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MWI REPRESENTATION OF THE NUMBER OF CURVE-CROSSINGS
BY A DIFFERENTIABLE GAUSSIAN PROCESS, WITH
APPLICATIONS!

By Eric V. SLuD

University of Maryland

Let X = (X;,t > 0) be a stationary Gaussian process with zero mean,
continuous spectral distribution and twice-differentiable correlation func-
tion. An explicit representation is given for the number Ny, (T) of crossings
of a C! curve v by X on the bounded interval [0, T], in a multiple Wiener—Ité
integral expansion. This continues work of the author in which the result
was given for ¥ = 0. The representation is applied to prove new central and
noncentral limit theorems for numbers of crossings of constant levels, and
some consequences for asymptotic variances are given in mixed-spectrum
settings.

1. Introduction. Level-crossings by stationary Gaussian processes have
been studied systematically for almost 50 years. The pioneering contributions
of S. O. Rice in 1945 were motivated by signal-processing in communication
theory, as were the variance formulas developed in the 1950s by Steinberg,
et al. (1955). Rigorous development of the notion of “crossing” in continuous
time was supplied by various authors [in particular, Ylvisaker (1965)] leading
up to a definitive treatment in the book by Cramér and Leadbetter (1967). The
Cramér-Leadbetter book summarized the available techniques and results up
to 1967, which were based on careful asymptotics involving joint densities of
values and derivatives of the underlying (Gaussian) process. Further devel-
opments of Ylvisaker (1966) and Marcus (1977) allowed moment formulas for
crossing counts to be generalized to a large class of nonstationary and non-
Gaussian processes to which the same joint-density asymptotics applied. In ad-
dition, central limit theorems for crossing counts of the mean level, in discrete
and continuous time, were proved by Malevich (1969) and Cuzick (1976), facil-
itating statistical signal-processing applications. Within the last two decades,
statistics of zero-crossing counts has been primarily an applied subject [Lom-
nicki and Zaremba (1955)], finding particular favor in acoustical and speech
processing [viz. Niederjohn and Castelaz (1978)]. Other references and statisti-
cal techniques related to zero-crossings are given in the book by Kedem (1980)
and subsequent papers by Kedem and co-workers [Kedem and Slud (1982),
(1994), Kedem (1986) and He and Kedem (1989)], the most recent of which
concern the detection of hidden periodicities by zero-crossing analysis.
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1356 E. V. SLUD

The purpose of the present paper is to apply a powerful theoretical tool, the
theory of multiple Wiener—Ité integrals, to study crossings of general continu-
ously differentiable curves by stationary (continuous-time) Gaussian processes
with twice-differentiable correlation functions. Such a study was initiated, for
counts of crossings of the mean level, in Slud (1991). The main result of this pa-
per is an explicit representation of the number of curve-crossings in a bounded
interval, from which useful limit theorems and (asymptotic) variance formulas
can be deduced.

In the remainder of this section, we sketch the necessary background con-
cerning multiple Wiener-It6 integrals (MWI’s) and previous work on level-
crossings by Gaussian processes. The representation theorem is stated in Sec-
tion 2. Section 3 applies the MWI representation together with a general cen-
tral limit theorem of Chambers and Slud (1989) for MWI expansions to deduce
central limit theorems for level-crossing counts. For very special correlation
functions with “long-range dependence,” Section 3 provides a novel noncentral
limit theorem. Section 4 shows how asymptotic-variance formulas for the level-
crossing counts, which extend to mixed-spectrum Gaussian processes via the
MWI representation, yield new information in some special cases of statlstlcal
interest. Finally, Section 5 proves Theorem 2.1.

1.1. Multiple Wiener-Ito integral notation and basic facts. Multiple Wiener—
It6 integrals are a tool for representing non-linear functionals of a stationary
Gaussian process X, generalizing the Hermite polynomial expansions for func-
tions which depend upon only a single coordinate X of the process. Our general
reference for MWT’s is the excellent monograph of Major (1981).

Assume that X = (X;,¢ € R%) is a stationary mean-0, variance-1 Gaus-
sian process on the probability space (Q2, F, P). The correlation function r(¢) =
E(X:X,), being positive definite, has the form [} e?* o (d1) for some symmetric
Borel probability measure o on R which we assume for now is nonatomic. [How-
ever, Major (1981a) shows that the following MWI theory holds also if o has
atoms.] It is well known [e.g., see Cramér and Leadbetter (1967), Chapter 7]
that X; has the spectral representation [} e*8(dA), a stochastic Wiener-type in-
tegral with respect to the complex-Gaussian process 8 which has the properties
that the real and imaginary parts of (8(A), A > 0) are independent-increment
real Gaussian processes with Var(Re(8(1)) = Var(Im(B(A)) = o ([0, A])/2, and
that B(—A) = B(A) a.s. as a random element of the space of complex-valued
continuous functions on R*, with the sup-norm, where the overbar denotes the
complex conjugate. The MWI theory represents elements of H = L?(, o (X), P)
as orthogonal sums of multiple stochastic integrals with respect to the same
integrator 8. .

Foreachn > 1,let 0® = o x --- x o denote the product Borel measure on R”,
and define the complex Hilbert space

®",0™) = {fo € LA(R", BR™), 0"): o) =FalN),

fn(ll, LR ) A-n) =fn(kp(l), LR ] Ap(n))vp € Sn],

sym
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where S, denotes the symmetric group of permutations of {1,...,n}. By con-
vention, let Lgym(]R", o™ = R when n = 0. Then there exists an orthogonal
decomposition

H=L*Q,o0X),P) = {B K,
n=0

of the square-integrable functions Y of X into sums of homogeneous multiple
Wiener-It6 integrals ¥3°_ h, = £2° I.(fn), where hy = fo = E(Y) and the
following properties hold:

(1.i) The integral operator v/n'I, :L‘fym (R™, ™) — H, is an isometry, where I,
is the identity operator on R = Hp.

(1.ii) If for each s € R, U%: L3(%, 0 (X), P) — L%(Q, o (X), P) denotes the exten-
sion of the time-shift isometry which maps g(Xi,...,Xz) to g(Xs+1, ..., Xs+2)
for each bounded Borel-measurable function of £ arguments, and if e; ,(\) =
es(\,) denotes the L2, _ (R*, o™) function exp(is(A; +- - -+A,)), then, for alln > 1,

sym

ULi(fo) =In(esfn),  fo € Lin®™, 0™).

(1.iii) For alln > 0, I,,(1) = H,(Xy)/n!, where the Hermite polynomials with
leading coefficient 1 are defined by

2/2 dn

T (e—x2/2), n=0.

