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ASYMPTOTICS OF EXIT TIMES FOR MARKOV JUMP PROCESSES. II:

APPLICATIONS TO JACKSON NETWORKS

By I. IscoE AND D. McDoNALD!

McMaster University and University of Ottawa

We show that a Jackson network relaxes exponentially fast to its steady
state by giving a lower bound on the Cheeger constant for the associated
Markov process. We also give lower bounds on the mean time until some
node of the network overflows.

1. Introduction. This article is the continuation of Iscoe and McDonald
(1994) (hereafter cited as Part I), where we studied the distribution of the first
hitting time 7 of some forbidden set F by a Markov jump process with unique
stationary measure w. We now apply these results to a Jackson network having
m nodes, where we suppose the buffer at node i is of size /; — 1. We define the
forbidden set of this network to be those states where the queue at some node
exceeds the buffer size. Applying the results in Part 1, we conclude that the
time until overload is approximately exponential with mean 1/A if [ = min,;
is large enough [so that n(F) is small]. A is the Perron—Frobenius eigenvalue
associated with the infinitesimal generator —L of the Jackson network killed
on the forbidden set. We also obtain an explicit upper bound on the probability
of overload during a fixed time period as well as a lower bound on the mean
time until overload.

To establish the above results we must show the existence of a gap between
the eigenvalue 0 and the rest of the spectrum of the infinitesimal generator
of the Jackson network. This is done in Section 3. The existence of this gap is
equivalent to the exponentially quick relaxation of the Markov jump process to
the steady state. Using the results in Lawler and Sokal (1988) on the Cheeger
constant for a jump process, the proof of Theorem 3.1 provides an algorithm
for estimating the gap. The essential idea is to compare the Cheeger constant
associated with L with the Cheeger constant associated with L, where —L is the
infinitesimal generator of the vector of independent birth and death processes
evolving like the marginals at each node of our Jackson network. This is possible
because 7 is the product of the stationary measures of the marginal processes.

The fact that the marginal processes associated with each node of a Jackson
network are Markov (birth and death) processes allows one to closely approxi-
mate A by ¥7% ; A;, where A; is the Perron—Frobenius eigenvalue associated with
the infinitesimal generator of the marginal process at node i killed outside of

Received April 1991; revised April 1993.

1Research supported in part by Natural Sciences and Engineering Research Council of Canada
Grant A4551.

AMS 1991 subject classifications. Primary 60J75; secondary 60K30.

Key words and phrases. Jackson networks, asymptotic exponentiality, Cheeger constant.

2168

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to @S%EZT"}
The Annals of Probability. FIN®RN

Www.jstor.org



EXIT TIMES FOR JACKSON NETWORKS 2169

[0,1; — 1]. A is asymptotic to 1/E7, where 7 is the mean time to exit the com-
plement of F, and A; is asymptotic to 1/E7;, where 7; is the mean time for the
marginal process at node i to exit [0,/; — 1]. We thus have a partial confirmation
(in the reversible case) of the conjecture by Anderson and Frater (1988) that the
mean time until the network overflows can be asymptotically bounded below
by combining the mean times until the individual nodes overflow like electri-
cal resistances in parallel. Meyn and Frater (1990) have established an exact
equality when the expectations are relative to the distribution of the Jackson
network immediately after recovery from an overflow. This result does not give
the mean length of the idle period; that is, the time until overload starting with
empty queues or, what is asymptotically equivalent, from the equilibrium dis-
tribution. We have not been able to prove the conjecture in the nonreversible
case, but we do give lower bounds based on the general results in Part 1.

