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LIMIT THEOREMS FOR NONLINEAR FUNCTIONALS
OF A STATIONARY GAUSSIAN SEQUENCE
OF VECTORS!

By MIGUEL A. ARCONES
University of Utah

Limit theorems for functions of stationary mean-zero Gaussian sequen-
ces of vectors satisfying long range dependence conditions are considered.
Depending on the rate of decay of the coefficients, the limit law can be
either Gaussian or the law of a multiple It6—Wiener integral. We prove the
bootstrap of these limit theorems in the case when the limit is normal. A
sufficient bracketing condition for these limit theorems to happen uniformly
over a class of functions is presented.

1. Introduction. Long range dependence appears in diverse areas such
as hydrology, geophysics, economics, meterology and communications; see, for
example, Cox (1984). Normal and nonnormal limit theorems for functions of
real-valued stationary sequences have been studied by several authors, for ex-
ample, Rosenblatt (1961), Sun (1963, 1965), Taqqu (1975, 1979), Dobrushin and
Major (1979), Major (1981), Breuer and Major (1983), Giraitis and Surgailis
(1985). In this paper we will study limit theorems for functions of a vector-
valued stationary sequence.

The framework we are going to consider is as follow. Let {X;}°2; be a R4-
valued stationary mean-zero Gaussian sequence, that is, a Gaussian process
indexed by N. Set X; = (Xj(l), e, Xj(d)). Given a function f: R? — R, we will give
conditions on the covariance of the process in order that

(1.1) {a;IZ(f(X,-)—Ef(Xj))}

Jj=1 n=1

converges in distribution for some sequence a,. This problem was proposed
by Sun and Ho [(1986), page 14]. Some partial results for this problem were
obtained in Ho and Sun (1990).

In Section 2, we will see that if the covariance matrix of X; and X, goes
to zero fast enough, then (1.1) converges in distribution to a normal random
variable under the usual normalization a, = nl/2. Precisely, we will show that
if

(1.2) lim n~' > rP9(j - k)

n — oo
Jik=1
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and n
(1.3) Tim 7t Y (70— k)
Jk=1

exist for each 1 < p,q < d, where r'P:9(%) = E[Xl(p)Xl(‘i)k], then

(1.4) n~2N " (f(X) - Ef(X})) —4 N(0,0%),

j=1

where

(15)  o¥i=1+2) E[(f(Xp) - Bf(X0)(Ff(X1e) - Bf(X1.0))]-

k=1

This is a generalization of Theorem 1 in Sun (1965). We also will see that the
condition of decay can be weakened if we know the rank of the function f.
Suppose that f has rank 7 and that

(1.6) 3 Fe2®)|" < oo
k=—o00
for each 1 < p, ¢ <d. Then

(1.7) n~23 " (f(X;) - Ef(X))) —q N(0,0%),

Jj=1

where 02 is as in (1.5). This a generalization to the multivariate case of Theorem
1 in Breuer and Major (1983).
In Section 3, we will consider the convergence of the process of partial sums

[nt] ©
(1.8) {a,;l Z (F(X)-Ef(X)):0<¢t < 1} )
j=1 n=1

In this case we assume that covariance decays as a regularly varying function.
Here, the first terms of the Fourier expansion of f(x) in Wick polynomials give
the limit. The law limit is the law of a multiple It6—Wiener integral. Previous
work by Taqqu (1975, 1979) and by Dobrushin and Major (1979) is extended.
We will follow the approach, via multiple It6—Wiener integrals, in Dobrushin
and Major (1979).

In Section 4, we deal with the bootstrap of the limit theorems presented in
the Section 2 in the case when the limit is normal. Efron (1979) introduced an
innovative statistical procedure called the bootstrap, which consists of resam-
pling from the sample. Since then, the bootstrap has proved to be a versatile
method. It is well known that in the case of dependence, the usual bootstrap fails
[see Singh (1981)]. Kiinsch (1989) [see also Liu and Singh (1992)] introduced
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a variation of the bootstrap called the moving block bootstrap, which works
under dependent data. Several authors [Politis and Romano (1992) and Lahiri
(1991)] have considered this moving blocks bootstrap under strong mixing con-
ditions. Lahiri (1993) studied the bootstrap under long range dependence in
the case where the covariance is regularly varying [i.e., for the limit theorem
in Taqqu (1975, 1979) and Dobrushin and Major (1979)]. He showed that in
the case when the limit is not normal, the bootstrap does not work and that
in the normal case it works under rescaling. In contrast, we will consider the
bootstrap when the limit is normal under the normalization a, = n'/2. Here the
moving block bootstrap works just fine. We limit ourselves to the bootstrap of
the mean. Via differentiability [see Gill (1989) and Arcones and Giné (1992)],
it is possible to get the bootstrap of more estimators.

Finally in Section 5, we will consider the uniform convergence of a class of
nonlinear functionals of a stationary Gaussian sequence of vectors. Let S,,(f) =
a; 121'-; 1(f(X)) — Ef(X})). Suppose that

sup|f(X1)] <oo as. and sup|E[f(X1)]| < oo.
fes fex

Then, {S,(f): f € F} is arandom element with values in /,,(¥). We say that the
random element {S,(f): f € F} converges weakly to the process {K(f): f € F}
in [o(%F), in the Hoffmann-Jgrgensen sense [see Hoffmann-Jgrgensen (1984);
see also Dudley (1967)] if {K(f): f € F} has separable support and

E*[H(S,)] — E[HEK))

for each continuous and uniformly bounded function H on I..(%). It is known
[see, e.g., Theorem 2.12 in Andersen and Dobri¢ (1987)] that S, converges
weakly to K if and only if the finite dimensional distributions of S,, converge to
those of K and there is pseudometric p on ¥ such that (¥, p) is totally bounded and

(1.9) lim lim sup Pr* sup [Sp(f1)—Su(f2)>n)p=0
6—0 n—oo fuLf2€F
pf1,f2) <6

for each n > 0, where Pr* means outer probability. We will give a sufficient
bracketing condition on the class of functions F to S, to converge weakly to a
process K.

All the limit theorems that we will consider are also true for Gaussian fields.
We will formulate our results for Gaussian sequences in order to avoid nota-
tional mess.

2. Limit theorems for functions of Gaussian vectors. In this section
we will study the convergence in distribution of (1.1). A key ingredient in
this ‘study will be the diagram formula for expectations of products of Her-
mite polynomials over a Gaussian vector (see, e.g., page 433 in Breuer and
Major (1983)]. A diagram (or a graph) G of erder (/,...,l,) is a set of points
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{(j,D:1 <j < p,1 <1<}, called vertices, and a set pair of these points
{(j,D,(k,m)):1 <j<k<p1<1l<U,1 <m <1}, called edges, such that
every vertex is of degree 1. We denote by I'({4, . . ., [,) the set of diagrams of order
(l1,-..,1p). Observe that I'(y,...,l,) is empty if [; +--- + 1, is an odd number.
The set L; = {(,1):1 <1 < [;} is called the jth level of the graph G. Observe
that edges connect vertices of different levels. We will denote the set of edges
of the diagram G by E(G). Given an edge w = ((j,1), (k,m)), let d;(w) = j and let
do(w) = k. With this notation the diagram formula is:

DIAGRAM FORMULA. Let (Xj,...,X},) be a Gaussian vector with
EX;=0,EX?=1 and EIX;X,]=r(j,k) foreachl<jk<p.
Then

p
2.1) E[HHI,.<X,~>}= S I (@), dew)).

j=1 GeTlly,...,lp) weE®
Now, we extend the definition of rank of a function to the multivariate case.

