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TIGHTNESS OF PRODUCTS OF LI.D. RANDOM MATRICES. I1

BY ARUNAVA MUKHERJEA
University of South Florida

In this paper, we prove a necessary and sufficient condition for tightness
of products of i.i.d. finite-dimensional random real matrices. We give an
example illustrating the use of our theorem and treat in more details the
case of 2 x 2 real matrices.

1. Introduction. In this paper we continue our earlier study of tightness
of products of i.i.d. random d x d matrices in [9]. In [9], we proved a necessary
and sufficient condition for tightness of products of i.i.d. random nonnegative
matrices. The methods in [9] cannot be extended to the general situation of real
matrices; however, we show in this paper that it is not difficult to understand to a
considerable extent what tightness means fori.i.d. random real matrices and to
provide a characterization of tightness for general real matrices. Here we treat
the most general situation and assume rno condition on the matrices or on the
support of the distribution involved. Our result here, we feel, is complete, and we
do not expect any additional insights without imposing additional conditions.

It is relevant to mention here the pioneering paper of Kesten and Spitzer
[5] in the context of tightness and convergence in distribution of products of
i.i.d. nonnegative matrices that did set the stage for the next series of papers
in this area, those of Bougerol (the paper [1] as well as a number of other pa-
pers not mentioned here) and others of the present author (see the references).
In [1], Bougerol considered d x d random real matrices and considered the
same problem as addressed in this paper. He provided two main theorems, one
giving a necessary condition [in the case of general finite d, under various con-
ditions imposed on the support S(u) of the distribution 4 of the i.i.d. sequence,
the condition considered in one case, for example, requiring that the invertible
d x d matrices have y-measure 1], whereas the other gives a sufficient condi-
tion based on some moment conditions on y as well as certain requirements on
certain upper Lyapounov exponents. In [8], the author, in an effort to extend
and better understand some of the results of Kesten and Spitzer [5], presented
a number of results on weak convergence (the same as convergence in distribu-
tion in the present situation) for products of i.i.d. real matrices. The methods
used in [8, 9] and in the present paper are semigroup methods and very differ-
ent from the ones employed in [5] or [1]. Even though the methods used here are
not the everyday tools of most probabilists, they are extremely simple and easy
to follow for any probabilist. The key concept one needs to understand in order
to understand this paper is the concept and properties of a completely simple

‘Received October 1992.
AMS 1991 subject classifications. 60B10, 60J15.
Key words and phrases. Random matrices, weak convergence, tight sequence of measures,

completely simple semigroup.

2223

%ﬁj
y
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁ:/‘

R

o 2

The Annals of Probability. STOR ®

WWW.jstor.org



2224 A. MUKHERJEA

semigroup. For this and other semigroup results in the context of probability,
we refer the reader to [11].

Let X;,X5, ... be asequence of d xd random i.i.d. real matrices with distribu-
tion p with support S(i). Then W, = X, X, _; - - - X;, the product being the usual
matrix product, has distribution y", the nth convolution power of 1. Recall that
forn >1,

prti(B) = /,u"{z: zx € B}u(dx)

and
S(u™) = closure{x1xs - - - %, | x; € S(u) for each i},

with usual topology for matrices. Notice that P(W,, ¢ S for somen > 1) = 0,
if S = cl(U;2 ; S(u™)). The sequence (") is called tight if given € > 0, there is
a compact set K C S such that for each n > 1, y*(K) > 1 — ¢. The problem
of tightness comes up in problems of weak convergence (see [5]) as well as in
numerous other contexts, for example, to decide when there is a p-invariant
distribution or to obtain laws of large numbers for the random walk (W,,); see
[10] for details.
We present our results in Section 2.

2. Results.

THEOREM 1. Let u be a (Borel) probability measure on d x d real matrices
with usual topology, with support supp(u) or in short, S(u). Let S be the closed
maultiplicative semigroup generated by S(u). Let m(S) be the set defined by

m(S)={x € 8S: rank x < ranky forally € S}.

Let a be the rank of the matrices in m(S). Then the following results hold:

(i) Suppose that a = d. Then the sequence of convolution powers (i"*) is tight
iff S is a compact group.

(i) Suppose that a = 0. Then the sequence (u") is tight iff u™ converges weakly
to &y, the unit mass at the zero matrix.