(1.0) H,(x) = (—=1)""

(Liv) (Multiplication rule.) If f, € L, (R?, o®) and g, € L%, (R?, 0%), then

X +q — 2k)! ~
Litate) = 3 HEZTEE () (Do (55,).
k=0 B

where p A ¢ = min(p, q) and f,®. g, denotes the average over all permutations
of A-arguments of the function

[l;kf;)()"ly M ] A’p—-kvxlv e ,xk)g(kp—k-f-l, R ] A'p'f-l]—z]h _xlv MR ] _xk)ak(dx)'

1.2. Previous work on crossings. The continuous-time numbers of crossings
by a stationary Gaussian process (X;,0 < ¢ < T) of a differentiable curve
¥ can be approximated by the numbers of crossings of continuous polygonal
curves agreeing with ¢ at points &k, £ € N. The method is elaborated in the
book by Cramér and Leadbetter [(1967), Sections 10.3-4 and 13.1-2], but the
main idea is very simple. Let {X;,¢ > 0} be a stationary Gaussian process as
above, with mean 0 and variance 1, and correlation function r(¢) = [z e*o (d)),
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with o a symmetric nonatomic Borel probability measure on R, and assume
further that r(¢) is twice differentiable. Let ¢ ( - ) be a continuously differentiable
function. Then the number Ny (T') of crossings of the curve y by the process
X; on the time-interval [0, T] is a well-defined random variable with finite
expectation. [An explicit integral formula for EN, (T, proved as (5.8) below, is
given by Cramér and Leadbetter (1967), (13.2.1), page 285]. This generalizes the
famous formula (T'/7 )e=*/2. /(—=r"(0)) of Rice (1945) for the expected number of
crossings of the constant level c. Indeed, for each T', as m — oo the discrete-time
number of crossings based on time steps A =T -2™™,

2m—1
(1.1) Ny(Th) = ) Iy — w (G o~ ¥(G+ DAY} <01
j=0?

increases monotonically to the limit Ny (T"). Moreover, Cramér and Leadbetter
[(1967), pages 204 ff], and Ylvisaker (1966) show that if the joint Gaussian
densities p;(-) of (X(¢1), X(t2), X' (¢1), X' (¢2)) are nonsingular, that is, have non-
singular covariance for all ¢ # ¢g, then the variance of Ny, (T') whether finite or
not is given by

T T s} s}
(1.2) / / dtydty / / yiyape( = Y (61), — Y (E2), y1.52) dy1 dys.
0 0 0 0

Moreover, the condition
€ , dt
(1.3) / @) — r’(O))—Z- < oo forsomes >0
0

is both sufficient [Cramér and Leadbetter (1967)] and necessary [Geman (1972)]
for the variance of Ny (T to be finite for each T' < co when ¥ = 0, and in this
case a double-integral formula suitable for numerical integration is given by
Steinberg et al. (1955) and is rigorously justified by Cramér and Leadbetter
(1967). Apparently no such criterion or formula for finite variance simpler than
(1.2) is known for counts of crossings of a level other than the mean.

Several authors have proved limit theorems for crossing counts Ny(T") of the
mean level by a stationary Gaussian process X; as T gets large. The best results,
due to Cuzick (1976), derive from the work of Malevich (1969) approximating
the underlying Gaussian process by an m-dependent process.

2. The MWI representation. The theorems given here extend those of
Slud (1991), where the representation of the number of crossings of the mean
level relied upon properties of the MWI integrands as generalized hypergeomet-
ric functions. The main new technique here is the Hermite-function summation
formula of Lemma 5.1 and the associated identity (5.12).

THEOREM 2.1. Let (X3, t > 0) be a mean 0, variance 1, stationary Gaussian
process with continuous spectral measure o and twice-differentiable correlation
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function r(t), and let ¥ (t) be an arbitrary continuously differentiable function.
Then the number N (T) of crossings of the curve y by the process X; on [0, T,
T < o0, is a well-defined random variable with finite expectation

T ’ ’ /
(2.1) E[Ny,(T)] = ,,/ ¢(,/,(x))[2¢<1lf (x)) G (24)(1# (x)) _ 1)]dx,
0 n n n '

where n*> = —r"(0) and ¢ is the density and ® the d.f for N(0, 1). If ¥ (\) =
G\ € L2, (R™, ™) is defined for n > 1 by

sym

—u22 n

T i 2
N = fo e‘s(’\l’r"'“"){%Hn(u)e‘“ 2 ZH _,<u)

2.2) x Yo e .Amj

l<my<--<mj<n

1/n
x/ ‘”/ZH( —zy)y/ - 2dy} ds
0 u=Y(s),2='(s)

and if the variance of Ny (T) is finite, then
> 1
(2.3) > = [ 18P @) <,
nel n: Jr»

(2.4) Ny (T) — E[Ny(T)] =ZI (Sn)-

THEOREM 2.2. Let X; be as in Theorem 2.1, and let ¢ € R be arbitrary. If the
number N, (T) of crossings of the level c by the process X; on a bounded interval
[0, T has finite variance, then (2.3) holds with ¥ (x) = c and ¥'(x) = 0in (2.2)

and
00 T —n:2 2 n H:0
N =122 Y | USI"( P : ) Y
(2.5) n=t vty

x S Amye- Amj)ds.

1<mp<--<mj<n

Since

H(0) = (12—
O = (-1

ifj is even, and is equal to O forj odd, it is easy to check that the expansion (2.5)
coincides in the case ¢ = 0 with that of Theorem 2 of Slud (1991), except that
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the latter [together with expressions (2.2) and (2.3) on the same page] should
have an extra factor (—1)” within the summations $°°_,; [The proofs of Slud
(1991) establish the correct expansions with the factor (- 1)’” included.]

In the preceding theorems, the MWI integrands ST()\) of (2.2) for the expan-
sion of Ny (T') have the special form

T
9,7:()\) — /; eis(l1+"'+)\n)gn(A’ S) ds,

so that In(SZ(A)) = fOT U¢I,(g,(+, s))ds, and when ¢ = c the functions g, do not
depend on s. In other words, the functional Ny (T)—an increasing pure-jump
function of T—is expressed as the integral on [0, T with respect to Lebesgue
measure of e*1++4) multiplied by the formal MWI expansion

e~ V)2 2 n i
2 I(9.Co9) = Z NHo@) =Y Hooj@% D dmyhmy
n n=1 j=1 J: my<--<mj
n 5, )
(2.6) x / e~V 2 Hj(—zy)y' ~2 dy
0 u=9(),z=9'(s)

The intuitive interpretation of this is that the expansion (2.6) represents the
generalized random functional Sx, (¥ (s)), where §, denotes the Dirac delta
function. The same limiting procedure which led to Theorem 2.1 leads via
expressions

om—1
> ¥ BRI Xy =y k) K =9 (- DAY <)
k=0
to the following MWI expansions for Stieltjes integrals fOT ydNy.