Let X be Gaussian vector. Let f: R — R be a measurable function. If f has a
finite second moment, we define the Hermite rank of f with respect to X as

rank(f) = inf{r: 31 with Z}i:llj =T
(2.2)
and El(f(X) — Ef(X)) Hjile,.(X‘f))] #0},

where the infimum of the empty set is infinity. Equivalently, it is easy to see that
rank(f) = inf{v-: 3 polynomial P of degree 7

with E[( f(X) - Ef(X))P(XD,... . X “”)] #0}-

LEMMA 1. LetX=(XD,... XD and Y =¥D,..., YD) be two mean-zero
Gaussian random vectors on R%. Assume that

(2.3) EXVX®] =E[yVY®] =5,
for each 1 < j, k < d. We define
(2.4) P .= EXDY®)].

Let f be a function on R?® with finite second moment and rank 7,1 < 1 < o0,
with respect to X. Suppose that -

d d
(2,5) ’(p = ( Sup E |r(J»k)|> \V} < Sup E |r(1’k)|> S 1.

1<j<d 41 1<k<d i35
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Then
2.6) [B[(£(0) - EFC0) () - EfY)] | < B,

Proor. We may assume that Ef(X) = 0. Let

d
2.7 ey, =E [f(X) HHz, (X(j))J
j=1
so that J
(2.8) flx) = Z Lhynly H H, (),

d
U,y g =0 Hj:l lj!j=l

where x = (xV, ... x@). Observe that

d
(2.9) Clyy =0 i Y Li< T,
i=1

By the diagram formula and (2.8),

oo d
E[fXf®]= S ey imyims (H(l,-!mjn-l)

Uy lg=0 j=1
ml,...,md=0

< E [Hzl (XD) ... H, (XD H,, (YV) ... H,, (Y(d))]
(2.10)

0o d
-1
= > ClytsCmynmy | [ G
U,y lg=0 j=1
my,....mg=0
<Y T aw
GeTly,...,lg,my,...,mg) weEGQR
where

) ,.(dl(w),dz(w)—d)’ if diw)<d < dy(w),
a(w) =
0, otherwise.

Letzg(p, ¢) be the number of vertices of the graph G joining the levels p and q.If
2a(p,q) > 0 for some p,q such that either 1 <p,q < dord+1 < p,q < 2d, then
ITw e E@o(w) = 0. So, we only have to consider the graphs G so that zg(p,q) = 0
for 1 < p,g < dandford+1 < p,qg < 2d. Let zg(p,q + d) = a(p,q) for
1<p,q <d.Then

d .
(2.11) > alp, =1,
g=1

and
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d
(2.12) Za(p,q) =my.

p=1

For a graph like that,

H a(w) = H (r(P’q))a(p’q).

w € EG) 1<p,g<d

Let (a(p,9)1<p,q<q be a matrix of nonnegative numbers satisfying (2.11) and
(2.12). The number of graphs such that

0, if1<p,q<d,
z2¢(p,9) =4 0, ifd+1<p,g<2d,
a(p,g—d), ifl<p<d<g<2d

is
d
Hj: 1 lJ'mJ'
I ,-10(p,)!
Hence, (2.10) is bounded in absolute value, by

(e o)

(p,q)
Z |clly"'yldcm17"'vmd| Z H (a(p q)' (p’q)la i
mli:::::ii;fo @p, ) ., €AQ,m) prg=1
o0
-1/,.2 2
< E 2 (cllyu'»ld +cm1’~-~,md) E
by 1a=0 @p,a)E ., € AL m)

my,.. vmd_o

X H (alp, ) |r(p q)|a(p’q)
p,g=1

where A(l, m) is the set of all the matrices d x d of nonnegative numbers satis-
fying (2.11) and (2.12);1=(l4,...,l3) and m = (m,, ...,my). We have that

> d
Z 6121,...,1d E H (a(p q)v |,.(p,q)|a(p,q)
e gt m e
3 - 1 (p,q)
_ a(p,
= > G D I1 (atp,@) Hrpo| P
U1y lg=0 E:ﬂa(p,q):lp pg=1
for 1<p<li
o d

- Z 0121,---,ld H Z H (a(p q)l (p q)Ia(p Q)

I,y lg=0 p=1 23=la(p’q) [pq 1
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First by the multinomial theorem and then by (2.5) and (2.9), the last expression
is bounded by

o0 d d lp
2 ci,...,,dH((lpn-l( |r(P'q)|> )
Uy lg=0 p=1 g=1
o0 d .
ll,...‘ld=0 p:l
o d
> c?u.--,zd<l_[<lp!>‘l>w’=E[f2<X>]wf.
lyyeeylg=0 p=1
Similarly,
> - 1 (p,q)
— a(p,
Z Cyrom Z H (a(p,q)) " [P0 P1
Uy lg=0 (a(p,q)): q=1€A(l’m) p.g=1
my,..,mg=0 s
<E[fAX]y".

Therefore (2.6) follows. O

THEOREM 2. Let {XJ}J"Q1 be a stationary mean-zero Gaussian sequence of
Re-valued vectors. Set X = (Xj(l), e ,Xj(d)). Let f be a function on R% with
E[f%(X1)] < co. We define
(2.13) rPOR) = E[X&")X,fi’ik]

fork € Zand 1 < p, q <d, where m is any integer so large that m,m +k > 1.
Suppose that

n
(2.14) lim n=' Y AP0 —k)
n— oo i
and .
(2.15) Tim n7t 3 (P9 - B)°
Jrk=1

exist foreach 1 < p,q <d. Then

(2.16) n~2% " (f(X)) - Ef(X))) —a N(0,0%),

j=1
where
o2 = E[( £(Xy) - Ef(Xl‘))z]

2.17) 0
+2 3 E[(F(X0) - BFCXD) (F(X140) - Bf (X1,0)))-
k=1
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Moreover, there is a constant c that only depends on the sequence of covariances,
such that

2

(2.18) E(n_l/2 i (AX) - Ef(Xj))> <cE(f(Xy) - EI“(X1))2
j=1

for each n and each function [ with finite second moment.

Proor. Changing f by f — Ef(X;), we may assume that

(2.19) Ef(X;)=0.