(iii) Suppose that 0 < a < d. Then the sequence (u") is tight iff the following
two conditions hold: (a) there is a compact group G of invertible a x a matrices
and an invertible d x d matrix y such that for any x in S, the matrix y~lxy can
be uniquely represented in the form

A BD
-1 _

where D is an element of G,Cisana x (d —a) matrix, Bis a (d — a) X a matrix
and A is a (d — a) x (d — a) matrix, and (b) for any open set V containing the set
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of matrices given by

\

BDC BD\|, . :
M= { ( DC D )‘ there exists an A such that

the matrix in (1) is an element of y‘ISy},

: n -1\ —
nlingo pt(yVy=1) =1.

In the “only if” case, the set M coincides with the set m(y~1Sy). Therefore,
when the sequence (") is tight, then (") converges weakly iff there does not exist
a proper normal subgroup H of Gy, where Gy is the compact group with identity
eo of d x d matrices given by {(g g): D € G} with G as in condition (1), such that
E(eo - y~1Sy)E(y~1Sy - e9) C H and eo(y~1S(u)y)eg C gH for some g € Gy — H.
[Here, E(W) stands for the set of all idempotent elements in the set W.]

ProoOF. Letusprove (i). The “if” part is obvious. For the “only if” part, notice
that following the same proof given on page 32 in [10], it follows that

n
% Z ¥ converges weakly to a probability measure ),
k=1
Axpu=pxA=d=A*x A\

This implies that the support S()\) of \ is the minimal (completely simple) ideal
of S (see Proposition 3.13 and Theorem 3.15 in [10]) and that ife is an idempotent
matrixin S()\) (being completely simple, it will contain at least one such matrix),
then e - S()\) - e is a compact group (see page 25 in [10]). Because the matrices
in S are assumed to be of full rank and because S()\) is an ideal of S, it follows
that e is the usual identity matrixand S=S-e C S(\) =e-S()\) - e.

Let us prove (ii). The “if” part is obvious. For the “only if” part, notice that
when 0 € S, the support S()), being the minimal ideal of S, must be the singleton
{0} so that X = 6y. Then the weak convergence of y”* to A follows from Theorem
2.1in [6].

For the “if” part of (iii), let us then suppose that conditions (a) and (b) hold.
If for each positive integer k&, u*(m(S)) = 0, then it follows from Lemma 7.7 in
[4] that the sequence (u™) is tight. Note that condition (b) is used here. Let us
then suppose that there is a positive integer £ such that p*(m(S)) > 0. Because
m(S) is an ideal of S, it follows that

2) Jlim p*(m(S)) = 1.

By condition (a), there is an invertible matrix y such that for each x in S, y~lxy
has representation given in (1). Let us define the set S; and the measure ) as

Sy1={yxy|x €8},

3)
Ny 1By)=uB), - BcCS.
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It is easily verified that forn > 1,
X*(y~'By) = yM(B)
and also
mS) =yt -m(S)-y
so that it follows from (2) that
4) nlinéo A (m(Sy) = 1.

Also, it is clear that the sequence () is tight iff the sequence (\*) is tight.
Let € > 0. Then it follows from (3) that there is a positive integer N and a
compact subset A C m(S;) such that

(5) V) > V1

By condition (a) every matrix in S; has the form as in (1), that is, it looks like
A BD

(2 ™)

where D is an element of the compact group G of @ x a matrices. Note that the
matrix D itself has rank a. Thus, if the matrix in (6) belongs to m(S;), then it
has rank a and, therefore, it must look like

BDC BD
DC D)’

where D € G. In fact, every matrix in m(Sy) is of the form (7). Now we claim
that the set A - m(S;) - A = {x; - x5 - x3: x; and x5 are in A and x3 € m(Sy)} is
a compact subset of S;. To prove this claim, let us consider

B;D,C; BiD ByDyCy ByD.
(111 11>€A, (222 22>EA

(7

chl D1 chz D2
and
BDC BD
Notice that
B,D,C, B:D,\ (BDC BD (32D202 Bng)
D,C, D, DC D DyC, D,
®) _ (B1D1Cy B.lDl BD*C, BD*
N B chl D1 D*Cz D*

B,D**Cy B;D**
D**02 D** ?
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where D* = D(CBy + 1I,)Ds; € G and D** = D{(C1B +1,)D* € G. Now observe
that the sets

BDC BD
{BI<DC D)eAforsomeDegandforsomeC}

and

{C l <1-g)CC BDD) € A for some D € G and for some B}
are both compact subsets in the usual topology of (d — a) x @ and a X (d — a)
matrices, respectively, because A is a compact subset of d x d matrices. [The
reason is the following: For every matrix B in the first set above, the entries in
the matrix B-D (= B;, say), which is the block in the upper right hand corner of
the matrix