THEOREM 2.3. Let X; and v be as in Theorem 2.1, and assume that E(ny (T
< 00. Let y(-) be an arbitrary C* function. Then for each T' < 00, the a.s. Stieltjes
integral |, OT ¥ (s) dNy (s) is a well-defined square-integrable random variable with
MWI expansion

o0 T
2.7 ZI”(/ y(8)g, (A, §)eisOit =+ ds),
n=1 0

where §,(-,s) is defined as the MWI integrand in (2.6). Thus the generalized
Gaussian random field N +(y) which maps compactly supported C*® functions
y on R* to [o+ ¥(s) ANy (s) has the MWI representation (2.7) with T replaced by
00 [cf. Major (1981a), Theorems 3B and 3.1].

Observe that the integral [p. y(s) dNy(s) has a clear meaning as the sum
Yslian, > 07 (s) of y-function values at the finitely many random times when
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X; crosses ¥ (on the bounded interval of support of y). Further discussion of
the generalized random field Ny, can be found in Slud (1994). Note that the
expansions in Corollaries 2 and 3 of Slud (1991) for the case ¥ = 0 are formal
sums and make precise sense only in the generalized Gaussian random field
setting of Theorem 2.3.

REMARK 2.1. Two further extensions of Theorems 2.1 and 2.2 deserve com-
ment here. First, the number of upcrossings by {X; : 0 < t < T} of a curve
¥ or level c is related simply to the number of crossings through the formula
Ny (D) + 2%, >y — Ik, = y0y)- The upcrossing representation analogous to
(2.5) has all terms in the integrand of I,,(-) divided by 2, plus the new term

—c2/2
Vo

The second interesting extension of the theorems is to drop the requirement
that the spectral measure o of X; be nonatomic, that is, to drop the restriction
that {X;} be ergodic. The definition of MWI’s can then be modified by the trick
of “splitting the atoms” as in Major (1981a), and representation formulas like
(2.1) to (2.5) would still hold. The only use which we make of these results
for spectral measures with atoms is in formulas for mean and variance, which
could be proved directly as in Kedem and Slud (1994) by approximating X;
and N.(T) by a continuous-spectrum stationary Gaussian process X; and its
crossing counts N (T).

—()~1+ 4+ A)H, 1(0)

COROLLARY 2.4. Let X; be a stationary Gaussian process with mean 0, vari-
ance 1, twice-differentiable correlation function and spectral measure o which
may have atoms. Then, for each ¢ € R,

1/2 _ a2
(2.8) E(N.(T)) = n‘lT[/ Aza(dk)] exp(%)
R

and if Var(N.(T)) is finite it is given by

S 2 —cos (T(h+ -+ 1n))
Var(Ne(D) = Zn_ f 2200+ )2
(2.9) 2

_ H(O)z n
Z,’ JH, 1]' Z Amy - hm, | 0" (dA).

1<my<--<m=n
even

3. Central and noncentral limit theorems. We now turn to the ap-
plication of MWI representations (2.4) and (2.5) in establishing general limit
theorems for suitably standardized random variables N .(T") as T' — oo. Such
limit theorems are of two types: central if the correlation function r(-) exhibits
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sufficient mixing or weak dependence for the underlying process X; noncentral
in certain cases where r has a property of regular long-range dependence. As
mentioned in Section 1, the central limit case has been studied for ¥ = 0 by
Malevich (1969), with a strong theorem proved by Cuzick (1976). The central
and noncentral limit theorems below for ¥ = c¢#0 are new; the central limit
theorem for ¢ = 0 is the slight extension of Cuzick’s (1976) given in Slud (1991).
A further extension to nonconstant periodic ¥ can be found in Slud (1994).

3.1. Central limit theorem. For square-integrable random variables Y, ex-
pressed as a MWI expansion ©2° I, (f,) with respect to a fixed stationary
Gaussian process {X;,¢ > 0} with continuous spectral measure o, Chambers
and Slud (1989) together with Slud [(1991), pages 356 and 357], established
verifiable sufficient conditions for the stationary (discrete-time) sequence Y; =
U'Yo = £ In(e:(A)fn(An)) to satisfy the central limit theorem (CLT) in the
sense that, as T — oo,

T-1
3.1) Z (Y. - E(Yo))/ﬁ —pN(,a?) for some a > 0.

t=0
If we denote by m = min{n > 1: f;, # 0} the so-called Hermite rank of Yy, then
the following conditions imply (3.1) [by Chambers and Slud (1989), Lemma 2.3
and Theorem 2, and Slud (1991), pages 356 and 357]:

(al) [, Ir@®|™dt < .
(a2) For eachn > m, f,(-) is ¢" a.e. continuous on a neighborhood of 0 € R”,
and for some n > m, [ r*(t)dt +0 and

Ex{lfaWP [ A1+ -+ Ay =0} > 0.

(a3) For some constant M < oo and all T', n,

er(Ap) — 1

Fix ¥ = c; let (X;,t > 0) be as in Theorem 2.2, satisfying (2.3); and let
Yy = N.(1). Then, according to (2.5), continuity in condition (a2) is immediate,
with

e1On) —1 e 2 & o
Ap) = JH, _;
) = = J;)n 1 —(c)
(3.2) % 1 even
(0) i/
XJ_(Ozl_ Z Amy o Ay

T A i
J 1 J: l<my<--<mj<n

Moreover, (a3) follows from an argument of Ho and Sun [(1987), (2.3) and (2.6)
to (2.9)], exactly as in Slud [(1991), bottom of page 363], using the fact that
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N(T) is the limit of sums (1.1) of time-shifted functionals of X;, each of which
depend on only two coordinates of X;.

Using the specific form (3.2) for f;,,n > 1, we check that m = 1 when ¢ =0
and m = 2 when ¢ = 0. In either case, [, r?2dt > 0, and the conditional law
of A; given A; + As = 0 is nonatomic, where A; are independent o-distributed
random variables. Thus

E2{1fo(W)? | A1+ Ag = 0}
2

= E{n_2e_02 —nHq(c) — n_I%Hg(O)AlAg

A = —Al}

2
= E{n‘ze‘cz

1
nc®—1)+ %A%

A1A2 = 0} > 0.

By our verification of conditions (a2) and (a3) and the result that (al) to
(a3) imply (3.1), we have proved the following CLT, which includes Theorem 3
of Slud (1991) and the CLT of Cuzick (1976) in the case ¢ = 0. Formula (3.3)
below for asymptotic variance follows directly from Chambers and Slud (1989),
Lemma 2.3, as in Slud (1991), page 357.