By a linear transformation, we may assume that

(2.20) E [Xl(p)Xl(q)] =0p,q

for each 1 < p, ¢ < d. Observe that the rank of f(x) with respect to X is the
same as the rank of f(L~1x) with respect to LX for any nondegenerate linear
map L from R? into itself. Hence, we can expand f as in (2.8) with¢;,, , =0
for ©2¢_ ,l; < . Let

d d
(2.21) (k) :=( sup Z|r(”"’)(k)|) V( sup Z|r(”"1)(k)|).
1<q<d I3

1<p<d g=1

Let b be a positive number such that sup; 5, ¥(j) < 1. Let

d
cl..
f= > llg.l..;dll_IlHlp(x(p))'
p=

Li++lg>2

Then f; has rank 2 and by Lemma 1,

n"2y " fo(X))

— \
! b ||l —j+5)/8]
<n 23 Y fa(Xa-ve+)
j=1 k=1 2

b [(n —j+b)/b]

1/2
> E[fz(X(k ~ b)) Fo(Xa- 1>b+j)])

222 =n"12)"
j=1 k=1
b i 1/2 o0 1/2
< n-1/2 nbﬂ] ( > 1/;2(kb)) | £2(X1)ll2
j=1t K k=—00

IA

. 1/2
b( Z I/Jz(kb)) | 2(XDll2-

k=—o00
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1,...,0, where the only 1 is in the pth place. Hence

oy Ly

n~1/2 Zf(Xj)

Jj=1

d
©2.23) <&l
=1

Let Cp =Cy,..

2

n‘l/zzn:X.(p)
Jj=1 ! 2
d " 1/2 o 1/2

< [Z (n—l > ,(p,m(j_k)) +b< 2 ¢2<kb>> Juf(Xl)Hz-

p=1 Jk=1 k=—00

- 1/2
+b< $ Mkb)) 1K

k=—0c0

Therefore, (2.18) follows.
Next we will show that for any ¢ < oo,

n t d
@24 2% 3 c,l,,,,,,d[]((zi)—lﬂli(;go)) —a N(0,02),
J=1 1,..,l3=0 i=1
where
t
Utz = Z cll,...,ldcml,...,mdﬂ(lla'"aldamla'"amd)
Lyonlg=1
ml,.;.,md=1
and

,B(ll,...,ld,ml,...,md)
n d

@25 = 2 Jim a7t 37 T (atpt)™

(a(P»q))z_qﬂG-Aﬂ,m) j7k=1pyq=1
(rp9(j — k))a(p,q)

Observe that 8(l4,...,lg,mq,...,mg) = 0if Zd o # 2§= 1mp and that (2.14) and
(2.15) imply that the limit in (2 25) exists.
In order to show (2.24), it suffices to. show convergence of moments, that

is, that
n ¢ d 7
(2.26) E(n"l/zz > e H(l,»!)‘lH,L.(Xj(i’)> -0
J=1 Ly, lg=0 i=1
if 1 is an odd positive integer and
. ~1/2 1 o) o !
e 508 3 aaflorne) - gl

if 11 is an even positive integer.
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In the case when y is an even positive integer, that is, . = 2v, where v is a
positive integer, by the diagram formula, we have that

< —1/22 Z Cloly H(l 1~ lHlp X(P)))

J=11,...,l4=0

n 2v d
(2.28) =n ) > 11 <cz,,,1,...,z,,,d H(lp,q!)“1>
g=1

Jiyeoda =1 0<l q<t¢ p=1
1<p<d,1<q¢<2v

X Z H a(wajlija"'ajZV)’

Ge P(ll, 1,.‘.,l1,d,.“,12,,, 11~“al2u,d) weEG)

where a(w, j1, j2, - - -, Jau) = F'PP(jip — jo) if w joins the levels d(a@ — 1) + p and
d(b—1)+q,where1<a,b<21/and1<p,q<d

Similarly, if x is an odd positive integer, that s, 4 = 2v+1, where v = 0,1, ... .,
we have that

< -1/22 Z cy. H(l nN- lHlp X(P)))

J=11l,..,l4=0
n 2v+1
(2.29) =n-@+D/2 Z Z H Clyenlpa
' l
Jirendav+1=1 0< 1, <t
1<q <d, 15 <2V+1

X Z H a(wyjl’j2)"‘aj2u+l)'

GETU1, 150 l1,dre s lav i, 1res low a1, 0) W € E(G)

In any case, we have to study the limit of

n
(230) n—’Y/2 Z H a(waj17j27-")j’y)

Jtreiy=1 wEE®

foreachgraphG € T'(ly,4,...,l1 4, Uy, 1, -+, 1y 4), where v is a positive integer.
We say that a graph Gis null if there isan edge w joining the levels d(a—1)+p
and d(@ — 1) +q for some 1 < a < yand 1 < p, ¢ < d. By (2.20), if G is a null
graph, I, e g)ow, Jji, jo,-- -, Jy) = 0. So in this case, the limit of (2.30) is zero.
Let G* be a graph of I‘(Z 1l Ljre-ns ;?l= 16+, ;) such that the number of vertices
joining the levels a and b 1 1s equal,

d
> z6(dla—1)+p,d® - 1),
p,g=1

where zg(d(a — 1)+ p, d(b — 1)g) is the number of edges of G that join the levels
d(a—1) +p and d(b—1)q. Observe that G* is the graph obtained from G grouping
every d levelsin one. As, in the one dimensional case, we say that G* is a regular
graph if it is possible to divide the levels 1,...,~v into pairs so that the edges
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of G* only join levels between each of these pairs. We will say that the graph
G is regular if the corresponding graph G* is regular. We claim that if G is not
a regular graph, the limit of (2.30) is zero. Because ¥° __ (P> ?(%))? < oo, for
each 1 <p, g <d, we may define the following function in Ly[—, 7]:

RPOO) = Y exp(~ikrPO(k),

k=—00
where the series is converging in Ly[—7, 7]. Observe that AP ?()) is a complex
function, A®®>9(=)\) = A@P)()\) = (P, D()\) and AP-P(\) > 0. We have that
FPOE) = (2m)1 / expR AP PN dA.

Let s = 2‘127=12g= 1lp,q- Suppose that E(G) consists of the edges w1, ..., ws,
where di(w;) = d(mg;_1 — 1) + ps_1 and da(wy) = d(mg — 1) + pgy, for 1 <
t <s. Then

n
LD SEN | O S

J1yeerJy=1w €EEQ)

n S
=n-v/2 Z Hr(PZt—l)PZt)(ijt _jmze—l)

jlv 7j’7=1 t=1

=n/2 Z (27r)_/ / Hexp l)\t(JMm = Jma_ 1))

.117 7.”‘/:1 7rt 1

x (P2t - 1,pzt)()\t) d)---d)

— Z @m)- / /_"W (j[lexp<ijk§Uk,p))

le 7.”7_1 =

x Hh(“‘— PPN - - - dN),

where I, = 2_,1; , and each Uy, p is one of +);. Observe that the set {Uy, 5:1 <
kE <~v,1<p<Il}isexactly {+): 1 <I < s}. Because Y7 1 exp(ija) = exp(i2~1
(n + 1)a)(sin(2~'na)/ sin(2~1a)),

n
n—7/2 Z H a(w,jl,...,j7)

jl?"’ij’7=1 w € E(G)
=n‘7/2(27r)—3/ / ( T sin(2° an 1Ug, p))
—m - Jom \;21 sin(2- 1zp L Uk.p)

% Hh(pzz_ LPYONd(A1) - - - d(g).
t=1 &
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We claim that
(2.31) [RP20)|? < APPORCD(0N)  as.

with respect to the Lebesgue measure in [—,7]. Given a, b € C, the complex-
valued Gaussian process {Y} := aX(” )+ bX(")},‘:o 1 has by covariance sequence