BDC BD
DC D)

which belongs to .4, must be bounded because A is a compact set. Because the
matrix D belongs to the compact group G of matrices with full rank, it is clear
that the entries in all such matrices B = B;D~! must be bounded. A similar
reason applies for the second set above.] This observation, along with the form
of the product in (8), implies that the set A - m(S;) - A is a compact subset of
S1. This establishes our claim and consequently it follows from (4) and (5) that

lim N+ (A-m(S1)- A) > lim AV(A) - X (m(Sp) - XV(A)

n— oo

>1-—e.

It follows that the sequence (\*) and, therefore, the sequence (") are tight.

Let us now prove the “only if” part in (iii). Let us then assume that the se-
quence (u") is tight. Then it is well known (and as mentioned earlier, see also
[11], page 32) that the sequence (1/n)X%_, u* converges weakly to some prob-
ability measure v such that S(v), the support of v, is the (completely simple)
minimal ideal of S and, consequently, S(v) = m(S). Now we must exploit the
algebraic structure of m(S), a completely simple subsemigroup of S. (For de-
tails of properties of such semigroups, see [11], pages 6-9.) Let e = 2 be an
idempotent element of m(S). [m(S), being a completely simple subsemigroup,
has at least one idempotent.] Then e has rank a and there is an invertible d x d
matrix y such that ‘

9) . yley = (g IO>

where I, is the a x a identity matrix.
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Let x € S. Let us write y~lxy as

(10) y ey = (‘é g>,

where Disa xa,Bis(d —a)xa,Ais(d —a)x(d —a)and Cisa x (d —a). Now
because m(S) is completely simple and the support of an idempotent probability
measure v, the set eSe = em(S)e is a compact group; see Theorem 3.16 and the
proof of Theorem 3.15 in [11]. Observe that

=g 1)(e 5)(o )= o)

Let G = {D | there exist A, B,C as in (10) such that (4 &) € y~'Sy}. Then it

is clear that G is a compact group of @ x a matrices. Now we recall from [11]
(Theorem 2.14, page 9) that

(11) m(S) = E(m(S)e) - [em(S)e] - E(em(S)),

where E(W) denotes the set of all idempotent elements in the set W. A typical
element in y~1[m(S)ely is of the form

v we)y = (y7'xy) (v ley) = (‘2 ﬁ) (3 ;)) = (g g)

and if this element is idempotent, then
0 B\ (0 B\/0 B\ (0 BD
o b/ \o p)\o D) \o D?
so that D must be I,. Thus, elements in y~1 . E(m(S)e)y are of the form ( 82 ).

Similarly, the elements in y~1E(em(S))y are of the form (3 ,‘1 ). Then it follows
from (11) that a typical element in y~'m(S)y is of the form

12) 0 B\/0 0\/0 0\ (BDC BD
(6 )G 0)(e 2)=(oc 5

where D belongs to the compact group G. Now let us consider an arbitrary
element in y~1Sy. Let it be y~1zy, which looks like

(Al B,

(13)

expressed in the form described in (10). Then notice that y~1(ze)y € y~1m(S)y

and, therefore,
Ay B;\(0 0\ (0 By
¢, D,J\o I1,) \0 D
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must have the same form as in (12) so that By = BD; for some (d — a) x @ matrix
B. Notice that this B is unique when B; and D, are given because D; € G and
G is a group. Similarly, y~1(ez)y € y~1m(S)y and, therefore,

0 0\/A1 Bi\_(0 O

0 Ia Cl D1 - Cl Dl
must have the form as in (12) and as such, C; = D;C for some unique a x d-a)
matrix. Thus, it follows from (13) that every matrix in y~1Sy is of the form

A1 BD,
o (5c )

where D, is an element of the compact group G of @ x a matrices and (14) has
the same form described in (10). The proof of (iii) will be complete once we show
that whenever the matrix
A BD
DC D )’

with the same form as in (14), is in y~1Sy, then the matrix

BDC BD
DC D

must also be an element of y~1Sy and, therefore, in y~1m(S)y.
To prove this part, let us take x in S such that

. _(A BD
Y ®=\pc D

with the same form as in (14). Notice that eSe = em(S)e is a group and as such,
(exe)~1, the inverse of exe in this group, belong to S. If z = y~1(x(exe)~1x)y, then

