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CURRENT FLUCTUATIONS FOR THE ASYMMETRIC
SIMPLE EXCLUSION PROCESS!

By P. A. FERRARI AND L. R. G. FONTES
Universidade de Sédo Paulo

We compute the diffusion coefficient of the current of particles through
a fixed point in the one-dimensional nearest neighbor asymmetric simple
exclusion process in equilibrium. We find D = |p — g|p(1 — p)|1 — 2p|, where
p is the rate at which the particles jump to the right, g is the jump rate to
the left and p is the density of particles. Notice that D vanishes if p = q or
p =1/2. Laws of large numbers and central limit theorems are also proven.
Analogous results are obtained for the current of particles through a position
travelling at a deterministic velocity r. As a corollary we get that the equi-
librium density fluctuations at time ¢ are a translation of the fluctuations
at time 0. We also show that the current fluctuations at time ¢ are given,
in the scale £1/2, by the initial density of particles in an interval of length
|(®@ — @)(1 — 2p)|t. The process is isomorphic to a growth interface process.
Our result means that the equilibrium growth fluctuations depend on the
general inclination of the surface. In particular, they vanish for interfaces
roughly perpendicular to the observed growth direction.

1. Introduction. The nearest neighbor one-dimensional simple exclusion
process is the Markov process 7; € {0, 1}% with generator given by

Lfm =" 3" plx, (1 - n(y) [far?) - Fm)],

x€EZ y=x+1
where f is a continuous function,

P, ify=x+1,
p,y)=4gq, ify=x-1,
0, otherwise,

p+g=1and

"](Z), if z 76 XY,
nx’y(z) = n(x)7 if z= Y,
n(y), ifz=x.

A convenient way to describe the process is the so-called graphical construction.
At most one particle is admitted at each site x € Z. Each pair of sites (x,x + 1)
has associated two Poisson process with rates p and g, respectively. An arrow
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pointing from x to x + 1 is attached to each event of the process with parameter
p, and arrows pointing from x + 1 to x are attached to events of the process
with parameter g. All these Poisson processes are independent and the null
event “two arrows occur at the same time” is neglected. When an arrow ap-
pears pointing from x to y, if there is a particle at x and no particle at y, then at
that time the particle jumps to the empty site. For any other configuration noth-
ing happens. This process was introduced by Spitzer (1970) and has received
a great deal of attention. The existence of the process and the ergodic proper-
ties were studied by Liggett (1976, 1985). The set of invariant measures is the
set of convex combinations of the product measures v, and blocking measures.
In the case p > ¢ the blocking measures concentrate on a denumerable set of
configurations and have asymptotic density 0 and 1 to the left and right of the
origin, respectively. When p = q there are no blocking invariant measures. The
hydrodynamical limit was studied by Andjel and Vares (1987) and extended by
Benassi, Fouque, Saada and Vares (1991) for monotone initial density profiles.
Rezakhanlou (1990) proposed a general approach to prove a law of large num-
bers for the density fields of attractive particle systems that works for general
initial density profiles. Landim (1993) uses this law of large numbers to prove
local equilibrium.

The current through rt at time ¢ is defined by oJ;;; = number of particles to
the left of the origin at time zero and to the right of r¢ at time ¢ minus number
of particles to the right of the origin at time zero and to the left of r¢ at time
t. Let X7 be the position of a tagged particle initially located at x. Then we
define formally the current as the random process depending on the initial
configuration 7 given by

Jrt ) = Y n@U{XF > rt} — Y neo1{XF < rt}.

x<0 x>0

We assume that the distribution of the initial configuration is the stationary
measure v, the product measure with density p. Under this initial distribution,

(1.1) Edyy = ((p — @)p(1 — p) — rp)t.

The identity holds if ¢ is integer, which we assume without loss of generality
[if not, the difference is O(1)]. Our main result is the following. It holds for any

p,q,p+q=1.

THEOREM 1. Law of large numbers:
o
(1.2) thm - = ((p = @)p(1 = p) —rp), almost surely.
—00

Central limit theorem: Let G(0,D) be a centered normal random variable with
variance D. Then

(1.3) lim M

=G(0,Dy),
t—o0 V@ (;( J)
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in distribution, where D = lim;_, o(VeJy: ¢ /t) and V is the variance. Furthermore,
. VJ,
(L4) Jim 2 = p(1 - p)|(p — @)1 —2p) ~ 7],
Dependence on the initial configuration:
2
1.5) tlim E(Jrs — Nth(r,;;) —(p — q)p*t) _

where h(r, p) = r—(1-2p)Xp—q), Ny(n) = =X~ _on(x) for r > 0and N(n) = $2_,n(x)
for r < 0. The quantity Ny (n) depends only on the initial configuration 7.