E[Y1Y1:4) = [al*FPP(k) + abr'P D (k) + abr'@P(k) + |b|2r<q»q>(k). .
The spectral density of this Gaussian process is
|la|2hPP(\) + abhP>P()) + @bhY P(N) + |2 D D())

for each a, b € C. By the Herglotz’s lemma [see, e.g., Breiman (1992), Lemma
11.19],

a2 P(N) + aBhP D(N) +BBR@P(N) + |b[ZR@ V() > 0

for each a, b € C, so, by the Sylvester’s conditions for a symmetric Hermitian
bilinear form to be positive definite, (2.31) holds.
Let h(\) = X1 < p <ah®PX(\). We have that [7_h%(N\)d()) < oo and

n
/2 Z H alw, j1,. -, Jy)

jlv"aj"/:lweE(G)
2 1 I U,
(2.32) Sn_’Y/z(zﬂ-)—S/ / Sln nz =1 k,p)
- —mho1| sin(2- 12 -1Ukp)
x [JRODAAD -+ -d).
t=1

Now, the argument in Lemma 2.5 in Sun (1963) implies that (2.32) goes to zero
for a nonregular graph G*. Therefore, (2.30) goes to zero for a nonregular graph
G.

Because everygraph G € T'(l1,1,...,l1,d,- - - d2v+ 1,15+ - -, l2u +1,4) iS either null
or nonregular, the limit of (2.29) is zero. Therefore, (2.26) follows.

Ifa graph G € T'(y,1,... 01,4, ->l20, 1, - - , L2, a) is @ nonnull regular graph,
then there are pairs (b1, b3), .. ., (b, — 1, bg,) such that G* only has edges joining
the levels in the same pair. Hence the edges of G only join points in the same
group, being the groups of levels

{br-Dd+i:1<i<d}u{ba—Dd+i:1<i<d}
{bgy 1~ Dd+i: 1<i<d}u{(by —Dd+i:1<i<d}.

We. also must have that no edge joins levels u and v such that [(u — 1)/d] =
[(v — 1)/d]. Define

ai(p,q) =26((bgi 1 — 1d +p,(bg; — Dd +q).
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Observe that
d
Zal(p7q) = lbz,_ 1HLD
g=1
and
d
> ai(p,q) =ly, 4.
p=1
We have that for this graph

n
n~v Z H a(wajl7j27"'aj2l/)

J1se-daw =1w € E@)
v d

=n"Y Z H H ((p q) Joy s jbﬁ))ai(P,q)

jl» v.’2u‘1l lp’q 1

(2.33) , . 4
= H (n—l Z H (,.(p,q)(k _J-))ai(p,q)>
i=1 Jk=1 p,g=1
v n d (o.a)
— H (nl}_)moon 1 Z H (p,q)(k -) a; p, ‘1>
i=1 Jk=1p,q=1
For a fixed partition

Q = {(lbl,la s ’lbl,dalbz,la LR ’lbz,d)a ey (lbz,,_l,l’ L 7lb2,,_1,dalb2,,,1a s 7lb2,,,d)}7

we have that

_ Clyy, 10 by, d
> > ”Hlb -

G determining @ Jjy,...,Jo, =1 k> i

(2.34) L . z
x H olw, j1, J2,- -5 Jow) = chz,,l._1,1,...,12,,i_l,dclgbi,l,...,lzbi,d
w € E@) i=1

X B(lap, — 1,15+ - - bab,— 1,5 bab, 15 - - -, Loty a) -
Because there are (2v)!/v!2¥ possible divisions ofI1 1,...,l1.4,...,02,,1,. .-, 02,4
such groups, the limit of (2.28) is

v

@v)!
19V Z H clzk-1,1,~--712k-1,dclzk,11-.-,lzk,d

o<l,, <t k=1

v
: (21/)
x/B(l2k—1,1a""l2k—1,d’l2k,1a"'7l2k,d) '2,,

Therefore, (2.27) follows and (2.24) holds. F1nally notice that (2.18) and (2.24)
imply (2.16). O
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REMARK 3. Conditions (2.14) and (2.15) are necessary conditions in Theo-
rem 2 in the sense that if

(2.35) {n-1/2 Zf(Xj)}

Jj=1 n=1

converges in distribution for each function f with E[f(X)] = 0 and E[f2%(X)]
< 00, then (2.14) and (2.15) hold. In fact, it is enough to assume the conver-
gence in distribution for each polynomial of degree less than 2. If we take

flo)=xg. 1all,;:cj(."’), (2.35) says that

{gn =ty EdjapX}‘”}w

J=1p=1 n=1

converges in distribution. However, g, is a Gaussian r.v. with mean zero, so it
converges in distribution if and only if its variance does, that is, if and only if

d
n~! i Z apa PPk —j)

Jk=1p,q=1

converges. This expression converges for each ay,...,aq if and only if (2.14)
holds for each 1 < p, ¢ < d. Next, suppose that

n d oo
(2.36) {Kn =072 Y N g, Hy(XP) }

Jj=1p=1 n=1

converges in distribution. We will see that the convergence in distribution of this
sequence implies convergence of second moments. We need to introduce some
notation. Let 3 be a linear space of mean-zero Gaussian random variables. Let
P (H) be the closure in Ly of the linear span of the set of random variables
{81 -8~ r < m, gj € H}. The chaos space of order m associated with X is the
orthogonal complement of P,, _ 1() in P,, (). Then, for any k € X,,(H),

~1 m/2
(2.37) 2], < (Z)Tl) 12llq

for any 1 < ¢ < p < oo, where ¢ only depends on m [see Theorem 3 in Nel-
son (1973); see also Lemma 3.2 in Arcones and Giné (1993)]. In our case, for
each n, by the Gram—Schmidt orthogonalization process, there are orthogonal

Gaussian r.v’s Yy, ..., Y, such that {Xj(p)}l <j<n,1<p<d is in the linear span
of {Y;}1 < j<na. It is well known that for £¢_,(a®)? = 1,

d d )
(2.38) H. ( > a(i)x(i>) = S A[UD OV H, ().
i=1 j

Ji+ e +jg=mT  i=1



2256 M. A. ARCONES

So we have that K, is a linear combination of the functions H,(Y;)H.(Y}),
1 <j#k < d, and Hy(Y}), 1 < j < d, that is, K, is an element of the chaos of
order 2 of the Gaussian space generated by {Y;}; < j<nqa. Hence, (2.37) holds
for the sequence {K,}°°,. This and the Paley-Zygmund inequality (E|Z]7 <
M +||Z||F(Pr{|Z| < A\})? ~9/P) imply that E[|K, "] converges for each 0 < p < oco.

In particular,

E[|K,|?] =n~? Z Z apaq (rP Ok — ))*

Jik=1p,g=1

converges for each a4, ..., a,, so condition (2.15) holds for each 1 < p, g <d.

As in the one dimensional case [Breuer and Major (1983)], if we restrict to
functions with a determined rank in order to get the convergence of (2.16), we
require a weaker condition.