2. Definitions, notation and results. We will keep the notation and def-
initions found in Part 1, with appropriate modifications for the present discrete
setting. In addition, we follow the presentation in Brémaud (1981) and consider
a Jackson network having m stations or nodes. A typical node i receives cus-
tomers exogenously according to a Poisson process of rate ;. When x; customers
are at node i, then the service rate is p;(x;). When a customer completes his ser-
vice at node , he is routed to node j with probability r;;, j # i (r; = 0), and leaves
the network with probability r; := 1- %77 ;r;;. Such a system is a Markov process
X;; t >0)on S :={0,1,2,...}", where x = (x1,...,x,) € S denotes the state
in which there are x; customers waiting or being served at node i, i =1,...,m.
We assume that the network is both exogenously supplied and open. [The term
“exogenously supplied” means that each node j is fed (possibly via other nodes)
by some node i for which ); # 0, and the term “open” means that each node i
feeds some node j (again possibly via other nodes) for which r; # 0.] Denote the
possible transitions from one state to another with the following operators:

Tyx = (x1,...,0—1,...,x+ 1,...,%m),
T)x = ®1,...,x+1,...,%5),
Tix:=(@1,...,0,—1,...,%m).

Clearly T;; represents a departure from node i to node j, T.; represents an
exogenous arrival at node j and 7. represents a departure from the network
from node i.

The process (X;; ¢ > 0) is irreducible by our assumption that the network is
exogenously supplied and open. We state the main result about the invariant
measure of such Jackson networks [see Brémaud (1981), Theorem T7, Chap-

ter VI:

THEOREM 2.1.  For an exogenously supplied and open Jackson network, there
exists a unique stationary distribution if and only if the (unique) solution of the



2170 1. ISCOE AND D. MCDONALD

traffic equations,

m
2.1) )‘i = Xi + Z /\jrji, 1<:< m,
Jj=1

satisfies the light-traffic condition

1<i<m.

z Hy 1 Mz(y)

The stationary distribution n(X), X = (x1,...,%m) € S, is then given by the product

m(xX) = H mi(x;),

i=1
where

()= L
mi(%;) 1= — = ——.
n b Hy 1 l“l’l(y )

Thus at any instant t, the queue sizes at different nodes are independent with
respect to m and the queue at node i has the stationary distribution of a birth and
death process having constant birth rate \; and death rate 1;(y)aty € {1,2,...}.

We make the following standing assumptions.

H1. We assume that the network is exogenously supplied and open, and that
the light-traffic condition holds.
H2. For any node i, the death rates are bounded from above and below away

from 0; set: 1’ = sup, p;(y) < oo and y; = inf, - o ui(y) > 0.
H3. Each of the 7;’s has an exponential tail in the sense that

mi(y)
sup Zy>x N4

< 0.
x € Z+ Trl(x)

In view of the second hypothesis (H2), the third hypothesis (H3) certainly
holdsif \; < y; foralli, 1 <i <m.

Thus, in particular, H2 implies that the transition rate kernel J(x, -) of the
Jackson network is uniformly bounded. Explicitly, .

M= supJ(x) = supJ x, {x}°) Z [— + 1

Let —L denote the infinitesimal generator of the Jackson network on L2(S, ).
[Although S is discrete, we will write L2(S, ) instead of employing the more
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usual notation {2(S, ) to emphasize the role of = as a measure. However we
will abbreviate 7({x}) to 7(x), for x € S.] For any f € L%S, 7), Lf is given by

Lf®) = Y [f&0) — fT0)N + Y > [f&) — FTyx)] ey
Jj=1 i=1j=1
3 IF&) — T3] i)y

j=1

(2.2)

+

The infinitesimal generator —L; on L(N, 7;) of the marginal birth and death
process associated with the ith node, has constant birth rate ); and death rate
wi(y) aty € N and is determined by

(2.3) Lif() = [f(y) = f(y + DX + [f(9) — Fly — D] ()

for f € L3N, m), 1 < i < m. L; is self-adjoint on L%(N,r;); that is, m; is a
reversibility measure for the birth and death process.