0,

REMARK. Notice that forp =qgandr=0orforr=(p —q)X1—2p), Dy=0.
The first fact can be proven using Arratia (1983) or a formula given in De Masi
and Ferrari (1985a). Indeed, De Masi and Ferrari (1985b) showed that for p =
1/2 and all p,

. Vidos \/5
(1.6) tl—lglo 172~ ;p(l—p)

and that
Jim t~V4J,y, = N(O, \/gp(l - p)) )

The fact that Dy = 0 for r = (p — ¢)(1 — 2p) is more surprising. For p = 1 and
r = (1 - 2p), we show that

.7 V20, = p(1 — p)E|R? -(1- 2p)t|,

where R? is the position of a second class particle initially located at the ori-
gin. For p = 1, a second class particle interacts with the other particles in the
following way: It jumps to empty sites to the right at rate 1 and interchanges
positions with (“first class”) particles to its left at rate 1. Spohn (1991) gives
heuristic arguments suggesting that VR? behaves as #*/3. This would imply
that the variance of the current through (1 — 2p)¢ behaves as /3.

An important corollary of (1.4) is that it allows one to show that the equilib-
rium fluctuations translate rigidly in time. More precisely, let £ be the fluctu-
ations fields defined by

(1.8) @) =2y B(ex) [1e-1,x) — En,—1,@)],

for smooth integrable functions ®. We prove in Section 6 that, letting 7 =
(p —q)1 - 2p),

(1.9) lim E (& ~ Te-15£8) =0,
E—

where the translation 7 is defined by 7,£5(¢) = ££(7,®) and 7, ®(x) = (x +y).
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In Section 2 we give some results on the behavior of tagged and second class
particles. In Section 3 we compute the current fluctuations (1.4). The law of large
numbers (1.2) is shown in Section 4. The dependence on the initial configuration
(1.5) and the central limit theorem (1.3) are shown in Section 5. In Section 7 we
discuss consequences of our results on the motion of an interface model related
to the simple exclusion process.

2. The motion of tagged and second class particles. We recall briefly
some results concerning the motion of a tagged particle and show a lemma re-
lating the tagged particle to a second class particle. We assume that the initial
distribution of 7 is the equilibrium measure v,. At time 0, a particle is put at
a fixed site x, regardless of the value of the configuration ny(x). This particle
is tagged and followed. It interacts by exclusion with the other particles. Its
position is denoted X¥. The joint process (7, X¥) is Markov and the measure
v, = V(- | n(0) = 1) is extremal invariant for the (Markov) process 7x:7;. Under

]
this distribution,

2.1) EX?=(1-p)p—q).

Kipnis (1986) proved the following law of large numbers:

(2.2) tl—iglo )—i'? =1 -pXp—9q)

and the following central limit theorem:

X?—(1- p)p -kt

2.3 li = G(0,Dy),
(2.3 Jim 7 (0,Dx)
in distribution. The variance Dy is given by

. VX
(2.4) Dy = lim Tt =(1-p)p -9

The limit was computed by De Masi and Ferrari (1985a). These results also
follow from a recent extension of Burke’s theorem due to Ferrari and Fontes
(1992) that states the following. Assume that the initial distribution of 7; is
given by v;,. Then there exist random variables K > 0 with a finite exponential
moment [i.e., for some positive 4, Eexp(d K) < oo] and K; satisfying P(|K;| >
k) < P(K > k) for all £ > 0 (i.e., |K;| < K stochastically), such that

(2.5) X) =N, +K;,

for all ¢ > 0, where V; is a Poisson process with parameter (1 — p)(p — ¢). In
particular, this implies that if r < (1 — p)(p — q), then