THEOREM 4. Let {X;}?°, be a stationary mean-zero Gaussian sequence of
R?-valued vectors. Set X; = (Xj(l), e ,Xj(d)). Let f be a function on R* with rank
7,1 <7 < 00. We define

(2.39) rPa(E) = E[X(p)Xrﬁ:zlk]

for k € Z,where m is any large enough number such that m, m +k > 1. Suppose
that

(2.40) i [r'P2k)|" < 0o
k=—00
foreach 1 <p,q <d. Then
(2.41) n1/2 Zn: (F(X) - Ef(X;)) —=a N(0,0%),
j=1
where

= B[(£(X) - Bf(X)’]
+2 ) B[(f(X0) - BFX) (F(X1a) - Bf(X1.,8)) .

k=1

(2.42)

Moreover, there is a finite constant c, depending only on the sequence of covar-
iances, such that .

n 2
(243) E <n‘1/2 3 (X)) - Ef(Xj))> < cE(f(Xy) — Ef(Xp)"

j=1
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for each n and each function f with second moment finite with rank 7.

PROOF. As in Theorem 2, we may assume that Ef(X;) = 0 and E[X Py (q)]
= §; ; for each 1 < p, ¢ < d. Let (%) be as in (2. 21). Let b be a positive number
such that sup; >, ¥(j) < 1. By the argument in (2.22),

n~1/2 Zf(Xj)

j=1

oo 1/2
(2.44) §b< > W(kb)) I F(XDl2-
2

k=—o00

Therefore, (2.43) follows. Hence, it suffices to show that for any ¢ < oo,

U

n t
@45) 22 S a1, ] (@7HL(XP)) 2 N(0,0),

j=1l3,.,lg=0 i=1
where

t .
=S =1 Clyy 1CmyyemBLs gy m, L Mg)
my,...,mg=1

and

IB(l].’""ld’ml’""md)

0 d
= Z Z H (a(P,Q)!)_l(r(p,q)(k))a(p,q).

(@p, ¥ ., €A0m) k=-ocop,g=1

Observe that 84, ...,lg,my,...,mg) =0 ifz i #¥%_,m,. By the method in

Theorem 2 [(2.33) and (2.34)], we have convergence of

n
(246) n_’Y/Q Z H a(lU,jl,j2,.-.,j'y)

jly'“yj‘r =1lw€EQ)
for a regular graph G. Observe that (2.40) implies that
n d .
n-! Z H (,.(p,q)(k _j))a(p,q)
Jk=1 p,g=1

com;erges for any matrix (a(p,g))1<p,q<q satisfying (2.11) and (2.12), with
Zd W= EJd ,mj > 7. Hence, it suffices to show that (2.46) converges to zero, for

each graph G € T(q,1,-- - li,ds -0 ly 150445 1, 4) that is not regular. As in the
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proof of Theorem 2, let G* be a graph of I‘(E 1l f: 164, ) such that the
number of vertices joining the levels a and b is
d
> zg(dl@— 1) +p,db - 1) +q).
p,g=1
We have that
(2.47) [T e jije- i) < J] %(idsw) —dasw)-
w € EG) w € E(G*)

By the argument in Breuer and Major [(1983), page 433], if G* is not a regular
diagram and ¥3° ___¢(%)", then

n
(2.48) n2 N ] ¢t —daaw) — 0

jl,...,j., =1 w € EG)

as n tends to infinity. Therefore, if G is not a regular graph,

n
n 2N ] e, e i) = 0

jlr“yj'y =1w EE(G)
and the result follows. O

REMARK 5. Condition (2.36) is a necessary condition in Theorem 2 in some
situations. Suppose that {X;}2, is a stationary mean-zero Gaussian sequence

of R¢-valued vectors such that for any polynomial of degree and rank 7, the
sequence in (2.41) converges in distribution. By a linear transformation, we
may assume that (2.20) holds. In this case, we know that for each functlcn f
of the form f(xV,...,x®) = 532_,a,H,(x'P), the sequence in (2.41) converges in
distribution. By the argument in Remark 3, we get that

n d
nTt Yy Y apag(rP Pk - )"

Jik=1 p,q=1

converges for each aq,...,a4. If 7 is an even number, this implies (2.36). If
r{P9( j) is eventually either nonnegative or nonpositive for each 1 < p, ¢ < d,
then (2.36) holds.

3. Non-central-limit theorems for functions of a sequence of Gaus-
sian vectors. Several authors [Taqqu (1975, 1979), Dobrushin and Major
(1979), etc.] have considered the convergence in distribution in the case where
the covariance goes to zero, but not fast enough. Assuming that the decay is of
the order of a slowly varying function, the limit is, in general, non-Gaussian.
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Our approach is via multiple Wiener-It6 integrals, as in Dobrushin and Major
(1979), precisely in the version in Ho and Sun (1990), where the weak conver-
gence is considered jointly for several Gaussian sequences. First we describe
the results of these authors that we will need in the proof of the main theorem
of this section. Let {X;}?2, be a stationary Gaussian sequence of vectors. Let
r'P9(k) be as in (2.13). Suppose that there is a slowly varying function L(%) and

a number 0 < o < 1 such that
. kP O(k)
3. A S

for each 1 < p, q < d, where b, , is a finite constant. Then it is known [see, e.g.,
Theorem 3A, page 14 of Major (1981) and Ho and Sun (1990)] that there are
measures G» 9, for 1 < p, q < d, such that

(3.2) /7r exp(ikx) dGP D (x) = r'P D(k)

-7

for each integer £ and for each 1 < p, ¢ < d. There is also a joint random
spectral measure (Zga, n(dx1), . . . , Zge o(dxg)) such that

(3.3) / exp(ikx) dZgip, (%) = X,

-7

for each positive integer 2 and each 1 < p < d, and

(34) E [ / f)dZgip,m(x) g(y)dZG(q,q)(y)} = | f@EE®dG® ()

-7

for any measurable complex functions f and g such that

/7r |[f@)2dGPP(x) < 0o and " lg(»)2dGT?P(y) < .

—r -7

Let (Za.v,. . .,Zga ) be the joint random spectral measure that is the limit of
[} 0

(3.5) { (n*2 L~V (n)Zgu (A1), .. . ,n®PL"Y2()Z g, 0( Ag)): A; € Bl—, 7r]}.

If < 1/7, we have that

Jj=1 j=1

. [nt] E [nt]
(3.6) { <a,;1 > HA(XY),....a;! ZHT();;.@))): 0<t< 1}
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converges in distribution to

ity + - +x,)) — 1
{ (/ exp(z (xq + +Xx )) dZG(L v(xq) - - 'dZG(l’ vlxr), ...,
[—7, w]™ ’ '

(xy +- - +x;)

3.7 / exp(z‘t(xl +ootxr)) — 1
(=, ]7 iy +-+ +x;)

X dZG(d,d)(xl)-~ -dZG(d,d)(x-,-))I 0<t< 1},
0 0

where a, = n®~79/2(L(n))"/2. Next we present a non-central-limit theorem for
functions of random vectors.