Now consider a Jackson network where the maximum queue size permitted
at node:is/; — 1. Customers arriving when this maximum has been reached are
lost. We can study the onset of overload of this limited model through the one
determined by (2.2) as follows. The forbidden states F for the latter are those
(x1,%9,...,%,) such that x; > [; for at least one i, and we are interested in the
first time 7 that we enter these forbidden states from B := F¢. The limited model
is stochastically equivalent to the one determined by (2.2) up to time 7. Because
we are only concerned with the behaviour of the processes on the interval [0, 7],
we shall not make a formal distinction between the two models and will work
with the one determined by (2.2). Denote the infinitesimal generator of the
killed Jackson network (i.e., killed off B) by —LE. —L2 is a finite matrix because
B is a finite set. Hence —LZ + MI is a positive finite matrix. By the Perron—
Frobenius theorem [see Seneta (1981)] this matrix has a positive maximum
eigenvalue M + A(B) (of multiplicity 1). Thus L? has the extreme eigenvalue
A(B) > 0 (of multiplicity 1).

Recall the definitions from Part 1 of the killing rate KB(x) := J(x, B°), x € B,
and the resuscitation rate R2(y) := [1(y)] ! Xxc pem(X)J(xX,y), y € B. It will be
convenient to renormalize = | B, the restriction of 7 to B, to be a probability
[assuming that 7(B) > 0, which we do for the remainder of this article] and to

set
#=78:=[z®)] (r|B), L@ =L%B,7),
G =Cpeay, - l#=1 llzeg -

We will employ similar notation for the marginals #; renormalized on B; :=
[0,Z; — 1]. We also recall the following three constants:

(24) w=%rB:= Z KB(x)7(x), kq:=|KB —®|,, ke:=|RE-%|,.
x€EB )
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Inserting the jump rates of the Jackson network we have

Z I:Xl + Z ,uj(xj)rji] 7?(X)
1x:x;= J#

K=

-~

Fuﬂs i Ms

i +Z > u,(x,)r,m,(xj)] 7l — 1) [as7(By) = 1]

1 JE L <L-1

(2.5) ‘

[,\ +> AT Y @(xj)} 7:4; — 1) (by reversibility)

i=1 Jj#i 0<x,<lj 2

M7~ 1) — ZZ/\rjﬂrj(l Dm; - 1) [by (2.1)]

p"/]s

i=1 i=1j#i
so that
m
(2.6) <Y AL - D).
i=1
Moreover
2.7) k1 < [MRIY? and ke < [MR]V2.

The inequalities in (2.7) follow from the bound J(x) < M and Lemma 2.5 of Part

I. It is clear that the three kappas tend to zero as min;(/;) — oo.

Finally we recall the notion of a spectral gap. We remark that in the reversible
case, in which L is self-adjoint on L%(S, 7), the spectral gap (when positive) is the
gap in o(L) C R, between the simple eigenvalue 0 and the rest of the spectrum.

DEeFINITION 2.2. For —L being the infinitesimal generator of the Jackson

network on L%(r), and 1 denoting the constant function with value 1,

Gap(L) = inf {(f,L)x: | fllx = 1,(f, x = 0}.

In Section 3, we show that Gap(L) > 0. The following result is then an

immediate application of Theorems 2.7 and 2.8 of Part 1.
THEOREM 2.3. If w(B°) is sufficiently small, then
(2.8) |Pa(r > t) — exp(—AB)) | < B(B)exp(—A(B)t),
where
|A(B) — | < 2k1k2/ [Gap(L) — Te']
and ’

E;r > [75 + 2&1,‘62/[Gap(L) - 7‘3]] —1(1 - ﬂ(B))
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where

4 V/ (Gap(L) %) + 42
29) AB):= 1+ :
7 (Gap(L) — &) — 4r1ks [ Gap(L) - % e

Conditions ensuring that m(B°) is sufficiently small are given in Theorem 2:8
in Part 1. R, k1 and kg are described by (2.4)-(2.7).

In the reversible case, in which 7 is, in addition, a reversibility measure for
(X:; t > 0), Theorem 2.3 can be sharpened.

