢, on R such that ¥,0) < 0,
¥, (0 +) >0 and

A% (a, b)
(1.12) —-B——dfnr(c;‘) =y, () onR,c=a,b,
and
(1.13) A,(a,b)/B, >0 asn — o,
then
1 bk ]
(1.14)

% . B Z Xn’+1—i,n’_l‘(‘n’(a’b) _)_@V(',[/G,O,l/fb)
Vi Pr |i=lak,1+1
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as n' = . Furthermore, we necessarily have
Ul (x) =0, x>0,
l//b(x) = 0, x < 0,

and the limiting random variable V(i,,0,,) is degenerate if and only if
(»’Ja = 'pb =0.

(1.15)

The following converse result shows that Theorem 1 is optimal in general.

THEOREM 2. Suppose that there exist a subsequence {n'} c {n} and norm-
ing and centering constants A,, > 0 and C,, such that

[bk,]
(116) A Z Xn’+1—i n Cn’ 9 V* asn — o,
Aw | izfam1+1 '

where V* is a nondegenerate random variable. Then there exist a subsequence
{n"} c {n'} and nondecreasing, left-continuous functions ¥, and ¥, on R such
that .(0) <0, y.(0 +) > 0 and

‘/k—n”Aﬂ;L”(aw b)

(117) gs(e; ) = T

Ypo(e;)=¢,() onR,c=a,b

and, for some 0 < 8 < o,
(1.18) Ve As(a,b)/A, > 8 asn' — o,

For the limiting random variable V* we necessarily have the distributional
equality

(119) V* =9 V(‘[/a’ 6@7 ‘»[/b) + Y,

where y € R is some constant and ¢ is a function satisfying the conditions in
and above (1.9). Furthermore, if § = 0, then we have (1.15), and if 6 > 0, then
we have (1.11) with 5¢(-) replacing ¢(+).

Theorems 1 and 2 provide a complete description of the class of possible
subsequential limiting distributions for I,(a, b). It is straightforward to con-
jecture that all the limiting types V(¢,, ¢, ¢,) arise in general. However, we do
not address here the nontrivial problem of constructing an F and a subse-
quence to obtain a prescribed admissible triple (¢, ¢, ). Using techniques
from Csorgd, Haeusler and Mason (1988, 1991) and the fact that ¢, can be a
constant function only if , = 0, ¢ = a, b, it can be shown that V(y,, ¢, §,) is
nondegenerate normal if and only if ¢, = ¢, = 0 and ¢ # 0. It then follows
from Theorems 1 and 2 that I,,(a, b) is asymptotically nondegenerate normal
with some centering and norming sequences along the fixed subsequence {»'} if
and only if ¢, (c;x) > 0asn' »> woforall x € Rand ¢ = a,b and ¢, () = ¢(-)
on R as n’ — « for some function ¢ # 0 satisfying the conditions in and above
(1.9). In this case (1.10) holds true along {n'} with the limiting normal variable
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V(0, ¢,0). An example of the situation when this is true along the whole
sequence {n} is given below.

The limiting random variable V(¢,, ¢, ¢,) in Theorem 1 is a functional of
the Wiener process W on [a, b]. When this functional is linear, that is, when
Y, = ¥y, = 0, the statement can be obtained from a weak convergence result in
the function space Cla, b], proved in Csérgé and Mason (1992), but under a
necessarily stronger condition.

We close by an example. We say that F is in the domain of attraction of an
extreme value distribution if (X, , —¢,)/a, >, Y as n > », where a, >0
and ¢, € R are some constants and Y is nondegenerate. As pointed out in
Csorg6, Haeusler and Mason (1991), with earlier references, this happens if
and only if for some constant y € R,

. H(sx) — H(sy) =TTy /(v —wTY), ify #0,
(1:20) i o —H(sw) ~ | log(x/y),/log(v/w), if y = 0

for all distinct 0 <=x,y,v,w < «. In this case we write F € 9(A,), where,
with appropriate choices of a, and c,,

exp(—y'?), y>0; ify>0,

A (y) = P{Y <y} = {exp(—exp(-y)), y€R; ify=0,
exp(—(-y)""),  y<0; ify<o0.