(A BD\/0 0 A BD\ _(BDC BD
*=\pc b J)\o pt')\pc D) \Dc D)
Thus, we have proven that the set m(S) consisting of all matrices in S with the
minimal rank coincides with the set yMy~!. Because (1/n)x?_, p* converges
weakly to the probability measure v and the support of v is m(S), the condition
(b) now follows immediately from Theorem 4.3 in [7]. [The idea here is that all
the weak*-limit points of the sequence (1), which are also weak limit points
in this case, must have their supports contained inside S(v).] This proves our

previous assertion and the proof of (iii) is complete. The proof of the last part
(that is, the weak convergence part) is immediate from Theorem 2.1 in [6]. O

Next we consider the case of 2 x 2 real matrices. In this case, as we show in
the following text, we can be more specific.
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THEOREM 2. Let i be a (Borel) probability measure on 2 x 2 real matrices
and let S be the closed (w.rt. the usual topology) multiplicative semigroup gen-
erated by S(u1), the support of .. Suppose that.the sequence (u™) is tight and that
the rank of the matrices in m(S) is 1. (When this rank is 0 or 2, exactly what
happens is clear from Theorem 1.)

Suppose also that m(S) does not contain a group of the form {1, —1}. Then
either there is a common right nonzero eigenvector for every matrix in S with
common eigenvalue 1 or there is a common left nonzero eigenvector for every
matrix in S with common eigenvalue 1. In particular, there is an invertible 2 x 2
matrix y such that in case of the first possibility, y~1Sy C {¢ (1)): a,c scalars}
and in case of the second possibility, y~'Sy c {(} ll’): a,b scalars}.

Suppose now that m(S) contains a group of the form {1, —1}. Then either m(S)
conststs of exactly eight elements, or there is a common right eigenvector for every
matrix in S with eigenvalue 1 or —1, or there is a common left eigenvector for
every matrix in S with eigenvalue 1 or —1. In case of the last two possibilities,
there is an invertible 2 x 2 matrix y such that in case of the second possibility,

y 18y c {(Z 2) a,c scalars and b = :i:l},

and in case of the third possibility,

y_,ISy C { <g Z) a,c scalars and b = :!:1}.

(It is relevant to point out that a similar result in the context of nonnegative
matrices appeared in [5].)

PRrROOF. Suppose that (4")is tight and that the rank of the matrices in m(S)
is one. Then as we have seen in the proof of Theorem 1, m(S) is a completely
simple subsemigroup of S with a compact group factor. Let e = €2 be a fixed
idempotent element of m(S). Because rank (e) = 1, there is an invertible 2 x 2

matrix y such that
1y = 00
y y - O 1 .

Let us consider the set y~1(m(S)e)y. Because the rank of the matrices in the set
y~Im (S)y is 1, a typical element in the set y‘l(m(S)e)_y is of the form

a1b1 a162 00 _ 0 albg

a2b1 a262 0 1 B 0 a262
and if this element is idempotent, then asbs = 1 so that the set E(y~'m(S)ey) =
¥y~ YE(m(S)e))y, where E(W) is the set of idempotent elements in W, consists
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of elements of the form () %). Similarly, the set E(y~lem(S)y) = y~1E(em(S))y
consists of elements of the form (2 (1’). Now suppose that

(15) E(m(S)) #e and E(em(S)) #e.

Then there exist elements x;, x5 in m(S) such that x;e = (x1e)?, exs = (exs)? and

0
y_l(xle)y=<0 ?)7 a#O,

and
00
y"l(exz)y=<b 1), b £0.
Notice that then
00 0 a 0 0
-1 - _
(16) Y (ex2xle)y'(b 1)(0 1)‘(0 ab+1>’

where ab + 1 # 1 because ab # 0.

However, because y~1(em(S)e)y is a compact group of matrices of the form
( g 2), ¢ being a nonzero scalar, it is clear that in (16), ab + 1 € {1, —1}. Because
ab #0,ab+1=—-1orab=-2.

It follows that if (15) does occur, then we must have

L)) E[y"l(em(S))y]={<_§ (1))’(8 2)}
and
sptmonn] - {(5 2).(5 9)]

for some a # 0. It is also clear that when m(S) does not contain a group of the
form {1, -1}, the element ab + 1 must be 1 so that ab = 0, which will mean that
(15) cannot occur in this case.