THEOREM 2.4. Ifthe Jackson network is reversible, then

Epr > (i [Eﬁin]“> N [1 — min (ﬁ 1)] ,

i=1

where T; is the first time the ith node leaves B;. Also

(M) 2
5 Z 7 (y) where T;(y) = onm(s).

[H (0; — 1)]
Reversibility is a rather stringent condition for Jackson networks because it
means that for all nodes i and j,

)\i = )\iri, and )\,-rij = )\jrji.

If reversibility is satisfied, L? is self-adjoint on L2(7). It is clear that most
Jackson networks are not reversible. Thus the results in their full generality
will usually be needed.

We illustrate our results by considering a simple case with two nodes 1 and
2 each having single servers with constant service rates y; and p,, respectively.
Customers finishing service at node 1 jump to the queue at node 2, with proba-
bility r1g, or leave the system with probability 7, = 1 — ry5. Similarly customers
finishing service at node 2 jump to the queue at node 1, with probability ry;, or
leave the system with probability 7o = 1 — re;.

In this example the traffic equations of Theorem 2.1 are

A1 = A1 + 721,
Ag = Ao + T2,
S0

A1 +raikg Az +righy
A= —, Ag = —————,
1- riora1 1- rioroi
where \; and )y represent the net flow into nodes 1 and 2, respectively. The
light-traffic conditions are simply that p; := A\1/p1 < 1 and that pg := Ay /us < 1.
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By Theorem 2.1 again, this Markov jump process is positive recurrent with
respect to the stationary product probability measure 7(x1,x5) = 71(x1) - T2(22),
where

m(x1) = (1 — p1)p7’, ma(xe) = (1 — pa)py’.

An estimate of the gap will be derived at the end of Section 3, for a simple
case of this example. :

3. Gaps for Jackson networks. Note that although = = I/ m, L #
™ ,L;. Nevertheless a useful comparison between Gap(L) and Gap(%}.,L;)
will be made in the proof of the next theorem.

THEOREM 3.1. Under the standing assumptions, Gap(L) > 0, where —L is
the infinitesimal generator of the Jackson network.

ProoF. By Theorem 2.3 in Lawler and Sokal (1988) we have, for any sta-
tionary Markov jump process, on a measurable state space (S, 8) with bounded
infinitesimal generator —L and stationary measure ,

Gap(L) = inf {(f,L)x: ||f|l= = 1 and (f, 1), = 0}
> k*/8M,
where M = m-ess sup J(x, {x}°) < co and k is Cheeger’s isoperimetric constant
defined by
k:= inf k(4)
Ae8
mA)>0

with
Jeea ™(dx)J(x,A°)

m(A)r(A°)
Recall that for the Jackson network, M = 7%, [\; + ‘1.

Define ¢ to be the transition rate kernel associated with the vector (X;; ¢ > 0)
of m independent, stationary birth and death processes, having infinitesimal
generator —L := Y7 | — L;, with L; given by (2.3). J will continue to denote the
transition rate kernel associated with the Jackson network, whose infinitesi-
mal generator —L is described at (2.1). In order to establish the proposition, it
suffices to find a constant v > 0 such that for all A C S,

3.1 Y e, A 2 v Y w(xdx, A).

xX€EA XEA

k) =

Indeedzvbecause 7 is also a stationar;L distribution for ()?t; t > 0), then k > vk
where k is the Cheeger constant for (X;; ¢ > 0). Now by Theorem 2.6 in Liggett
(1989), for such a process,

Gap(L) = infGap(Ly).
1t (a
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Using hypothesis H3, that each of the m;’s has an exponential tail, we may
apply Corollary 3.8 in Liggett (1989) to conclude that Gap(L;) > 0 and hence
that Gap(L) > 0. Next, Theorem 2.1 in Lawler and Sokal (1988), applied to L
yields k> Gap(L) > 0. Thus k > 0 and hence Gap(L) > 0.