It is easily checked that if F'€ Z(A,) for some y € R, then for all x € R,
¥,(c;x) = 0 for any choice of ¢ > 0 and e, (x) > qoy(x) a <x <b, for any
choice of 0 < a < b as n —» «, where

(x7"=a™) /(b7 —a7), ify=+#0,
log(x/a)/log(b/a), if y = 0.

The last convergence follows, of course, from (1.20). So if F € 2(A,) for some
v € R, then, by Theorem 1,

¢y(%) = @,,4,5(%) = {

1 [bk,] b

X .- a,b)} —» W(x)do, (x
‘/_—A (a b) {i=[akz"]+]_ n+l-i,n lu’n( )} .@'/; ( ) ¢’y( )
as n — o for any choice of 0 < a < b < » and sequence {k,} as in (1.1).

An unexpected connection between the convergence in distribution of the
intermediate sums I,(a,b) and the stochastic compactness of the maxima
X, , [for the latter see de Haan and Resnick (1984)] will be pointed out in a
subsequent note elsewhere.

2. Proofs. Let U,,...,U, be independent random variables uniformly
distributed on (0, 1) w1th correspondlng order statistics U; , < -~ < U,
Consider the uniform empirical and quantile processes « () = Vn (G (D) — t)
and B,(1) =Vn(t - U,1),0 <t <1, whereG(t)—n‘l#{1<k<n U, <t},
0<t<1l,and U(#)=infl0<s<1: G(s)>t}, 0<t <1, U(0)= Ui ., s0
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that U (¢) = U, if (k—1/n<t<k/n, k=1,...,n. The tail empirical
process [cf. Mason (1988)] and the tail quantile process [cf. Cooil (1985)]
pertaining to the given sequence {%,} satisfying (1.1) are defined as w,(s) =
(n/k,)%a,(sk,/n) and 0,(s) = (n/kn)1/2ﬁn(skn/n), 0<s<n/k, As
Mason (1988) points out, for any T > 0, w,(-) converges weakly in the
Skorohod space DI[0,T] to a standard Wiener process. Then by a Skorohod
construction there exist versions w,(-) of ,(-) on a suitable probability space
such that for any T > 0 we have the distributional equalities

(2.1) {wa(s):0 <5 <T}=5{W,(s):0<s<T}
for each n large enough to have n/k, > T and

(2.2) sup |w,(s) — W(s)| >0 as.asn — o,

0<s<T
where W(s), s > 0, is a standard Wiener process. Then by the obvious left-con-
tinuous version of Lemma 1 of Vervaat (1972) we obtain the versions v,(-) of
7,(+) defined on the same suitable space such that

(2.3) {v,(s):0<s <T}=5{0,(s):0<s<T}
for all n such that n/k, > T and
(2.4) sup |v,(s) —W(s)| >0 as.asn - x.
O0<s<T
From the definition of H in (1.4) and (1.3), we have
(X153 Xn ) =9 (=H(U, ,),..., —H(U,,)), n=z=1l

If we integrate with respect to a right-continuous or a left-continuous
function, we accordingly use the symbol [ to mean [, ,, or [, ,). Using this
convention [in fact already used in (1.7) and in the formulatlon of the theo-
rems), the notation in (1.2) and (1.7), integration by parts and some elemen-
tary rearrangements, from the last distributional equality we obtain

I(a,b) = wo(a,b) =g n [ (G,(u) ~ u) dH(u)

[ak,1/

_n/['Un(akn/n)(G'n(u) _ [a n])dH( u)

ak,1/n

N fu(bkn/n)( u) — [bk”])dH(u).

bk,1/n

Substituting u = sk,/n and going over to the probability space of relations
(2.1)-(2.4), we arrive at