THEOREM 3.1. Letc € Rbearbitrary, and let (X;,t > 0) be asin Theorem 2.2,
with Var(N.(T)) < oc. Assume that [, r*(t)dt < oo if ¢ = 0 and that [ r(t)dt <
o0 if ¢#0. Then, as T — o0,

{NC(T) - e‘czfzgn} / VT — 5 N, a?),

where o > 0 is given in terms of f, in (3.2) by the expansion

(3.3) o= ﬁl—'Eau{lfn(A)FlAl + -+ Ay =0} /Rr”(t) dt.

3.2. Noncentral limit theorem. The best available noncentral limit theo-
rems concerning functionals of Gaussian processes seem to be those of Do-
brushin and Major (1979) and Major (19814, b) for a special class of covariances.
We say that a correlation function r(¢) exhibits regular long-range dependence
if it has the form r(¢) = || ®L(¢) where 0 < o < 1 and L(-) is an even function,
bounded on bounded intervals, which is slowly varying at co in the sense that

L(tx)

70 —1 ast— oo, forallx > 0.

Such correlation functions can also be twice-differentiable, as, for example,
when r(¢) = ri(t) = E(exp(it(Z, — Z5)), where Z; are independent I'(«/2, 8)
random variables. The following theorem, which follows from the ideas but not
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the results of Major [(1981a), Chapter 8], provides a noncentral limit for No(T)
for a large class of correlation functions including this example r(z).

THEOREM 3.2. Suppose that X; is a stationary Gaussian process with mean
0, variance 1, continuous spectrum and twice-differentiable correlation with
regular long-range dependence, r(t) = (1 + |t|)"*L(t), with 0 < « < -21- Assume
also that for some § € (—oo, @) and constant C < oo, fork = 1,2 and all x > 0,
|(@*d*)r ()|
()]
Let ¢ #0 be fixed arbitrarily. Then, as T — oo,

(3.4) <C(1+Ixl)’.

2c2 n2e—cz )

Beay ()12 _T e
(8.5) (T* L)) (NC(T) —ne ) —p IN(O, A-0)@—an?

where n? = —r"(0), while

Ta-1 T n~ etha+ig) _q
30 £ (N0~ ) = (T )

where Tz denotes the second-order multiple Wiener-Ito integral operator for a
stationary Gaussian process X with correlation function ro(t) = fR e oo (dx)
uniquely determined by

1
3.7 / e (1— cos(x))zx‘zao(dx) = f 1 —x)|x + t| ™ dx, t>0.
R 0

Proor. Consider the terms arising in expanding the square in the variance
formula (2.9). The general term of the resulting expansion is a constant (not
depending on &, m or n) multiplied by

(3.8) fR n

forn>1,k>0,m > 0 even and k + m < n. But this term is equal to

exp (T(A1+---+24y) — 1

2
s Az...AZA LA o™ (d\
P+ -+ M) 1 Are+1e e Ay mo " (dA)

T ,T
f / / e 00 dp ds 22 AZAk41 .. Ay mO ™ (dN)
(39) R®* JO 0

T n—k-m . my oy k
- / (- i) (= ir @)™ (= (&) dt.
It follows from (3.4) that (3.8) is bounded by

T
2C’“+"‘T/ @) (1 + t)®+m™idt.
0



MWI EXPANSION FOR CROSSINGS 1365

Now change variables by v = ¢/T, and use the representation of Karamata
[Major (1981a), Theorem 8.A] to bound L(¢), for < ¢ < T, uniformly by C’(1+T)¢,
where ¢ > 0 is selected arbitrarily small. The result is that (3.8) is, for some
constant C,, less than or equal to

1
2ck+mT2/ (1+uT)—not+(k+m)8Ln(uT)du§C:T2—na+(k+m)8+ns‘ .
0

Define the Hermite rank m of N.(T) by m = 2 if¢ = 0 and m = 1 if ¢ #£0. By
means of the previous estimate, (2.5) and (2.9), it is straightforward to check
that, as T' — oo,

1/2
() Tom-5e

(3.10) L@
_ %e‘cz/zIm<—Hm(c)M_—1——):| —p0.

i0a+ -+ Am)

[The method is to expand the variance of (3.10) and bound the absolute
values of all terms in the infinite-series expansion analogous to (2.9), using the
estimate of the previous paragraph. The resulting infinite series is convergent
for all large T and is easily seen to converge to 0 as T' — ©0.]

The theorem now follows from (3.10) by a very slight modification of Theorem
8.2 of Major (1981a). In particular, (8.7) coincides with Major’s (8.4), and the ex-
pression for variance in (3.5) when ¢ = 0 follows directly from (3.10) and (3.7). O

Theorem 3.2 allows both central and noncentral limiting behavior for cross-
ing counts N (T as T gets large. There is only an apparent discontinuity in ¢ in
the possible limiting behavior: the point is that, for ¢ 0, N.(T") — E(N.(T) has
stochastic order of magnitude 7'~*/2 ,/L(T), but (3.5) shows that this top-order
term becomes degenerate as ¢ gets close to 0; for ¢ = 0, (3.6) establishes for
No(T) — E(No(T)) the smaller stochastic order of magnitude T'~*L(T).

The proof of Theorem 3.2 uses in an essential way the particular form of
MWI integrands established in Theorem 2.2. The proof shows that (3.4) and
the special long-range-dependent form of r already imply that, for all ¢, the
variance of N, (T is finite (for sufficiently large T').

4. Application to time series. One way in which the representation (2.4)
and formulas (2.8) and (2.9) may be applied, with reference to engineering
signal-processing, is in calculating variance and asymptotic variances for level-
crossings in mixed-spectrum settings, where formulas like (1.2) are not avail-
able.

In this section let X; = B cos(wot+¢)+&:, where B ~ N(0, %) and ¢ ~ Uniform
[0, 27] are independent and & is’a stationary Gaussian continuous-spectrum
process with mean 0 and variance D? which is independent of (B, ®). In this
setting the ratio s = b2/(b% + 2D?) is called the signal-to-noise ratio for X;.
We show here that the infinite series (2.9) for Var(N.(T")) simplifies markedly
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in the case of Gaussian sinusoid-plus-noise processes. In particular, we learn
from (2.9) the useful fact, not easily seen without MWTI’s, that the asymptotic
variance of N.(T")/T for large T depends only on the frequency wq € (0, 7] of the
sinusoid, the signal-to-noise ratio s and n? = —r”(0). A discrete-time analogue
was noted first by Kedem and Slud (1993) for ¢ = 0

PRroPOSITION 4.1.  Let X; be a stationary Gaussian mean 0 sinusoid, as in the
previous paragraph, for which Var(IN.(1)) < oo, ceR. Then limr_, o, Var(N.(T)/T)
exists and depends on the distribution of {X;:} only through the parameters wy, S
and 1.