If we assume that A := min(\;/)\;; 1 <i < m) > 0 and g := min(r;;1 <
i < m) > 0, then we can simply take v = min(}, p), for then X > v\ and
piCxe)r; > vu;(x;) for all i’s and x;’s. Clearly then J(x, A°) > vJ(x, A°) forallA € §
and all x € A [we have simply dropped the terms p;(x;)r;; in the comparison].
Thus (3.1) is easily satisfied in this case. Unfortunately, the network may be
designed so that customers all arrive at one node and all leave from another.
In this case some, but not all, of the ); are zero and some, but not all, of the
r; are zero. There is a gap nevertheless. We shall again be able to verify that
(3.1) holds for some positive constant v, but it is convenient to describe the
comparison in terms of an intermediate vector-valued birth and death process
whose jump kernel will be denoted by @ = Q* + @~ . We first construct the birth
part @*.

Fix some x € S. We shall define @*(x, T'.;x) in such a way as to be actually
independent of x. Consider the polytope P, (x) = {x}U{T.;x : 1 < k < m}. Define
C.;(x) to be the set of all nonself-intersecting probable paths on P.(x) that start
at x and end at 7.;x. (By “probable,” we simply mean that the transition from
any point on the path to the next point has positive probability of occurring.) In
terms of the nodes in the network: A typical path t € C.;(x) consists of x followed
by an exogenous arrival at some node, say a, followed by the departure from a
into some node b, et cetera, and finally a transition from node d, say, to node
i. Because the Jackson network is exogenously supplied, there must exist such
probable paths; of course t = (x,T.;x) is admissible if X; > 0. Note that the
transitions corresponding to the generic path described above are

T'aa Taba Tbca ey Tdi'
For such a path t, define
)\(t) = min(Xa, Aarab, )\brbc, ey )\drdi).

Clearly A(t) does not depend on x. We reduce C.;(x) to a possibly smaller
collection, C.;(x), of paths such that no two paths in C.,(x) have any transitions
in common, as follows. Fix a path t; € C.;(x) with A(t;) maximal and consider
the set of paths

CPx):={te C.:(%): t has some transition in common with t, }.
Next choose any t; € 5.,~(X)\C(,})(x) with \(ty) maximal (in the latter set). Set
: C(,?)(x) ={te 6.,'(X)\CE?(X)Z t has some transition in common with tz}.

We then choose any t3 € C.,(x)\[CP(x) U.C?(x)] with A(t;) maximal (in the
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latter set), and so on until we arrive at (~J'.,~(x)\ UJ'.‘= 1 CE{)(x) = @ for some n. Then
C.i(x) := {t;}]_,. Define the transition rate

+(\ — O+ — 1
QW= E®T.X=5- > b,

teC.(x

which is then also independent of x; @*(x,y) := 0 unless y = T.;x, f'or some
,1<i<m.
Now for A C S we claim that

(3.2 1Ym0, 49 > Y m0Q (x, A%,

XEA XEA

(The reason for including the factors of 1/2 above will become apparent at the
end of the proof.) Indeed, if x € A such that @*(x,A°) > 0, then for each i,
1 <i < m,such that T.;x € A®, @*(x,T.;x) > 0. For each t € C.;(x), x € A and
T.;x € A°. It follows that at least one of the transitions determining t, say T,
crosses from A to A° (i.e., T.jx € A, T';x € A°) and consequently contributes the
term 7(y)u;(yj)rjr, with y = T'.;x, to the sum Yy c s7(y)J(y, A°). By reversibility
[ + Dymjlac; + 1) = Aj(acy)],

7(Wi(yirje = (T x)pi(xj + Drj = n(X)A\jrj > m(X)AE).