THEOREM 6. Let {XJ}J";’l be a stationary mean-zero Gaussian sequence of

Ré-valued vectors satisfying (3.1) for some 0 < a < 1. Let f be a function on R¢
withrank 7,1 <7 < 1/a. Then

[nt]
(3.8) {a,;l Y (AX) -Ef(X)): 0<t< 1}

Jj=1

converges in distribution to

d exp(it(xy + -+ +x,)) — 1
(3.9) { Z ell’“’"lf/ iy + -+ +x,)

Ly dr =1 (=, 77

X dZG(ll,ll)(xl)' . -dZG(z,,t,)(x,-): 0<t< 1},
o 0

where
d
ey,...1, = (W 7'E lf(Xl(l), X ] Hp(lh...,lf)(Xl(p)):I ;
p=1
py,...,1;) is the number of l1,...,l, that are equal to p and a, = n@~7®/2

L™/2 (n). Moreover, there is a finite constant c, depending only on the covariance
sequence, such that

n 2
(8.10) E(a;l > (F(X) - Ef(Xj))> < cE(f(X1) - Ef(Xy))’

Jj=1

for each n and each function f with finite second moment with rank .

Proor. We may assume that (2.19) and (2.20) hold. We have that

[ e]

d
FE, o ) = S ey, [, (),

Ly lg=0 Tj=1
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where c;, .., = E[f(X))1%_Hy,(X;”)]. Observe that c;, . ;, = 0if 9,1 < 7.
Let

oo d
(3.11) g(x?,... ,x(d)) = Z Clyooly H(lj!)_lﬂlj ().
l1+'"+ld27‘+1 Jj=1

By a computation similar to (2.22),
n 2
E (a; 1 Zg(Xj)>
j=1

<no2 (o) B Y 47 (bl — ) By — 0.
Jrk=1

(3.12)

Hence, for proving (3.8), it is enough to show the convergence in distribution of

[n] d
(3.13) {a;lz > e Hl') H, (X)) 0<t<1}

J=lli++lg=71

Consider the polynomials in (y®, ... y@), {Hg=l(y(P))jP}j1+...+jd=.,. Because

these polynomials are linearly independent, there are a;’l’ ) ke forki+ - -+kg =71

and 1 < p < d such that the matrix

(3.14) ((C";ell),.“,kd)h e (ag?,...,kd)h) JuHja=T

ky+ - +hkg=1
is nondegenerate. We may suppose that

d

2
Z(a;f,) ,kd) =1

p=1

for each k4, ..., ky. Therefore, there is a matrix

(ﬂ(kla e )kd)lla (XX ald)) Ry+--+hkg=T

Li+e+lg=1
such that
(1) Ji (d) Ji
Z ﬂ(kla‘-~)kd)l1)"')ld)(ak1 kd) e (akl,...,kd) ‘

ki+-+kg=1

4 ,

I G ) =0, ),
p=1

0, otherwise."

(3.15)
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By this and (2.38),

d
> > e ( H(zp!)-1>
p=1

ki++kg=T L+ +lg=T

d
x Bk, ..., ka by, - ., l)H, ( > a;ell”)wkdx(p))
p=1

= ) > > e, By, kel L)

ki+--tkg=7 li++lg=7 j1+-Hjg=T

d .
x [T oD (g 4, Y H, (P)

p=1
d
= Y ey [[GYTH, @)
11+'“+ld=‘r p=1
Let
d
vy, .. k) = Z 011,...,ldﬁ(k1,...,kd,ll,...,ld)H(lp!)—l_
11+"'+ld=T p=1
Then
[nt] d
a'y > et [[GOTHL (X))
=1l 4ty =T -1
(8.16) J 1+[n;id D

d
=a;12 Z ’y(kl,...,kd)HT<Za;ell’,)m,kd){j(p)>'
p=1

J=lki+ - tkg=71

Let Ykvoh = 5id_ o0 | X(P. Let (Zga,v(dx1), .. ., Zgu.o(dxa)) be the joint

random spectral measure of {X;} as described before. Then the joint random

(R1ye..r kq) : (p)
measure of {Y;"" " }j5 1 g spy=r 18 (=2 104" 4, Zaw.n Yk vy =7 Hence

[nt]
{a;l ZHT(Yj(kl,...,kd)): i+ - +kg=7,0<t< 1}
Jj=1

converges in distribution to

1yeeey

. .
{ Z ag:.)..,kd a ‘ajeh) kdﬂljlyu-vj-r(t): kit +kg=7,0<t< 1}’

jl:"'vj‘r =1

where.

M ... @) :=/

[—=m, 7)™

exp(it(ey + - + %)) —
ixy + - +x;)

1
- dZG;jl,jl)(xl) te dZGz).I"rva)(xT)-
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Therefore,

[nt]
{arflz > v(kl,...,kd)HT(Y,."*lv--’kd)):ostg1}

J=lki+--+kg=T

d
I TR DI D S

jl,...,jT =1 kl +~~-+kd=‘r

x Mj, . i.(#):0<t< 1}.

We have that

d
Z Z 7(k1’ e ’kd)aga‘it.)..,kd e a(k‘i:-),dellvy.]T(t)

Jiyeesdr=1ki+-+kg=7

d
= Z Z Z %,@(kh...,kd,ll,...,ld)
[Tp-12!

Jlseenrdr =1ky+- +kd =Tll +~~‘+ld=7‘

(Jj1) (Jjr) ) .
x akl,...,kd Tt akl,.‘.,dellyﬂml'r(t)'

By (3.15),
S By kg byl By, kg, L)
ki+--+kg=T Hp:llp!

) (jr) o
xagt a,rop p M, i ®)

_ (T!)_lcllw-»ld]WJ'1,-~~,jr(t)’ ifl, =p(j1,..., jr)for1<p <d,
"o, otherwise.

From the last observation, (3.15) and the fact that 7! e; . ;. = ¢y, .. 1, iflp
=p(j1,...,J.) for 1 < p < d, it follows that the distributional limit of (3.8) is

(3.9).
As far as (3.10), we have, as in (2.22),

n 2 n
E(a;1 Zf()&})) <b%a;? ) Y7 (b(j — k) EFA(Xy).
j=1

Jk=1

Because n”*~ 2(L(n))~" %} _ _,(n—|k|)y" (k) is a bounded sequence, (3.10) follows.
O

REMARK 7. Let
d

X0= 3 ey |

Lyl =1 (=, w7

X dZGg_l,zl)(xl)- . ~dZGg,,:,>(xT).

exp(itlxy + - +x,)) — 1
iy + - +%x7)
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It is well know that there is a vector space H of Gaussian r.v’s such that X(z)
belongs to the homogeneous chaos of order 7 of 3. It is easy to see that {X(¢): 0
<t < 1} has a version with bounded and continuous paths. So, by Theorem
2.3 in Arcones (1994), there is an ortho-Gaussian sequence {g, peq Of rv’s in
H such that

(3.18) {X(2:0<t<1}= { 3 G ® [] Hotisrir(8p): 0< 2 < 1},

Jiyeenjr=1 p=1

where aj,, ;. (&) = (T EIX@TI2 1Hp(,,...,;,)(&p)] and the series in (3.18) con-
verges a.s. uniformly in 0 < ¢ < 1. So (8.9) is a C,([0, 1], d)-valued chaos, where
d(s,t)=|s — t].