E( (X0 — r)?1{X0 < rt
(2.6) lim ((‘ ) 1 })

t—00 t

=0.
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Now we recall the definition of the so-called second class particle and some re-
sults concerning its asymptotic behavior. Let n* be the configuration 5 modified
at x, that is, 7*(x) = 1 — n(x), n*(y) = n(y) for y # x. Let n* be the process with
initial configuration #*. Then, using the graphical construction, the proceses
ne and 7 can be realized simultaneously with the same arrows. In this way
the number of sites where the two configurations disagree is exactly 1 for all
t. This is the basic coupling of Liggett (1976, 1985). Calling R} the site where
the configurations disagree by time ¢, one can show that the process (7, R%) is
Markovian and that R} can be described as a second class particle: It jumps over
nearest neighbor empty sites at rates g and p to the right and left, respectively,
and exchanges positions with (first class) nearest neighbor particles at rates g
and p to the right and left, respectively. Details can be found in Ferrari (1992),
as well as the following law of large numbers:

. RY

2.7 lim =t =(p —¢)(1—2p), as.
t—oo t

Since the absolute value of the position of a second class particle is dominated

above by a Poisson process of rate 1, R? /¢ is uniformly integrable. Then

. ER)-rt)* _[o, if r>(p —q)1-2p),
(2.8) tllglo t B {(p —q)X1—-2p)—r, otherwise.

We also have, for all pand p > q,

0 +
2.9) im 28 %) _
t—o0 t

Next we show a technical identity needed in the computation of the current
fluctuations. Fix a configuration n with infinitely many particles to the right
and left of the origin and with a particle at the origin. Let U} be the position
at time ¢ of a tagged particle initially at y for the configuration 7. Let Z} be the
position at time ¢ of a tagged particle initially at y for n°, the configuration 7
without the particle at the origin.

LEMMA 2.10. Forallr € R it holds that
(2.11) Zn(y)l{Zty >rUY<r}=1{R)<r,X) >r} as

y<0

Proor. Let {y;:i € Z} be the ordered occupied sites of n such that y, = 0.
Let {z;:i € Z \ {0}} be the ordered occupied sites of °, in such a way that
y; = z; for all i # 0. Let 7} denote the label of the n particle that at time ¢ is
in the position y;(¢) = U}, if there is such a particle. Assign to 7} the symbol @
otherwise. In this way, {(i,n}):i € Z} tells us how the particles of the processes
n: and 7} are coupled. Assuming vy = 0 and T = O define, forn > 1,

T, =inf{t > T, 1:m"™" # @}, v, =i, fori satisfying ) ~* =i.
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There is always a discrepancy of particles between 7; and 70, and 7; has one
more particle. Initially the (only) discrepancy is located at 0 and 7 = @ but
this location changes in time. The time of the nth change is T, while v, is the
index of the new location. At time ¢ the discrepancy is located at y;(¢) if 7} = @.
It holds by induction on n that if ¢ € [T, T',+1), then

(2.123) 7'(:” = ¢’
(2.12b) if v, >0, thenri={" if i € [0,0n],
i+1, if i€ [0,v,);
. ', if i ,0 c,
(2.120) if v, <0, thenri={" if i € [vn, 0]
i-1, if i€ (vs,0].

Now, we have
(2.13) X0 =U,

and all (2.12) is saying is that, for ¢ € [T},, T},.1),

(2.14a) RY = U™,
. z}, if i € [0,v,)°,
(2.14b) if v, >0, then U ={"" ific (0]
Zy=, if i€ [0,vn);
. [z if i € [v,,0]°
2.14c if v, <0, thenU =4 ¢’ mL
( ) ton= t {zty‘-‘, if i € (vs,0].

The exclusion interaction implies that, forj < i,
(2.15) Z) <z} and U} < U}
So, for i < 0,Z} > r, and U}* < r imply by (2.14b, c¢) that ¢t € [T}, Ty41) for

which v, < 0. This, (2.14c) and (2.15) imply that, for all j # i, either Z}” < r and
UY <rorZ} >rand Uy > r. Hence,

Y 1{z¥>r U <r}= 1{ Ufzr>ruy< r}}
i<0 <0
<R} <r,X>r},

where the inequality holds by (2.13)—(2.15). For the reverse inequality observe
that if ¢ € [T}, Ty41), then