Note that because no two paths in C.;(x) have any transitions in common, y =
T.;x is only being used at most once in this way for each i; hence at most m
times in all. This is also true in the case that the initial transition x — T.,x is
being considered, for which the contribution to the previous sum is

Thus

0@ x,A%) = (—— A®)(x)
2m

x€A x€A i:T.x€A° teC,,(x)
1 !
< (%> > mr(y)(y,A%)
YEA

and the claim is established.
Similarly we construct the death part @ . For 0 #x € Sand 1 <i < m such
that T;.x € S, set

PI(x) := Po(T.x) = {x} U {T;.x} U {Tyx: j #1}.
Define C;.(x) to be the set of all probable non-self-intersecting paths on P%(x),

having common initial point x and terminal point T;.x. The network is open.
There must exist such paths where each transition has a positive jump rate. Of

course the path (x,T}.x) € 5i.(x) if r; # 0. The transitions
Tiaa Taba Tbca ces aTd~
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yield a typical t € E,‘i.(x) starting with a transition from node i to node a, then
one to node b, et cetera, and finally ending with a departure from the network
through node d. For such a path, define

[.L(t) ‘= min ,U‘iriaaﬁi"\arab"“”lii'Adrd .
Ai Ai

If the transition T;. is possible, that is, r; # 0, then u(t) := y;r;. Clearly u(t)
does not depend on x. Reduce C;.(x) to a possibly smaller collection of paths
C;.(x), in which no two paths have any transitions in common, as we did with
C.i(x) and C.;(x), by maximizing u(t) at each stage instead of A(t). Define the
transition rate

. _ 1
QR =@ (xT.x) = <%) Z p(t),
te Ci'(x)
which is then also independent of x; @ (x,y) := 0 unless y = T}.x for some i,
1<i<m.
Now for A C S we claim that

(3.3) 13 m@Ix, A9 > ) r(®)Q™(x, A°).

XEA XEA

Indeed, if x € A such that @*(x, A°) > 0, then for each i, 1 < i < m, such
that T..x € A%, @ (x,T;.x) > 0. For each t € C;.(x), x € A and T;.x € A°. It
follows that at least one of the transitions determining t, say Tj, crosses from
A to A° (ie., Tyjx € A and Tjx € A°) and consequently contributes the term
m(Nui(¥)rje, with y = Tyjx, to the sum Yy c am(y )J(y, A°). By reversibility,

(Wi = m1(Ty)piCe; + Drj = m&) (1 () / X)) A > m(X)u(t).

If the transition T is considered, then it contributes the term 7(y)us(yq)rq,
where y = Tigx, to the sum Yy c om(y)J(y, A®), in which case

T(Ya(ya)ra = T(TigX)pa(eg + Drg = m(x) (pi(x:)/ M) Aara > m(@)u(t).

If ; # 0, so that T}. is a possible transition, then in the sum Yy ¢ om(y)J(y, A°)
there is a term w(x)u;(x;)r; > m(x)u(t), as well. Because no two paths in C;.(x)

have any transitions in common, y (in either case above) is only being used at
most once in this way for each i; hence, at most m times in all. Thus

3 m®)Q™(x, A°) = (2im) o> Y wen

‘x€A x€A iT.x€A® teC.®

1
< (%) S ma(y)(y,A°)

y€EA

and the claim is established.
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Adding (3.2) and (3.3) yields
3.4) Y mxx, A% > Y m(x)QX, A°)

XEA XEA

with @ = @* + @ . Now @ is the transition rate kernel of some multidimen-
sional birth and death process, but 7 is not necessarily a stationary distri-
bution for it. As such we make one final minorization, which will yield the
desired comparison of J with J. Redefine A\ := min(@*()/\;1 < i < m),
p = min(@~(@)/p;;1 < i < m) and v := min(\,p) > 0. Then for all A C S
and x € A, we have Q(x, A°) > vJ(x, A°) so that (3.1) is then satisfied, by
(3.4). O