(2.5) I(a,b) = p,(a,b) =g M, — R,(a) + R,(b),

where

k
M, = \/k—n‘ffbkn]/knwn(s) dH( Snn

[ak,1/k,
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sk,

Aiming at a proof of Theorem 1, we handle these terms in separate lemmas.

and, for ¢ = a, b,

-/ kv (ck, /) +ck, |k,
R,(c) = flck,,v;/,._ SV w,(s) + sk, - [ckn]}dH(

LEMMA 1. For any subsequence {n'} C {n} there exist a further subsequence
{n"} ¢ {n'} and a nonnegative, nondecreasing, left-continuous function ¢ such
that (1.9) holds and

Mnll W d
—_—
VR &% (a,b) -/[‘a,b] (s) de(s)

b
= ["W(s) de(s) + (¢(b+) — o(b))W(b)
almost surely as n’ — .

Proor. We distinguish two cases. In the first one there exists a subse-
quence {n"} C {n'} such that A .(a,b) = 0 for all n". In this case ¢, = 0 on R,
and hence we have (1.9) with ¢ = 0 on R, implying the second statement with
zero limit.

The second case occurs when A,(a,d) > 0 for all »’ large enough. In this
case, since ¢,(a) = ¢,(ak,l/k,) =0, ¢, (bk,l/k,) =1, [bk,/k, >b,
[bk,/1/k, — b as n' > =, by a Helly selection we can choose a subsequence
{n"} c {n’} such that (1.9) holds with ¢(b + ) = 1.

To prove the second statement in the present second case, notice that

Mnrl © d
D) f| wie(s) do(s)

and

[we(5) doets) = ["W(s) dou()| < sup up(s) = W(s)

0<s<2b

for all sufficiently large n”, and this bound goes to 0 almost surely as n’ — =
by (2.2). Furthermore, if a <d < b is a continuity point of ¢, then, since
¢(a) =0 and ¢(a) = 0 and since for

T,(6) = [V (W(s) = W(b)) doy(s)

we have

IT,(b)|<  sup [W(s)—W(b)|—>0
b<s<[bk,|/k,
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almost surely as n — «, we obtain that

[ W(s) dew(s) = [(W(s) = W(a)) dey(s) + W(a)es(d)

+f "(W(s) — W(b)) do(s) + W(b)(1 — pu(d))
+ T,(b)

converges almost surely to

[[(W(s) = W(@) de(s) + W(a)e(d)
+[U(W(s) = W(B)) de(s) + W(B)(1 = o(d))
= [W(s) de(s) + WB) 1= 0(b) = [ W(s)de(s). O

Lemma 2. If (1.12) holds for some sequence B,, > 0 [that can be A% (a, b)]
along {n'} with limiting functions y, and ¢, having the properties listed above
(1.12), then forc = a, b,

Rn’(c) 0
- x) dx
‘V k n' Bnl /— W(C)wo( )

almost surely as n' — .

Proor. By the change of variables
[ck,] N x
Tk, VR

where c is either a or b, we obtain

—v.(ck. N/ k., Ck/ X
vn([c,,]/,,){wnl([ w1 N )+x}

Rn’(c) _ f

n On 0

ck k. ck .,
M [EA N [ER]
p n n n
% B,

Therefore, denoting the integrator by ¢fi(c;-), using (2.2) and (2.4) for
T = 2¢, say, and the almost sure uniform continuity of W(-) on [0, 2¢c], it
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follows that
Rn’(c)
kB,

n n

_ fO_W(c)+o<1){W(c) +o(1) +x} dyi(c; x)

= [TTW(e) + %) dyi(e; ) +o(1)
_ fO_W(C)xdlﬂif'(c?x) + W(c)yi(e; —W(c)) + o(1)
_ fO_W(C)xd%(x) + W(e)y.(—W(c)) +o(1)

=f0 ¥ (x) dx + o(1)
—-W(e)

almost surely as n’ — ®, where we also used the fact that —W(c) is almost
surely a continuity point of ¢,(+) O

The next lemma is needed for the proof of the degeneracy statements in
Theorem 1.