ProoOF. By expression (2.9) and the dominated convergence theorem,

lim Var (N (T)) 1 va

T— o

H(O)z

4.1) X Egon I[A1+ A, =0] Zn _JH ]!

=0
even

2
x > A, -+ A,,,j)

1<mi<--<mj<n

In the present mixed-spectrum setting, o”([A1 + -+ A, = 0]) = o™([Aj =
+wy, 1 <j<n;A;+---+ A, = 0]) is 0 unless n is even, and in that case =
(. /2)(5/2)” Conditionally given [A; + --- 4+ A, = 0], the variables {AJ/wO}J" 1
have the same joint distribution as the condltlonal distribution of {g;}? _, given
&1+ --- + &, = 0, where ¢; are independent and identically distributed with
P(ey = 1) =P(e1=-1)= % The proposition follows immediately. O

Unlike the analogous discrete-time formula developed by Kedem and Slud
(1994), the limiting formula (4.1) does not appear to be useful for numerical
computations. For each c, one can check as in Kedem and Slud (1994) (in the
case ¢ = 0) or Slud (1994) first that the expression (4.1)is0fors=1and n = wy
and then conclude that it must also be identically O for general s when 1 = wq.

5. Proof of Theorem 2.1. The starting point for representation of the
crossings indicator Ijx, — y @) (X, — v (¢ +h)) < 0] is the Hermite polynomial expans-
ion of the indicator Ix, > o for an arbitrary level c. Since the normalized Hermite

polynomials H,(Xy)/ vnl,n > 0, form an orthonormal basis of L2(Q, 0 (Xy), P),

H, (X 29\
Iixy=a = Z ( 0)( 1)”/ ——(e™* /2)\/235_7r

n=0
(51) n 1(c)e‘° /2

=1-®()+ Z — =IO,

where we have used (1.iii) in the last lme.
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The next step is the identity

Iixy-ayxh -0y <01 = Ixy > a1 +Iix, > 51 — 2l 1%y > a1, > 01

Each of the indicators on the right-hand side has the representation (5.1), and
the multiplication rule (1.iv) leads immediately to the following MWI expansion:

Iixy - ayx, -5y <0) = (2(a) + @(b) — 28(a)@(b))

1 & 2
R —_ —a*/2
+ T nél {(2<I>(b) 1)H, _1(a)e *"?I,(1)

— —b2/2
(5.2) + (2{)(0,) 1)ILIn—l(b)e In(eh)}

Ze—@+bY)/2 Z Hy_1(@)Hy, —1(b)
k,m=>1

Am k 2
Z ( )(m)" (X =2) +m CA B g si(enOsm— ).

The termwise application of the multiplication rule (1.iv) to yield (5.2) is justi-
fied as in Slud (1991) by orthogonally projecting both sides of (5.2) to @fn{ —o0Hm
(the orthogonal direct sum of the range spaces of the operators I,,) and observ-
ing that the multiplication rule then yields the finite sums corresponding to
k, m < M on the right-hand side of (5.2). This also justifies collecting terms on
the right-hand side of (5.2) according to the order of MWI being applied in the
last summations, leading to

I xy - )X - b) <0]

= (<I>(a) + ¢(b) — 22(a)2(b) -

(a2 +b%/2 o Hn(a)Hn(b)r(h)"“)

= (n+1)!

N {2<I>(b)—1 28(a) — 1
(53 a1l Vow V2w

@ +bz>/zi[z e 1@Hn 1 (B (ST (B))

Hn—l(a)e_az/zln(l) + Hn—l(b)e_bz/zIn(eh)}

+ Z In(Sz(h)) Z rf].,)le+j—l(a)Hn—m+j—1(b)],
m=0 j=1 Y

where S? = 1 and, form > 1,

Sy(h) = Z eh()»kl,...,)»km).

1<ki<-<knp=<n

The next step, for shifting in time by an amount % - 2 and then summing &
from 0 to [1/A] — 1, is to simplify the infinite summations in the second and last
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lines of (5.3). To that end, we have the following generalization of the Hermite-
polynomial expansion for the bivariate-normal density.

LEMMA 5.1. Forallx,yeR, k,bm=0,1,2,...and |t| < 1,

Y H+j(0Hp ()
(5.4) =0 k
TR Gob D A exp 2% +y% — 2yt
V1 =2 dxkaym 2(1 —#2)

PROOF. Substitute (1. 0) and take the Fourier transform, both with respect
to x and to y, of (1/27)e~**+¥/2 multiplied by each term of the left-hand side

of (5.4):
dx dy
2
dk +‘i _x2/2 dx dy

t 2 .
— _H . YW =Y /2/ _l)k +jezxz e
./ne.]! m+ () IR( dxk+i 2m /21

tj i 2 -] dy
— —H,, 4 i(y)e?? /2 (iz)k +ig—2"/2
-/IR FTR N 2m

t 2.2 .
J A e
R JR J!

j
= t,—|(iz)k+j(iw)”‘+je‘(zz+w2)/2,
J:

where between the second and third lines we have integrated by parts £+j times

with respect to x, and between the third and fourth we have integrated by parts

m +j times with respect to y. Since the last expression is uniformly absolutely

summable in j > 0 for each fixed z, w, and since the terms /Hj, . j(x)H,, +j(y)/j!

are mutually orthogonal within L2(R2, e~(**+¥"/2dx dy) for distinct values of j,

we conclude that the Fourier transform of left-hand side of (5.4) multiplied by
= +y2)/2/(2n) is

00
t . .. : 2, 2 . _ 2, 2
§ :,—'(zz)k“(bw)m“e‘(z +w?)/2 — lk+mzkwme tzw —(2° + w )/2.

i=os’

On the other hand, the Fourier transform of e=**+¥"/2 /(2) multiplied by the
right-hand side of (5.4) is, after k integrations by parts in x and m in y, equal to

2.2
m(iz)k(iw)”‘ f / exp(i(xz +yw) — %) dx xy

which is equal to i* t mzkw™ e~t2w ~ €* +w")/2 By uniqueness of the (inverse) Fourier
q
transform, we have proved (5.4). O

The substitution of (5.4) within (5.3) simplifies first the expectation term of
(5.3) and then the general term.
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LEMMA 5.2. For the stationary Gaussian process X; of (5.3),

. _1 _ _ _
hlinol+h P((Xo — a)(Xy —a —zh) < 0)

T n 2

where n? = —r"(0). If the quantity zh on the left-hand side of (5.5) is replaced by
a differentiable function y (h) of h for which y’(0) = z, then the limit exists and
has the same value.