4. Abootstrap central-limit theorem for dependent data. In this sec-
tion we consider the bootstrap of the limit theorem in Section 2. Because o2 in
(2.16) is not the variance of f(X), the usual bootstrap does not work. We will
show that the moving bootstrap does. This procedure consists of the following:
Given the sample f(X3),...,f(X,), we make blocks of size b,

(D) B = {f(X),....f(Xiss,-1) |

fori=1,...,n—-b,+1. Let

bp+i—1
(4.2) Yoi=bt ) FX),
j=i
fori=1,...,n — b, +1, be the averages of each block. Now, we take bootstrap
random variables Z, ; fori = 1,...,m,, which are i.i.d. r.v’s with common law
n—bp+1
4.3) n—b,+ D7 D by,
i=1
Let
_ n—-b,+1
(4.4) Yo=(n-b,+ D! ) Y,
i=1
We will show that
(4.5) (ba/mn) "> 2 i — ¥) —=a N(0,0%)
i=1 :

in probability, where o is as in (2.17), meaning that

—pr 0

Prbot{ (bn/mn)l/Z z":(zn’i Y, < t} - ®(t/o)

i=1

sup
t
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where Pr® stands for the bootstrap probability, that is, for the probability
with respect to the random variable Z, ; given f(X),...,f(X,), and ® is the
cumulative distribution of a standard normal random variable.

THEOREM 8. Let {X;}92, be a Re-valued stationary mean-zero Gaussian se-
quence satisfying

(4.6) > FP2®)| < oo

k=—o00

foreach 1 < p,q <d. Let f be a measurable function on R? such that

4.7) E[f4X)] < oo.

Conditionally on the sample, take {Z, ;}[, iid. r.v’s with the law in (4.3).
Suppose that

(4.8) my, b, — 00, bin'—0 and limsupm;'b,n'/? < co.

n— oo

Then (4.5) holds.

PrROOF. We may assume (2.19) and (2.20). By the c.1.t. for triangular arrays
[see, e.g., Araujo and Giné (1980), page 63], if {&,, j}J’i";l is a triangular array
such that:

W o EE  — 1,
(i) x}2,E€2 I, > — O for each & > 0,
(iii) E¢,, ;=0 for each 1 < j <k, and each n,

then

kn
> &, —a N, 1).

j=1

This implies that in order to prove (4.5), it is enough to check that

VarbOt ((bn /mn) vz Z"(Zn,i - _n)>

i=1
n—>bp+1
(4.9) =bin—b,+ DT Y Y,
. i=1

n—bp+1

2
- (b,l,/z(n —by+ D7 ) Yn,i) —pr 0
i=1
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and that
bp+j—1
—-1/2
(4.10) (bpmn) ™2 max Z f(X; )‘ —pr 0.
We have that

n—b,+1

L -b+ ) Y Y,

n—>bp,+1b,+i—1
=b; 2 (n - b, + 17! Z P i0:9)
(4.11) J=i -

=b%n - b, +1)-lzf(X)+b-1/2(n ba+ D73 (- Ba(X))

Jj=1 Jj=1
n

RS D S i)

Jj=n—b,+2

Because n~1/ 257 1f(X;)) converges in distribution and b,n~! — 0,

(4.12) 2 — by, +1>-lzf(x>—»p,
Jj=1

Observe that the method in proving (2.22) gives that

n 2
(4.13) n-lE(Zajf(Xj)> <b2 ,max aj( > ¢(kb)>Ef2(X1).

Jj=1 k=—00
Hence
b,—1
(4.14) b V2 — by + D71 Y (f — ba)f(X)) —p; O
Jj=1
and

415) b Pn—by+ DT Y (n41-j—b)f(X) —pe O.

Jj=n—>b,+2

Observe that (4.11)—(4.15) imply that

n—>by+1

(4.16) V2~ b, + 1)1 Z Y, —p: 0.
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We have that
n—by,+1 n—>by,+1b,—1

ban™t Y Y2, =n1Y) fAXp+2n Yo Y AXDF(Xis))

i=1 j=1 i=1 j=1
b, —1
+ (k)™ D (G = B FP(X)) + (nbp) ™
j=1
(4.17) xS (a+l-j-bf*(X)
j=n—-b,+2

n—>b,+1b,—1

—2nb)t Y D XXy

i=1 j=1
bp—2bn —Jl —i
+2b)7t S0 D G +) - bIAX (X))
i=1 j=1
By the ergodic theorem,
(4.18) n~t S X)) - E[fA(X1)] as.
j=1
We have that

n—bp+1b,—1

E|2n~t Y Y AXI(Xi)

i=1  j=1
by —1
(4.19) =2n"Mn - b+ 1) Y E[f(XDf(X14))]
j=1
— 22E[f(Xl)f(Xl+j)]-
j=1

We also have that

n—by,+1b,—1
n S S (AEVA(K) - B[ AKX
i=1  j=1

b, —1 2b,

<t S

Jj=1 k=1

2
[(n+1— by)/2by]

> (f (Xabo — 0+ k)f (X~ Dk +5)

i=1

(4.20)

T E[f(Xan(i—1)+k)f(X2bn(i—1)+k+j)]>
n—bp+1 b,—1 2
) S (FOOFXi - E[FXI (X))

i=2b,l(n+1—50,)/2b,1+1 j=1

+

2
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We want to bound the last expression using the method in (2.22). Fix j and &
and let

1) 2d)\ _ 1) )
(Yi ""’Yi ) - (X2b,,(i—1)+k""’X2bn(i—l)+k’
(1) (d)
X2b,,(i —D+k+jr ?Xzb,.(i— 1)+k+j)'

Let d; be the rank of the covariance matrix of (Yi(l), R Yi(z‘i)). Then there is a
matrix (ap, q(j))l <p<dj,1<q<2d such that if

2d
Zi(p) = Zap,q(j)Yi(q)v
g=1

then (Zi(l) yene ,Zl.(d")) is a standard Gaussian random vector. For i < &,

E[2PZ0]| <4d® sup (ap,q())) (2balk — ).
1<p<d;,
1<g¢<2d

As j — oo, the covariance matrix of (Yl(l), e ,Yl(2d), Yj(l), ey Yj(zd)) converges to
the identity matrix (2d) x (2d). Hence

2
sup sup (ap,q(M)" =1 < oo
j211<p<d;;1<q<2d

If n is so large that 4d3ry(b,) < 1, the sequence {Z := (Z,il), e ,Z,gd") )}52 , satis-
fies (2.5). Hence we can apply the Lemma 1 to (4.20) to get

n—b,+1b,—1
nt Y Y (FKi) - BIAK(Xi)) )
i1 j=1

<cn~'b2(n/by) 12 0,
2

where c is a finite constant. Similarly, we can deal with all the other terms in
(4.17). The details are omitted. So, we get that (4.9) holds.

As to (4.10), because E[f4(X)] < oo, n~V/*4|f(X,)| — 0 a.s. From this and the
fact that lim sup,, _, ., m; *b,n!/? < oo, it follows that (4.10) goes to zero a.s. O

5. The central-limit theorem for a class of functions of Gaussian vec-
tors. In this section, we will consider the limit theorems in Sections 2 and 3
uniformly over class functions. First, we observe that by the usual Cramér and
Wold device, we get a finite dimensional version of these theorems. For exam-
ple, suppose that fi, ...,/ are functions on R? with finite second moment and
rank 7 or greater, 1 < 7 < 0o, and 3 52 _ |[r'P?(k)|” < coforeachl <p, g <d.
Then by Theorem 4,

n

n—1/2ZZap(f},(Xj) — Efy(X)) _.’dN(O’ Z apaq(f},,fq)>,

j=1p=1 pyg=1
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for each real numbers a1, .. .,an,, where
(Forfq) = Cov(fp(X1), fo( X))

+ 3 (Cov(£( X, fy(Kn 1) + Cov (£ Xn 1), (X)) ).
k=1

This fact and the Cramér and Wold device [see, e.g., Theorem 7.7 in Billingsley
(1969)] imply that

oo

{ <n—1/2 " (A~ BAK), ., n 72 Y (ful X))~ Efm(Xﬂ)) }

Jj=1 Jj=1 n=1

converges in distribution to a mean-zero Gaussian vector (g, .. .,&g») With co-
variance given by Elgpg,] = (fp,f3). Similarly, it is possible to get finite dimen-
sional versions of Theorems 2 and 6.