LemMa 3. Let g and h be two Borel measurable functions on R and let Z,
and Z, be two independent nondegenerate normal random variables. If
g(Z) = W(Z, + Z,) almost surely, then g and h are constant almost every-
where on R.

Proor. The condition implies that P{g(Z,) = h(Z; + Z)|Z, = 2z} = 1 for
almost all z € R, which in turn implies that P{g(z) = h(z + Z,)} = 1 for
almost all z € R. Thus g(z) = h(x) for almost every z and x, which occurs
only if both g and A are the same constant almost everywhere. O

PROOF OF THEOREM 1. All the statements in (1.9), (1.10) and (1.14) follow
directly from the distributional equality (2.5) and Lemmas 1 and 2.

To prove (1.11) in case (i), let x € R be arbitrary and consider a continuity
point s of ¢ in (a, b). Then, since H is nondecreasing, ¢,.(a; x) < ¢,,(s) for all
n" large enough. Hence, letting n” — o, lim sup ¢,,(a; x) < ¢(s), which, letting
now s | a, implies the statement for ¢,. Similarly, for all x € R and n” large
enough,

Up(b;x) = {H(sk,/n") — H([bk,,/n")}/Ni(a, b)
= (Pn”(s) - 1’

and the statement for , follows by letting first n” —  and then s 1 b.
The corresponding statement (1.15) in case (ii) follows in exactly the same
way, using also (1.13).
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Finally, we prove the claims about the degeneracy of the limiting random
variables. If all ,, ¢ and ¢, are identically 0, then V(¢,, ¢, ¢,) = 0 almost
surely. To prove the converse statements, set

-y
g.(y) = fo Yy (x)dx, yeER,c=a,b.

Assume that in case (i), V(¢,,0, ¥,) = C almost surely for some C € R.
Writing Z, = W(a), Z, = W(b) — W(a), g = g,, and h = g, + C, the degener-
acy statement follows directly from Lemma 3.

Assume now that V(y,, ¢, ¢,) = C almost surely in case (i). Using the
notation just introduced, this means that

(2.6) 8Zy) + v1Zy+Zy+8,(Zy +Zy) —C+v32,=0
almost surely, where y, = ¢(b + ) — ¢(a),

¥y = f[a ,(u @) de(w)/(b-a)
and

Zy= [ W) de(w) = yW(a) = 7,(W() = W(a)

= f[ V(@) de(w) =12y = 22,

so that Z,, Z,, and Z; are independent. Therefore, (2.6) can happen only if
both Z, and g(Z,)) + y,Z, + g,(Z, + Z,) — C + y,Z, are degenerate. How-
ever, since ¢(a) = 0, Z, can degenerate only if ¢ = 0 on [a, b]. But in this case
v1 = vs = 0, and hence Lemma 3 implies again that ¢, = , = 0 on R exactly
as in case (ii). The theorem is completely proved. O

In the proof of Theorem 2 we will use the representation in (2.5) in the form
(2.7) I(a,b) — u,(a,b) =g M, + R,(b) - R,(a).

where for ¢ = a, b, as seen in the proof of Lemma 2,

e 2] a5

and, transforming back the tail empirical process,

[bk,1/n
[ak,1/n

M, = n(G,(u) —u)dH(u),

where
Gn(u)=u+mwn(nu/kn)/n, O<u=<l,

for which we have {G,(1): 0 <u < 1} =, {G(u): 0 <u < 1}.
We begin by establishing several lemmas needed in the proof.
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LEmMA 4. For D,(a,b) = IR ,(b) — R () /(J/E, X(a, b)) we have
lim liminfP{D,(a,b) <M} > 0.

Moo n-ow

Proor. In the course of the proof of (1.11) we have already shown that

(2.8) limsupy,(a;x) <1 forx >0
and
(2.9) limsup (=¢,(b;x)) <1 forx <0.