Proor. Take expectations within (5.3) and substitute (5.4) with £ = m and
J = 0 to obtain
P((Xo —a)(X, —b) < 0)

rch)
- (@(a) + B(b) — 28(@)(b) — ;tl- fo o-(@ +5% — 2abt)/2(1 ~ ) % )

(5.6)

Now observe that this expression must tend to 0 when a and b are replaced by
the same value ¢ and % decreases to 0, that is,

_ _l ' —cz/(1+t>L
2%(c)(1 - () = = J; e A

[This fact can also be verified directly via the change of variable s/c = (1 —t)/
(1 + ) on the right-hand side.] Substituting the last identity into (5.6) with
b=a+zh and c = (a + b)/2 gives '

h‘lP((Xo —a)(Xp —a—2zh) < O)

=hp"! (<I>(a) + &(a + zh) — 2®(a)®(a + zh)

5.7) - 24’(‘”%) (l_q)(”z?h)))

1 dt
+ — e~ /a+ty 7
wh Jrw V1 —¢2
(h)
+ i /r [e—cz/(1+t) _ e—(a2+bz —2abt)/(2(l—t2))]L.
mh Jo g V1-¢2

Now fix @ and z in (5.7) (with b = a + zh,c = a +2zh/2 as above) and let A
be positive and tend to 0. Elementary calculations show that on the right-hand
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side of (5.7), the first term tends to 0, and the second term to

1
lim ie“"z/z‘/ tdt_ _ T a2
r w ’

h—0+ TTh wvI—£

since r/(0) = 0 implies (1-r2(h))2/h — /(—=r"(0)) = n. Finally, factor exp(—c?/
(1 +¢)) in the integrand and substitute the definitions of b and ¢ to reduce the
last line of (5.7) to

dt
Vize
In the limit as 2 — 0, this expression is unchanged if the lower limit of inte-

gration is changed to 1 — ¢, for any fixed ¢ > 0. Thus the limit of the last line of
5.7 1is

1 rch)
- e—cz/(1+t)[1 B 2 ctel —t))]
wh 0

dt
NSy

Replacing (1/+/1 + £)e~¢"/A+9 in the last expression by (1/+/2)e=%"/2 does not
change the limit, and the change of variable s = 2/,/2(1 — ¢) then leads to the
expression

1 rch) ) -
lim — e~ /(1+t)[1 —e %k /(4(l—t))]
Ko+ wh Jy_,

1/n
le—a2/2/ [1 _e—2232/2]s—2 ds,
T 0

where we have replaced the limits 2/(2¢)Y/2 and h/(2(1 —r(h))*/? by their limits
as h — 0 since the integrand no longer depends on A. An integration by parts
in the final integral (treating ds/s? as the differential term), then leads to

1
Ze~/2 l:(e—zz/@nz) —1)n+2v21 (@(_Z_) - -1-):|
b4 n 2

Collecting terms, we have proved (5.5). The final assertion, that the limit is
unchanged in z4 is replaced by a quantity asymptotically equal to it as A — 0,
is obvious from the method of proof. O

Recall by (1.ii) that if U* denotes the time-shift operator on L2(Q, o (X), P),
then, forf, € L2(R"®, o™), U*L,(f,(N)) = I, (es(M)fn(N)), wherees(\,) = exp(is(A1+
.-+ An)). We sum (5.3) time-shifted by U’*, substituting the result (5.4), to ob-
tain the following result.

'COROLLARY 5.3. Let the stationary Gaussian process X; be as above, and let
¥ () denote a continuously differentiable function on [0, c0). Then the discrete-
time crossing count Ny (1,27™) defined in (1.1) with h = 2™ and a; = ¥ (jh) is
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given by
2m —1
Ny (1,27 = Z [P((Xo - a))(Xr —ajy1) < 0)
j=0

= 2<I>(a-+1) -1 —a2/2
+ {——’——Hn_l(w)e %7 (ejn)
; om j n\€;j

+ 2<I>(aj) -1
V2
1

— et 1)/22 ZHk 1@)Hy —k-1@;+ DI (Sk(h)en)

T( n=1k=
x=aj,y=a,-+1}

n
Z (S% (h)ejn)
y /’(") " x? +y? —2xyt\ dt
o Oxkoyn—k P 2(1 —¢2) NG

COROLLARY 5.4. Under the assumption that the stationary mean 0, var-
tance 1 Gaussian process X has continuous spectrum and twice-differentiable
covariance, and that the function ¥ on [0, 00) is continuously differentiable, the
expected number of crossings is

T / '
’ ¥'(x) Y'(x) 2% V(%) 1) |dx
58) E NW 7)) = n p(V(x 2¢ n n

where we denote the N(0, 1) density by p(x) = exp(—x2/2)/+/ 27 and n? = —r"(0).

—a? /2
H, _1(@j+1)e G/ In(e(j+l)h)}

o0

Proor. The variables N,’;,(l, 27™) are nonnegative and increase as m —
oo to Ny (T), so that also E(N:/‘,(l,2"")) — ENy,(T)). Putting h = 27 and
applying Corollary 5.3, we have

[T/h]

E(Ny/(D) = lim > P((Xo — ¥ (R) (X = w((G+Dh)) < o).
j=0

Since the limit in Lemma 5.2 is uniform for a = ¢ (jh) lying in compact sets,
as jh — x with z = y/(x), the last summand divided by ~ converges to the inte-
grand in (5.8), and in the usual way the summation converges to the Riemann
integral (5.8). O

The formula (5.8) is given by Cramér and Leadbetter [(1967), (13.2.1), page
285]. In the special case where ¥ (-) = c is constant, the integrand of (5.8) is
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constant, and (5.8) becomes E(N,(T)) = n~1Thexp(—c?/2), a famous formula
of Rice (1945).

The main result of the paper, Theorem 2.1, is proved by examining the non-
constant terms in the expansion for Ny (1, 27™) given in Corollary 5.3 and find-
ing the o™ a.e. limits of the MWI 1ntegrands Since Ny (1,27™) increases to
Ny (1), we will learn from this via monotone convergence that the variance of
Ny (1) is finite if and only if the limiting variance of N}, (1, 27™) is. When vari-
ances are finite, the orthogonal decomposition of L2(f2, o (X), P) into the range
spaces of the integral operators I, ( - ) implies that the MWI integrands for Ny, (1)
are the (L? and a.e.) limits of the corresponding integrands for Nj(1,27™).