U >r, U} <r implies Z})'>r, U’ <r

for some i < 0, by taking i = min{k < 0: U}* > r} — 1. This proves the lemma. O



826 P. A. FERRARI AND L. R. G. FONTES

3. Current fluctuations. In this section we prove (1.4). Recall that X}
denotes the position of a tagged particle that at time 0 is put at x. For a fixed
initial configuration 1, we write J;+(n) = (Jrt,:(m))* — (Jrs,:(n))~ where

B (rem)" =D n@UXF > rt},  (Jre)” =Y n@1{XF <rt}.

x<0 x>0

By translation invariance,

EWJ, )t =E ( > ne1{Xs > rt})

x<0
= P P{X; > rt} = pE(X0 — rt)",
(3.2) x<0
EWJ:)~ =E < Z n()1{X; < rt})
x>0
=p> P{Xf <rt} = pE(X? —rt)".
x>0
Since J*J~ =0,
(3.3) VJ"t,t = V(th,t)+ + V(th,t)— + 2E(th‘t)+E(th‘t)—.

We compute now V(Jy 1)t = E(Jre4)*)? — (E(Jye)*)?. We have
E((UJpee))” = pEXQ —rty +2 3 E(nCem(n1{XF > re}1{X} > rt})
y<x<0
= pEX? —rt)* +2p* Y P(X} >rt)
3.4) y<x<0

+2 Y (E(nm»)UX? > rt}) - P°P(X} > rt) )
y<x<0
=A1(t) + Ax(t) + A3(2).

Reordering the sum in the second term of (3.4),
Ax(®) = PE(XD — rt)*)” — PPEX? — rt)*.
The third term in (3.4) is
As®)=2p Y [P(X7 > rt,n(y) =1nk) =1) — P(X) > rt,n(y) = 1)].

y<x<0
Let A, B and B¢, the complement of B, be events with positive probability. Then
P(A|B) — P(A) = P(B°X P(A|B) — P(A|B°)). Hence we write

As®) =201 —p) > [P(X? > rt,n(y) = lin() = 0)
y<x<0

(3.5) - P(X? > rt,n(y) = 1|n(x) = 1)]
=-2p(1-p) > E(nnN{Z* > rt, UP* <rt}),

y<x<0
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where U}"* (respectively, Z}"*) is the position of the tagged particle starting at
y for the system where a particle is present at x (respectively, is not present at
x). In order to compute the last line of (3.5), we couple two processes that start
with a configuration chosen according to v,, but one of them has a particle at
site x while the other has a hole at x. We choose the basic coupling for which the
number of discrepancies is always one [see the discussion before (2.7)]. Denote
R the position at time ¢ of the disprepancy initially at x. By (2.11),

As(®) = —2p(1—p) Y P(XF > rt, R < rt)

x<0
=—2p(1-p) Y P(XF>rt) +2p(1 - p) Y P(R} > rt, X¥ > rt)
(3.6) x<0 x<0
=201 - PE(X, —rt)" +2p(1 - p) Y _P(R) —rt > x, X)) — rt > x)

x<0
= —2p(1 — PE(X0 — rt)* +2p(1 — p) (E(R? —rt)* - L;}),

where
L,Q:ZP(R?—rt>x,Xt°—rt§x).

x>0

For the identity of the second terms of the second and third lines of (3.6), we
have used translation invariance. From (3.4),

E(Jn0)*)" = pE(X. —rt)" + B ( (X0 - rt)+)2 ~PEX? —rt)"
—2p(1 - PE(XL —rt)" +2p(1 — p)(E(R;’ —rt)" - L;”t)
and, using (3.2),
V)" = ?V(X0 —rt)" — p(1 — pE(X? - rt)”
(3.7 o s
+20(1— p)(E(RD - rt)" — Ly,).

Now we compute the variance of (J,+)™:

E((Ju)")’ = pEXL —rt) " +2 Y E(nlom(n1{X? < rt})

0<x<y
=pE(XP —rt)” +2p* Y P(X? <rt)
(3.8) 0<x<y
+2 Y (E(nbmy X} <rt}) - ;2P < t))
0<x<y
= By(¢) + By(®) + Bs(®).