Let us now observe that the set y~!(em(S)e)y, being a compact group, must be
either {(J )} or {(3 ), (5 _9)}. As a consequence, because m(S) is completely sim-
ple, it follows easily that every element in m(S) is idempotent when y ~1(em(S)e)y
is a singleton and that when this set is not a singleton, then m(S) = —m(S) so
that every element in m(S) is either an idempotent or the negative of an idem-
potent.

Because we have the set equality m(S) = E(m(S)e) - em(S)e - E(em(S)), it
follows that when (17) occurs, y~1m(S)y consists of exactly the following eight
elements, that is, there is a # 0 such that .

mn={(3 0.0 Q0 2
(L0606 D)

(18)



2232 A. MUKHERJEA

Now we look into the situation when m(S) does not contain a group of the
form {1, —1}. In this case, (15) does not occur and then we have either

(19) Se = m(S)e = E(m(Sk) = {e},
or
(20) eS =em(S) = E(em(S)) = {e}.

Suppose that (19) holds. Then, for any s € S, let y~lsy = (¢ 2). Then y~(se)y =
(“d)( 9) = (§9), in which case b = 0 and d = 1. This means that when (19)

occurs,
y~ 18y {(‘Z g) a,c scalars}.

Similarly, when (20) occurs,

y18y {(g l{) a,b scalars}.

Finally, it can so happen that m(S) contains a group of the form {1, -1} and
also (15) does not occur. In this case, as is clear from above, we must have either

Se =m(S) -e = {e, —e}
or
eS =e-m(S) = {e,—e}.

The rest of the details are clear and left to the reader.
The proof is complete. O

Let us remark that when (%Zf)’ 1 < i < oo, is a sequence of i.i.d. ran-
dom matrices, where &;,7;, s are real random variables with ¢; = +1, then it
is easy to prove using methods in [2] that if P(§; = 0) = 0, Elog|é| < 0 and
Elog max{|n;|,1} < oo, then the sequence (y"*) is tight, where p is the distribu-
tion of (5' "’) In the same manner one can treat an i.i.d. sequence (g‘ °) with
&, i and c, as before, the backward product in this case correspondmg to the

forward product in the former case.
Let us now illustrate Theorem 1 with a simple example. We consider a prob-
ability measure p with a three-point support in 3 x 3 real matrices so that

S(p) = {x1, x3, %3},
where -
1 cosf; —sinf; —sinf, —cosb,
x1=1]0 cos 6 —sin 6, , Xg =

0 sin 6, cos 01

o © o
(= =)
= o O
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and
2 cosfy —sinfy —sinfy — cos by
x3 = \/Lg(cos 0y + sin 6y) cos 6y — sin 6y ,
%(Sin 6y — cos bs) sin 6y cos 6

where 61,0, > 0. Notice that to keep everything simple, the support of u has
been taken here as in the proof of Theorem 1 as y~1S(u)y (for some appropriate
invertible y). Also observe that

_( A1 BiD, (00 _( Ay BiD,
“=\pc;, b, ) *T\on) *® \pe, D, )
where

cosf, —sinb, cosf; —sinb,
D 1= . s D 2= . ’
sin 6, cos 0, sin 6, cos 0,

1
0 P
Cl=( ) By=(1,-1)=B,, 02=( Vf)
0 _L
V2

Here, C1B; + I, C1Bg + I5,CyB; + I and CoBy + I are all of the form (:‘i’sg - :f;g ).
Thus, the closed semigroup generated by S(u) will consist of elements of the form
(A BD ), as described in Theorem 1, where D is an element of the compact group

DC D
<c0s0 —sing\ 9> 0
sind cosf) T [’

It is clear that the rank of the matrices in m(S) is 2 and that x5 € m(S) so that
u(m(S)) > 0, which implies that lim,, _, o, p™(m(S)) = 1. It follows from The-
orem 1 that the sequence (") is tight. Because S(u) contains an idempotent
element in m(S), it also follows from Theorem 1 that the sequence (u") con-
verges weakly. The same will be the conclusion if we considered S(u) to be a set
{y~1x1y, y~lxay, y~lxzy} for any invertible 3 x 3 matrix y. Notice that without
the use of Theorem 1 (and this the reader can verify for herself/himself), it may
not be a simple problem to establish the weak convergence of the sequence (;:*)
even in this very simple situation.

Acknowledgment. We are grateful to an anonymous referee for his very
constructive comments, which helped us revise, clarify.and correct a number of
points in an earlier version.
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