PROPOSITION 5.5. Foreachn>1,x € Rand o™ a.e. Ay,

. 1)20(x+2h)—1 /2
hl—in(:)l+ ’_l{ «/57; H,_1(x)e ex(An)
20(x) — 1 —(x+zR)2
——H, _1(x+zh)e (x+2h) /2ex An
«/—27 1( ) +h(An)
o~ (B + (x+2h)?)/2 Z Hy,_1(x)H, _—1(x + zh)SE (R)ex(\,)

k=1
an

) " r(h)
ex(An) ZS (h)/ W

« ox (_x + 52 —2xyt) dt
P 2(1 - t2) V1-— t2 y—x+zh
ZH —J(x)

_x2/2 n
n 2,2 ;
X Z Ay - - Amj/ e %Y /2Hj(—zy)yf_2dy}.
0

l<mj<--<mj<n

1
I
_ (=

(5.9)

=ex(An) { an(x)e—xzﬂ -

Moreover, the limit is uniform over x lying in compact sets and is equally valid
if zh on the left-hand side is replaced by a differentiable function y (h) such that

y'(0) ==z

PrOOF. Asin Lemma 5.2, observe first that the bracketed quantity on the
left is an analytic function of x and must tend to 0 when A decreases to 0. This
(nonprobabilistic) fact, which does not depend on v, could again be verified
directly, but must also follow from the fact that Ny (0+) = 0 whenever ¢ = 0
and the correlation function r is such that (1.2) is finite. Subtracting from the
bracket on the left-hand side of (5.9) the same quantity with A = 0+, we find
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the left-hand side of (5.9) equal to

£o —[ Q(x+2h) (I>(x) H, _1(x)e™ /2ex(An)

h—>0+ h Vo
20(x) —1
+ (x)
V2m
1

n—1
—e™/2 3" Hy_1(2)ex(An) [e-”“WHn_k _1(x +2h)SE(h)

T k=1
- e_xz/an—k—l(x) (Z)] - (—nﬁex(xn)

fr<h> ZSk( ) p(_x2+y2 —2xyt) dt
axka ek © 20—t ) V1T —8ly—xizn

_/l'z”: n) " exp<_x2+y2—2xyt) dt
o ot \k) dxbayn =t 20— JVi—2l=.]]

Taking difference-quotient limits and making use of the fact that

[Hn —1x+ Zh)e_(x+2h)2/2ex +zh(An) — H,_ l(x)e_xz/zex-(kn)]

4 gk (h)

: n—1 .
dnon Z l()”jl+"'+)”jk)=(k_1>()~1+"'+)»n)l

=0 1<ji<-<jrzn

for £ > 1, together with (1.0), we obtain the left-hand side of (5.9) equal to the
sum of J1ex(\,)®'(x), and Jee.(\,), where

J1 = 229" (x)H;, - 1(%)
(2<I)(x) - 1) [_ZHn(x) +i(A 4+ )‘n)Hn—l(x)]

+2z<1>'(x)2( )Hk 1(*)H,, (%)

—{ -1
-29 (x)ZHk 1(0Hp —f - 1(x)l< 1)()»1+~-~+)»n)
(5.10)
_2[2{) (x)Z( )Hk 1()H, _(x) — (28 (x) —l)Hn(x)]

Fila+-oe An)[(zti(x) —1)H, _1(x) — 2®'(2)

Z_j( )Hk 1(OH 4 1(x)}
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and
B (=1 r(h) "
32=_h o+h[ [ ZS(h)ax’“a” k
%% + y2 — 2xyt dt
(5.11) X exp( 2(1 —2) ) J1—1¢2 y=x+zh

_/ Z":() " eXp(_xz+y2—2xyt) dt
0 /=t \k) dxhoyn—k 2(1 —£2) JI—£2

Y =x] ] ‘
Now the identity

3 a\" 2 \"? x+y %% +y2 — 2xyt
o1 {(_5_@)_(1_5) H”(¢—2+2t> exp(_ 21-8) ) =°

(which is easily proved by induction) implies that the second integral in (5.11)
is well defined [and indeed, that the bracketed quantity in (5.9) is real analytic
in both x and h]. Moreover, the identity that the bracket on the left-hand side
of (5.9) is 0 when A = 0 can now be reexpressed using (5.12) as

2(28(x) — 1)®'(x)H, - 1(x) — 2(¥'(x))° Z( )Hk 1) Hp - 1()

(5.13)
L ) (G s
1+t 1+¢ 1—2

Substituting (5.12) also into (5.11), we obtain

j'[32_ lm 1 l_( 2 ) H ( x'\/— ) _x2/(1+t) dt
hsoh r(h) 1+t «/T-_i-— m

h 2
_ / Y e~ E/A+1)
h—)Oh 1+t

I (2x+zh ( 2xzh(1 —t) + 22h?
X[ Hn 2+2t)exP_ 2(1— £2) )

(5.14)

()|

= nH, (x)e_x2/2+‘/‘14 : n/2e_x2m+t)
" o \1+¢

x/2 ) z dt

= _7[3’
N1+t) /242t /1412 3

XHn+l<
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where

J3 =

D I SEB) — ()
b4 }}1_1)1{)/0 Z h

k=0

" ( 224+ y% - 2xyt) dt
dxk oy 20-2) J|ysimvit

Collecting terms from (5.11), (5.12) and (5.13) with n replaced by n + 1, and
(5.14), and using the identity

() (i) =(4)

we find that the left-hand side of (5.9) equals

ex()\n){ %Hn(x)e_"z/z +i(h 4+ A) P (%) | (28(x) — 1) Hp—1(%)

n—-1
—(x) ) (Z)Hk—l(x)Hn—k—l(x)] - 33]-
k=1

(5.15)

It remains now to evaluate the limit J3. The method is first to observe that
after the n differentiations in the integrand, the power of 1 — #> appearing in
the denominator is at most (n + 1)/2. Thus, since the integrand is meromorphic
in ¢, and 1 — 2 < n%h?% 4+ O(h3) on the range of integration, the limit J3 can be
evaluated by developing (S,(h) — (Z)) /h in a Taylor series in A up to terms of
order A" 1, with remainder o(A"~1). To this end, we expand

Sk h) — (* n Jj-1 . .
n( 2 () =Zh_ > 7 (my 4+ F Amy) 4+ 0B,

|
j=1 J: 1<mj<-<mp<n

When the inner k-fold sum is expanded into monomials A%, ... A% withg; > 1
for1 <i<sandg;+---+gqs=j, we find (S,(h) — (}))/h to have the form [up
to o(h" 1] of a sum of terms

Jj-1 4 _
i ifxg;l...m( J )(” s).
J! *‘\q1,...,9: k—s_

Therefore J3 will be a sum (over j =1,...,n,s=1,...,n, indicesmq < --- < my
and positive integers g1 + ... + gs with q1 + - - - + g5 =) of terms