The second term in the last line of (3.8) is, analogously to As(¢),

Byo)= PE((X0 — 1)) — PRS- rt)”,
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and in a similar way to the computation of A3(¢) in (3.5),
Bs(¢) = —2p(1 — p)L,
where

L;=> PR} —rt>x, X —rt <x).
x<0

Then,
B.9) V(Ju) =p V( —rt)” +p(1— PEX —rt)™ — 2p(1 — p)L ;.
Now
L,+L; =) PR} -rt>x,X) - rt <x)=ER] - X0)".
x

We can now put everything together and compute the variance of the current.
Substitute (3.2), (3.7) and (3.9) in (3.3) to obtain

Vrts = p?(VE? —rt)" + V(XP —rt) ™ + 2E(X? rt) EXP - rt)”)
—p(1 - p)(EXP —rt)" —EX) —rt)”)
(3.10) +2p(1 - p)(E(RY - rt)" — E(R) - X7)")
= p?VX? — p(1 — p)E(X} — rt)
+2p(1 - p)(E(RY - rt)" — E(BY - X9)").
Taking the limit as ¢ — oo and using (2.1), (2.4), (2.8) and (2.9),

.V,
lim % = p(1 - p)|(p — )1 —2p) —r|.

t—o00

This shows (1.4). In order to show (1.7), we assume p = 1. In this case it is
known that X} is a Poisson process of rate (1 — p) [Spitzer (1970), Liggett (1985)]
for which

EXY)=V(X%)=(1-p¢ and (R?-X°)"=0.

Using the fact that the current through —r¢ when the density is 1 — p has the
same law as 44, (3.10) reads

V20 = (1 — p)E|RY — (1 — 2p)t|.

Observe that (3.10) works also for p = 1/2: From (3.10) and VX? = \/2t/7r(1 p)/
p + o(y/t) [Arratia (1983)] one can deduce (1.6). The key pomt is that a sec-
ond class particle in symmetric exclusion behaves just as a simple symmetric
random walk.
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4. Law of large numbers. We prove now the law of large numbers. It
holds that

(4.1) lim J7¢ (p—q)p(l—p)—rp

t—oo ¢

a.s. with respect to the process with initial distribution v,. The proof of (4.1)
would be a consequence of the ergodic theorem if one knew that the product
measures v, are extremal invariant for the process 74 7;, where [-] is the integer
part [see Kipnis (1986)]. It is not clear to us how to show this extremality. To
overcome the difficulty consider a Poisson process U(¢) with rate )\, independent
of 7;. It is not hard to show that the invariant measures for the process my¢)n;
are translation invariant. Then use Liggett’s (1976, 1985) techniques to show
that the set of extremal invariant measures for 7y, is {v,:0 < p < 1}. Hence
Juw ¢, the current through U(¢) satisfies a law of large numbers.

4.2) lim Juw. ¢ =(@-q@p(1—p)—Xp

t—o00 t
a.s. with respect to the process with initial distribution v,. Now use that U(¢)/¢
converges to )\ almost surely and the fact that the current is a decreasing func-
tion of r to conclude the proof of (4.1). This argument was used by Ferrari (1992)
to show a law of large numbers for a second class particle.

5. Dependence on the initial configuration. Since Ny, is a sum of in-
dependent random variables, (1.5) implies the central limit theorem (1.3). To
show (1.5) for r < (p — q)(1 — p), write

Jrtt — Nepir,p) — (0 — (I),th

0
=Y X > rt} - > n@{XF <rt} - Y nk) - (p— q)p’t

x<0 x>0 x=th

0
= > @ (1{XF > rt} - 1)
(5.1) x=th
+ ( Z @) H{XE > rt} — (p — q)p’t — Z @) 1{X} < rt})
x<th x>th

=Y n@UXF <rt}+ > n@UXF < rt}

x>0 x>th

= C1(t) + Co(t) + C3(t) + C4(2).
It suffices to show that lim;_,..(EC;(¢)?/¢) = 0. Now for 7 = (p — g)(1 — 2p)
|C1®)| < H{XP" < re}|XP* — rt| + 1= 1{X) <Ft}X) —Ft| + 1,

in distribution. Since 7 < (p — ¢)(1 — p), the above inequality and (2.6) imply
that lim;_,.(EC1(t)?/t) = 0. The same argument applies to C3(¢) and Cy(2),
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which has the same law as C3(¢) for = 7. On the other hand, Cy(¢) has the same
distribution as J5 ; — EJ5 ;, whose limiting variance vanishes when divided by
¢ in the limit ¢ — oo by (1.4). This shows (1.5) for r < (p — ¢)(1 — p). Changing
the role of particles and holes, J,; ; has the same law as the current through —rt
when the density is 1 — p. This shows (1.5) for all r.