Let us return to our simple example of a Jackson network with two nodes,
which was described at the end of Section 2, and assume that Xy = 0 and
ro1 = 0. Therefore, )\1 = X], )\2 = -Xlrlz, ro = land M = Xl + Uy + Ug. Note that
this process is not reversible. Let us estimate Gap(L) by using the algorithm de-
scribed in the proof of Theorem 3.1. We begin by calculating the birth and death
rates @*(i), @~ (),i = 1,2, for the intermediate process. First, the transition [by
(X;; t > 0)] from x = (xq1,x2) to (x; + 1,x2) can only occur by an arrival at node
1 at the rate X1, so @*(1) = \; /4. Next, the transition from (x;,x5) to (x1,x + 1)
can only occur on P,(x) by an arrival at node 1 followed by a departure from
node 1 to node 2; that is, we have only one path t € C.5(x), namely,

(x1,29) — (1 + 1,x9) — (1,2 + 1).
The rates of these two transitions are \; and p171s, S0
Q+(2) = % min( Xl, )\17'12) = X1r12/4.

The transition from x = (x1,xs) to (x; — 1,x5) can only occur on PV(x) in two
ways, which happen to have no transitions in common; namely, a departure
from node 1 out of the network, at the rate uiri, or a departure from node
1 to node 2, followed by a departure from node 2 at the rates pir12 and ug,
respectively. Hence, denoting the corresponding paths that comprise C;.(x) by
t1 and ty, respectively,

Q™(1) = 3 utt) + )]

= % lV/.l.]_l‘l + min ([Llrm, %(Xﬂ‘m))] (because )\1 = X]_ and ro = 1)
1 .

1 _m
= 4#1[7'1 +r10] = 7

Finally the transition from (xy,x3) to (xq, %2 — 1) can only occur on P®(x) by a
departure from node 2, and this occurs at the rate p5. Hence @~ (2) = ug/4.
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With v := min(@*(1)/\1, @*(2)/ 2, @ (1)/p1, @ (2)/u2) = 1/4, we have from
the proof of Theorem 3.1 that

Gap(L) > [v?/8M][Gap(L)]®
(3.5) .
= [ min (Gap(Zy), Gap(Ly)] /[1280k + 1 + o),

where L, and Ly are given at (2.3) and correspond to M/M/1 queues with
arrival rates \; and \j712, respectively, and loads p; = \1/u; and pg = A\i712/pi2,
respectively. Now by Theorem 3.7 in Liggett (1988), an M/M /1 queue with
arrival rate ) and load p has a positive Gap bounded below by 1/[2¢(1 + 2b)],
where ¢ = p/[(1 — p)A] and b = p/(1 — p). Substitution of these underestimates
of Gap(L,) and Gap(Ly) into (3.5) provides an explicit positive lower bound for
Gap(L). O

4. On the mean idle period. Let —L?" denote the infinitesimal generator
of the birth and death processes associated with the ith node of the Jackson net-
work killed outside of B; = {0, 1,...,/;—1}. Recall that 7; denotes the restriction
of m; to B;, renormalized to be a probability. Let A(B;) be the Perron—Frobenius
eigenvalue of L?" and let f; be an associated right eigenfunction. Suppose f; is
normalized so that inﬂ(xi)zif,-(xi) =1 and extended as zero off B;. Let

(4.1) f(x) = filxr) - folag) -+ - fn(m)

and

(4.2) b =(f,L%s.

Define,

(4.3) e; = > _ [ [filx) — filsi + DINTix:).

x
Note that e; > 0 since f; is decreasing. (Apply the minimum principle to the
eigenfunction equation on every [0,k], k£ < 1.)

PROPOSITION 4.1, For f as in (4.1),

LBf = <Z A(Bi)> f+E,
i=1
where

m

E®):=)_ [fi) — filxj + 1)] > il — Do) = AfiCe)]ry I fel.