(-1H"=— AQl...xg;( Y )
¢ q1,~~,QS
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with coefficients

hj—l rth) n _ n
lim / Z(” s\__9o"
=0 jJo o F=t\k—s) dxkgyn—k

< exp (_x2 +y% - 2xyt) dt
2(1 - t2) y=x+zh m

| A N A
= lim — / _—— 4 —
o j' Jo  9xs\0x 3y

N exp(_xz +y2 — 2xyt> dt
2(1 - tZ) V1—¢2 y=x+2zh

hj—l rch) 2 (n—s)/2
= (=" 51 e
) A J! /; (1+t)

3¢ x+y ) ( x2+y2—2xyt) dt
X —{H, _s| —— |exp| —————— ,
3xsl " s(«/2+2t T2a-» 1—£2

y=x+zh

(5.16)

where we have used (5.12) in the last equality. It is easy to see that forj > 1,
the s x-differentiations in (5.16) lead to terms of largest order of magnitude [for
t near r(h)] only if they are all applied to the exponential. Thus, when j > 1,
(5.16) is equal to

hj -1 prth) 2 (n—s)/2
1% 1i
(=17 i, — /0 (1+t>

x+y \ 8 x% +y% — 2xyt dt
() 22
[ V2tat) o 20-2) )| _  NI-P
hj -1 prch) (n—s)/2
= (=1)" lim 2= / (i) Hn_s(—ziﬂ)(l — §2)s/
h=0 j! Jo 1+¢ V2 +2t
% Hs (x —xt — th)e_(x2 +xzh)/(1 +t)e—22h2/(2(1—t2)) dt )
V1 —¢2 V112

Now the contribution to the last limit of the part of the integral up to 1 — ¢, for
any fixed ¢ > 0, is obviously 0. Moreover, since s < j, the limit does exist and
can be nonzero only in the case where s =j and ¢; = - - - = ¢; = 1. In this case
the last expression is equal to

Jj-1 prb) _
(—1)"H, _j(x)e~*"/? }}imh /1 e-zzhz_/(%l-ﬂ));g( zh ) tdt

-0 J! -¢ Vi—2)(V1=8)i+1
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The change of variable y = h/+/1 — 2 makes this equal to

—1) 1/
(5.17) %H _j(x)e™/2 / e 2H (—zy)y’ =2 dy.
! 0

Therefore, accumulating the terms with coefficients (5.16) forj = s = 1
together with the reduced form (5.17) established for coefficients of terms with
J > 1, we have

(n-1)/2

r(h)
33———()»1+ -+ An) hm/ <1+t>

] { x+y x2 +y2 — 2xyt dt
o H,,_l(__)exp(__2

0x V242t 2(1 —1t%) yeximm V1 — 2

e~* 2/2 n

ZH —J(x) Z )Lml "‘)‘mj

1<m1< <mj=<n

1/n .
x / e =V 2 H(—zy)y’ =2 dy
0

n/2
_ —(A1+ +An)/ ( ) /e_xz/(l_,_t)Hn( x/2 ) dt
1+t V14t /1 —¢2

—12/2 n

ZH —j(x) Z Amy Ay

“lsmi<--<mj<n

n 2,2 i—2
X / e =V PH(—zy)y’ ~2dy.
0

Finally, by (5.15) and another application of (5.13), we have shown that the
left-hand side of (5.9) has a limit equal to

_x2 /2 n

ZH -,(x)

1/n .
X Z Aml...kmj/O e‘zzyz/ZHj(—zy)yJ‘Zdy],

1<mj<--<m=n

ex(An) { %Hn ( x)e—xz/z

which is equal to the right-hand side of (5.9). O

1/n —z

REMARK. The integral f; /ZIIj(—z&)yf ~2dy appearing on the right-



1378 E. V.SLUD

hand side of (5.9) is equal to

or (<1>(%) - %) ifj =1,
0, ifz =0, jodd,
; 1
nl—JI.Ij(O)j__l, ‘ ifz=0, j > 2 even,

(5.18) $

o2/ (G—-2)!
Z «(J— (J—k—2)

o (—z)‘k_1n2_j+kHj—1—k(_%>’ ifz=£0, j+#2.

The previous proposition is the main ingredient in the proof of Theorem 2.1,
which now follows from Corollary 5.3 in the same way that Corollary 5.4 did.

PRrROOF OF THEOREM 2.1. Since each of the random variables N* »(1,27™) has
finite variance, the MWI expansion for it makes sense and is glven explicitly
by Corollary 5.3 in the form

2" -1 oo

N; (1,27 - E[Nj1,27™] = ) Z (9,(% 3, WY A e = yhhy.y = ki 4+ y)
k=0 n=1

for functions g, (x,y, h)(-) € Lgym(]R", o™), where i = 2™, Then Proposition 5.5
says that, for each n > 1 and for £ = k(m) and A = 2~™ behaving as m — oo in
such a way that kh — x,

h=1g, (W (kh), Y (kh + R), B)(\,)

—u2/2 n

ZH —j(u)_

o, ,
X Z Amy oo hm, /(; e #V2Hi(—zy)y’ _Zdy}

i<my<--<mj<n

N eu(An){an(u)e-‘”/2

u=y(x),z=y'(x)

By the usual expression of Rlemann integrals as Riemann sums, we have for
eachn >1,asm — oo,

om 1
Z L (9, @, v, YD |u=y by, o=yt +1) = In(Sn(An)),
k=0
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where

—u?/2 n

H, —j(u)
j=1

e

1
gn(’\n) = / en//(x)(Al+...+A,,)[_’]_Hn(u)e—lﬂ/z _
0 T b/

i
x5 Z Ay oAy

l<my<--<mj<n

Un ., .
X / e %Y /ZHj(—zy)yJ‘2 dy} dx.
0 U=y (x), 2=/ (x)

Now, if Var(lV, (1)) < oo, then the square-integrable random variable Ny, (1)—
E[Ny(1)] is the a.s. and mean-square limit as m — oo of N3 (1,27™) — E[Nj,

(1, 27™)]. By the isometry property (1.i) of (l/Jri)In( -), the integrands in the
MWI expansion of Ny, (1) — E[Ny, (1)] must coincide with the ¢” a.e. limits G, (\,)
of the integrands in the MWI expansion of N;(1,27™) — E[Nj;,(l, 27™)]. In this
case the assertion of the theorem is that Ny (1) — EIN,(1)] = £°_,1,(S,), and
the variance has the expansion

1) = — "(d).
Var(Vy() = 3 | 18- @)

The proof of the theorem is now complete. O

In order to specialize Theorem 2.1 to the setting of Theorem 2.2, apply (5.1)
with z = 0, implying that only the terms with even j will enter the expression
(2.5).
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