6. Density fluctuations. We define the fluctuations density fields by
(6.1) & =2 B(ex)[n.-14x) — Ene-1,(x)).
x

Since we consider only the equilibrium case, the expected value is taken with
respect to the initial measure v,. Hence En,-1,(x) = p . We prove that, as ¢ — oo,
the fluctuations fields converge to a Gaussian field that translates rigidly in
time, as predicted by Spohn [(1991), Section 6.3]. For ¢ = 0,

(6.2) l% & (@) = £(D),

where £(®) is Gaussian white noise with mean zero and covariance
(6.3) E(£(D)E(®)) = p(1 - p) / dry(r)®(r).

Let &(r) = & and 7= (p — @)1 — 2p).

THEOREM 6.4. As e — 0the equilibrium fluctuation fields & defined in (6.1)
converge to the solution & of the linear equation

o
©.5) %&m = Fo &)

with initial condition &y, the Gaussian field with zero mean and convariance
given by (6.3).

PrOOF. The theorem says that the fluctuations in equilibrium just trans-
late at velocity 7, the average velocity of a second class particle. To prove the
result, we consider indicator functions of intervals. The extension to general
functions is standard. Let

P(w) = @y (w) = 1{0 < w < u},

and let 7.®(w) = ®(r + w) be the translation by r. Since the variation of the
number of particles can occur only at the boundaries of the interval, we have

6.6)  eE(E5(T_re1®) — £(®))? = eE(r_pper1ly, — Tronmre19% )%

where J7;; = J.-1,4 -1, Since the distribution of 7.7, , is independent of r,
by summing and subtracting E.JZ, , we have that the right-hand side of (6.6) is

bounded above by 252VJ§¢, which converges to zero as € — 0, by (1.4). O
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7. An interface model. The one-dimensional nearest neighbors simple
exclusion process is isomorphic to a two-dimensional interface model. See, for
instance, Rost (1982) and De Masi, Ferrari and Vares (1989). We first define
the model. Let & € {¢ € ZZ: |£(x) — &(x + 1)| = 1} be the process with generator

Lf©) =) (ql{elx — 1) + £x + 1) — 26() > O}[F(E5) - f(©)]

XEZL

+pl{€(x — 1)+ £(x + 1) — 2¢(x) < O}[F(£57) — £(€)]),

where 5% (x) = £(x) £+ 2 and £5%(y) = £(y) otherwise. In words, interpreting £(y)
as the height of a surface at x, the process can be described by saying that at
rate q the surface at x increases two units if both heights at x — 1 and x + 1
are bigger than the height at x. Analogously, at rate p the surface decreases
two units if both neighbor heights are smaller than the height at x. For a given
configuration n € {0, 1}%, define ¢ = T, € Z% by

g =) (2n(y - 1).

¥=0

Letting ¢f and 77 denote the interface and the simple exclusion processes with
initial configuration ¢ and 7, respectively, it holds that

e51(x) = (Tn)x) + Jos.
Hence
§t(0) = J()’t.

The density in the simple exclusion process gives the general inclination of the
surface. Density 1/2 gives a surface parallel to the x axis (flat). Our results on
the current mean that in equilibrium the diffusion coefficient for a flat surface
scales in a different way than the diffusion coefficient for an inclined surface,
no matter for which inclination. For the flat surface the correct normalization
would be t2/3. Our interpretation is that a flat surface has “more memory” than
an inclined surface. In this last, one sees a flux of particles falling down the
hill and picks the space fluctuations of the initial configuration. This does not
happen in the flat case.

Alexander, Cheng, Janowsky and Lebowitz (1993) studied a two-dimensional
asymmetric simple exclusion process. For this process the transition function
is given by p((x, y), (x, y+1)) = 1/2,p((x, y), (x+1,y)) = % and p((x, y), (z,w))=0
otherwise. The process starts with a product measure with density 0 and p > 0
in the half planes {y > 0} and {y < 0}, respectively (flat initial surface). Defin-
ing Y(¢) as the first coordinate of the leftmost particle on the y axis, they found
via simulations that the variance of Y(t) behaves as ¢!/4. Is this normalization
correct for inclined surfaces? Why does the normalization factor in the flat case
depend on the model?
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