Let F be a class of functions on R?. In this section we will give a bracketing

condition for the weak convergence of

{sn(f) =a;t Y (f(X) — Ef(X): f € 5}.

Jj=1
The bracketing number corresponding to the p-norm is defined as

N[(‘;)(s, F) = min {r: 3 measurable function f3,...,f, and A,,..., A, such that
EAL(X) < & for each i <r and for each f € F,
3i < rsuchthat |f; — f] < A;}.

For a class F we define the rank of the class as rank(¥) := inf{rank(f): f € F}.

THEOREM 9. Let {X;}2, be a stationary mean-zero Gaussian sequence of
Re-valued vectors. Let F be a class of measurable functions on R?® such that
rank(F) = 7, for some 1 < 7 < co. Suppose that one of the following conditions
is satisfied:

@) lim, - oo n‘lz}‘, w1 " P P(j—k)andlim, _, o n‘lzj'.‘, 51 (P P(j—Fk))? exist
foreach1<p,q<dand =1

1) B _|rP?P(F)|" < oo foreach 1 <p,q <d.

(i"") There is a slowly varying function L(k) and a number 0 < a < 1/7 such
that limy, _, o(k*r'PP(k)/L(k)) = by, 4, for each 1 < p,q < d, where b, 4 is a finite
constant.

(ii) Suppose also that

(5.1) /oo (N[(zl)(s,f}')) 2 e < oo.
0
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Then the process

Jj=1

(5.2) {a;l > (X)) —Ef(X)):f € sf}

converges weakly to a process {K(f): f € F} that has a separable support in
loo(F), where a, = n'/2 if either hypothesis (i') or (i") holds and a, = n@—7®/2
(L(n))™/2 if hypothesis (i'"") holds. Moreover, if either condition (i') or condition
(i") is satisfied, {K(f): f € F} is a mean-zero Gaussian process with covariance
given by E[K(f1)K(f2)] = (f1,fs). If condition (i"") is satisfied,

d .
eXp(lt(xl 4o +x7_)) -1
K(f) = :
) . .”leﬂezl ..... ..(f) . ey

X dZG:)ll’ll)(xl) . -dZGBzT,lT)(xT),

where

d
e l,(f>=<T!>—1E[f(X{”,...,X{”)HHpal ..... (X))

p=1

Proor. We apply the mentioned Theorem 2.12 in Andersen and Dobrié
(1987) with the || - ||o-distance. As we saw before, we have convergence of the
finite dimensional distributions. So, we need to show that

(5.3) slin{) lim sup Pr* sup |Sp(fA)—Su(f2)>np=0

2 ss
for each n > 0. By hypothesis, there are maps
T F - F, Dg: F—=TF
such that
If —7of| S Af,  Agflle <279, #m,F, #A,F <N, :=NZ(@279).

We may assume that 7,f € F. Either Theorem 2, 4 or 6 implies the convergence
of the finite dimensional distributions of {S,(f): f € F} to {K(f): f € F}. Take
p < q.Let7; = mjo- . .omg. Observe that 7; = mjo7;, 1. By the triangular inequality,

E[sup lSn(f_Tpf)I] SE[SUP ISn(f_qu)l]
. fesF fesF
(5.4) q
+ Z‘E[s?pISn(ij—Tj—lfN}

Jj=p+1
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We have that
E [sup 1Sl f ~ qu)l] <a;'E [sup (Z Dgf(X) + Aqf(Xj)>]
fesF feEF\ ;

<a; lE[supZAqf(X)l +na; 1279
fe

j=1
(5.5) [sup Z (Agf (X)) — E Af(X;) } +2na; 1279
=1
24\ 1/2
( [?2‘; Zl (Agf(X) — E Dgf(X;) D
+2na; 1279

< cNy/?279 + 2na; 1279

because the cardinality of {A,f: f € F} is less than N, and ||S.(f)|l2 < cl|/f]lz.
We also have that

(5.6) E[Suplsn<7;f 1f)l] <E[sup |Su(mj_1f —)I| <eN}/22=U=D,
f

fenF

From (5.4)—(5.6) we get that

(5.7) [sup ISa(f — Tpf)l] < 2na;'279+3c Z Nl/2 ~,

Jj=p+1
Now 7, determines a partition of ¥ in N, pieces. Let us call them E,,...,Ey,.
Let

A = {@,): 1 <i < j <N, such that there exist f € E;
and g € E; such that || f — gl|z < 6}.

For each (i, j) € A, take oG, ) € E; and ©wa, ) € Ej such that ”(ﬁ(i,j) — ‘P(i,j)llz <é.
If |f —g|l2 < 6, then there are 1 < i <j < N, such that f € E; and g € E;. Then

ISn(f) S (g)l < lSn(f Tpf)l + IS ¢(z D= Tp¢(t,]7)1 + IS (¢(l D= (p(i,j))l
+|Sn (6, ) — %6, )| + 1Sn(g — 8]
< 4sup[Su(f — )| + sup |Sn(da, ) — % p)|-
f @, JEA
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From this and (5.7),

If —gllz<é

E[ sup |Sa(f —g)IJ
< 4E[Sup ISa(f — Tpf)l] +E[ sup |Sn (b, ) — %a,p)|
f G,NEA

q
< 8na;'277+12¢ Y N}/*27 + csN2.
Jj=p

Letting ¢ — oo,

o0
E[ sup |Sn(f—g)|} < 12cZNj1/22—f+c5N§.
IIf —gllz2<é j=p

Therefore,

N o= A 11/26
611m hmsupE[ sup |Sn(f—g)|} §12cZNj 277

=0 n—oo [|f-gllz<6 isp

for any p. Therefore (5.3) follows. O

From Theorem 9, it is possible to get the weak convergence for some classes
of functions. For example, if H: R — R is a function with finite second moment
and the Gaussian sequence satisfies any of the three conditions in Theorem
9, then

{a;l i (exp(itH(Xj)) —Eexp(itH(Xj))): It] < T}

j=1
converges weakly to a Gaussian process for each 7' < co. Observe that

Elexp(itH(Xy)) — exp(isH(Xy)|* < (¢ — s2EH%(X).

Hence Nﬁ)(a, Fr) < (2EH*(X))'/2T/e) + 1, where Fp = {exp(itH(x)): |t| < T}.

In Arcones and Yu (1994) there is a result on empirical processes of partial
sums of Gaussian fields under long range dependence. Theorem 9 can be applied
to the study of the asymptotics of M-estimators [see Theorem 2 in Arcones and
Yu (1994)].
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