Also, as in the proof of Lemma 2,

D,(a,b) = {(W(b) +x +0(1)} dy,(b; x)

/’—W(b)+o(1)
0

(2.10)
_/;)—W(a)+0(1){W(a) +x +o0(1)} dy,(a;x)

almost surely as n — . Hence, introducing the event A = {—-1 < —W(d) <
-1/2,1/2 < —W(a) < 1} and using (2.8) and (2.9), we see that D,(a,b)], <
1,4 + o(1)} almost surely for all n large enough, where 1, is the indicator of
A. Noting that P{A} > 0, the lemma follows. O

LeMMA 5. Whenever there exists a subsequence {n'} c {n} such that
A, (a,b) > 0 for all n' large enough and

(2.11) —Y(a;x) >0 forsomex <0 asn — o
or
(2.12) U (b;x) > o forsomex >0asn - »

and a sequence of positive constants A,, such that

(213)  Dy(a,b)yk, Ay(a,b)[(Vhy Au(a,b) v Ay) = Op(1)

as n’ = «©, where D,(a,b) is as in Lemma 4 and x V y = max(x, y), then
(2.14) MAn/(a,b)/An/ -0 asn >

and for all x € R,

(2.15)  limsupyk, &% (a,0){|dw(a;x)| +|dy(b;x)]} A, < .

n —o

Proor. First assume that (2.11) holds for some x < 0. [By (2.8) we only
have to consider negative arguments.] Choose any y < x < 0 and consider the
event B={-W(a) <2y, —1< —W(b) < —1/2}. Using (2.10), (2.9) and
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(2.11), we see that with probability 1 for all »n’' large enough,
D,(a,b)1; > ]lB{fO(—2y +z+o0(1)dy(a;z) —2(1+ 0(1))}
y

> 1g{(y + o(1))¥n(a;5) — 2(1 +o(1))}.

Since P{B} > 0 and yy,(a;y) = © as n’ = », in order for (2.13) to hold we
obviously must have

lim sup { _(/’n’(a; x) Vv kn’ An’(a’ b)/(v kn’ An’(a” b) v An’)} <®
for all x € R by the monotonicity of ,,(a; - ), which of course can only happen
if (2.14) holds and

limsup |¢,(a; x) |k, A (a,b)/A, <o forall x€R.

n — o

A similar argument shows that if (2.12) holds, then again (2.14) must be true
and

lim sup |¢,,(b;x) |\/k,y A (a,b) /A, <o forall x €R.

n — o

Putting everything together and noting also that by (1.6) we presently have
A, (a,b) = A (a, b) for all large r/, it is now routine to argue that whenever
(2.11) or (2.12) hold along with (2.13), we must have (2.14) and (2.15). O

A slight variation of the proof of Lemma 5 also gives the following.

LEMMA 6. Whenever there exists a subsequence {n'} c {n} such that
A, (a,b) =0 for every n' and positive constants A,, such that {R,(b) —
R, (a)}/A, = Op(1) as n' — =, then we have (2.15) for all x € R.

Next we look at the term M, in (2.7). Since, using the definition in (1.5) and
the notation x A y = min(x, y), we clearly have

EMZ = [V [PV (4 p v — ww) dH(u) dH(v) < [bk,] 83(a,b)
[ak, 1/n “lak,1/n

for any n > 1, we obtain the following.

LEMMA 7. On any subsequence {n'} C {n} on which A,(a,b) > 0 for all W
large enough,

My /(e 8%(a,b)) = 0p(1) asn' — .

Finally, we quote a variant of Lemma 2.10 of Csérgs, Haeusler and Mason
(1988), which is obtained by the original proof.
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LemMA 8. Let Y, , and Y, , be two sequences of random variables such
that Y, , + Y, , = Op(1) as n — =, the sequences |Y, ,| and |Y, ,| are asymp-
totically independent, and for at least one of i = 1 ori = 2,

(2.16) lim liminfP{|Y; ,| < M} > 0.

Moo n—oow

Then both sequences Y, ,, and Y, , are stochastically bounded.

Proor oF THEOREM 2. Assume (1.16). To get rid of the centering, for each
n' let M,, + R’ /(b) — R’,(a) be an independent copy of M,, + R (b) — R ,(a)
in the representation (2.7). Then, since (1.16) can be written as

(217) A):’l{In'(a} b) - /"Ln’(a’ b)} + A;’I(Iu‘n'(a’ b) - Cn’) e v*
as n' — oo, it implies that the sequence
(M, + R,(b) = R, (a) = (M} + Ryu(b) = Ryy(a))} /(A v Vo A(a, b))

is stochastically bounded. Since by Lemmas 4 and 7 the sequence

Yy = {My + Ry(b) = Ry(a)}/(Ay v VEy Ay(a,b))

obviously satisfies (2.16), Lemma 8 therefore forces

(M, +R,(b) - Rn,(a)}/(An, VE, A(a, b)) =0p(1) asn > x,

which by Lemma 7 implies that

(218) {R,(b) = Ry(a)}/(An V Vhw Ay(a,b)) = Op(1) as ' .

We shall now show that (2.17) and (2.18) imply the existence of a subsequence
{n"} c {n'} such that (1.17) and (1.18) hold along {n"}. We must consider three
separate cases.

Case 1. A,(a,b) > 0 for all n' large enough and
(2.19) limsup (|, (a; x)| +|¢,(b;x)|) <~ forallx € R.

n —ow

In this case, by a Helly selection one can choose a subsequence {n”} c {n'} such
that

(220) (lfn”'(c; ) = (lf:() onRas n” - ®,c=a, b’

for some functions ¢* and ¢ satisfying the usual conditions. By Lemma 1
and its proof we know that for a function ¢, along perhaps a further subse-
quence {n"} c {n"}, we have (1.9),

Y= —" 5 Z(p) = d
" an” Aﬂ;;"(a,b) ” (<0) '[[a,b]W(S) ¢(S)
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and

[bk ]/ b
Y, = / W(s)dey(s) +o(1) = Z, + o(1)
a
almost surely as n” — o, where Z,. is easily seen to be a normal random
variable with mean 0 and

[bk 1/ Ry 10k /Ry
EZ,%// = [ [ (u A U) ngnu(u) qunn(U) =>a.
a a

This implies that the normal random variable Z(¢) is nondegenerate, which in
turn implies that ¢ # 0. Then by part (i) of Theorem 1 we have (1.10) with the
nondegenerate limit V(, ¢, ;) and this, (2.17) and the convergence of types
theorem yield (1.18) and

(2.21) {pf’n(a, b) - Cn”}/An” —> 7y as n' — o

for some constant y € R. Now (1.18) and (2.20) imply (1.17) with () =
3YX(+), ¢ = a, b, and we see that for V* in (1.16) we have (1.19) with the y
from (2.21).

Case 2. A,(a,b) > 0 forall n' large enough and we have (2.11) or (2.12).
In this case (2.18) means exactly condition (2.13) of Lemma 5 and hence we
have (2.14) and (2.15). Therefore, by (2.15) and a Helly selection we see that
there exist an {n"} c {n'} and two functions ¢, and ¢, with the usual proper-
ties such that (1.17) holds. Now (2.14) means that in fact we have (1.18) with
8 = 0 along the original {n'}. Thus, by part (ii) of Theorem 1,

{In”(a’ b) - /J‘n”(a’ b)}/An" ~9 V((lfa’oi lr,’b) as n’ — o,

which in conjunction with (2.17) gives (2.21) for some y € R by convergence of
types. Hence we also have (1.19) with § = 0.

Cast 3. There exists a subsequence {n"} C {n'} such that A,.(a,b) =0 for
all n”. Then by (2.18) and Lemma 6 there exist an {n"} c {n”} and two
functions ¢, and ¢, with the usual properties such that (1.17) holds, and since
(1.18) now trivially holds with 6 = 0, the proof can be finished exactly as in
Case 2. This completes the proof of the theorem. O
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