Jj=1 i=1 k#£i,j
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Proor. Forx € B,

m m m

L) = Y [f@ — FT.x] N+ Y > [f) — F(Tyx)] plery
i=1 i=1j=1
+ Z [F&) — F (T3] p (i)
i=1
(4.4) = > (@) — it + DIN [ [ fuow)
i=1 k#i
(4.5) + 37 [l — filo — Dfyteg; + D] paedry T filwe)
i,j= 1 k #l j
(4.6) + Z [ﬁ(x;) file; — 1) /J'l(xl)rl ka(xk)
i= k #i
By factoring,
3 [hefit) - filw — DfiG + D]utxry [T felon)
i,j=1 k#i,j
4.7) Z [fiGe) = file; — D)) >y [ ] fuor)
i= Jj=1 k #i
(4.8) + Zﬁ(x,« — D) S rylfiG) — g + V] [T fawn)-
i=1 j=1 k#i,j
The sum of expressions (4.6) and (4.7) is
4.9) Z i) — file; — D)) [ ] Fuloen).
i= k#i

Using the fact that \; = X7, \;ry; + ), we see the sum of expressions (4.8) and
(4.4)is

4.10) Y [filx) — filoi + D] N 11 fien)

i=1 k#i

(4.11) + Z [fiC)) — fix; + )] Z [filxi = DpuiCes) - Mfie)]ry [ felen)-
Jj= i= k #i,j

Finally, adding expressions (4.9) and (4.10) we conclude that

(4.12) L= (k) [1f+E

i=1 © k#i
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(4.13) = <ZA(Bi)) f+E. g

i=1

PrOPOSITION 4.2. With b asin (4.2),

m
b=> AB)-—e,
i=1
where
m r..
e = Z ;\l-]jeiej > 0.
i,j=1"7

ProoF. By Proposition 4.1 it suffices to calculate

m

(FsE)i = Y ry Y i) — fi + D]f)Ri(x)

ij=1 %

X Z filei — Dpie;) — Nifi(x; ]fz(xl )i (x;)

l

=Y gy [f®) - filg + D))
i, j= 1 Xj

x 3 [l — Dfies)ps b)) — A

m

D i > [@) — fila + D]fi)Ri)

lj]. Xj

X Zfz(xz [file; + 1) — fiGe)| \ii(acy)

=- E —ezej,

le"

where the last equality follows from (4.3). O

PROOF OoF THEOREM 2.4. By the Rayleigh—Ritz principle A(B) < b, where
bis given in (4.2). Moreover, by Proposition 4.2, b6 < ¥ ;A(B;) because e is
positive. L ! is a self-adjoint operator on L%(7), so applying Corollary 2.14 of Part
1 gives A(B ) < [Ezml L. FmallyL is self-adjoint by hypothesis, so applying the
corollary again we have

— -1
-1 —min [ —"
[E;r]™ < AB) [1 min ( Gap@)’ l)] .
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The expression for E;,7; can be found at (3.12) in Iscoe, McDonald and Qian
(1993) and this gives the result. O

Numerical evidence suggests that (X" ,1/E;7;)~! does provide a lower
bound for the exit time for a Jackson network, at least asymptotically, even
in the non-self-adjoint case. It is naive, however, to expect that the Perron—
Frobenius eigenfunctions can be well-approximated by a product asymptoti-
cally. Finding an approximate Perron—Frobenius eigenfunction that is asymp-
totically exact near the boundary of the forbidden set is the subject of a future

paper.

REFERENCES

ANDERSON, B. D. O. and FRATER, M. R. (1988). Estimation of rare event statistics in data com-
munication networks. Third Australian Teletraffic Research Seminar Paper 4.3.

BREMAUD, P. (1981). Point Processes and Queues: Martingale Dynamics. Springer, New York.

IscoE, I. and McDONALD, D. (1994). Asymptotics of exit times for Markov jump processes. I. Ann.
Probab. 22 372-397.

ISCOE, 1., McDONALD, D. and QIAN, K. (1993). Capacity of ATM switches. Ann. Appl. Probab. 3
277-295.

LAWLER, G. F. and SokAL, A. D. (1988). Bounds on the L? spectrum for Markov chains and
Markov processes: a generalization of Cheeger’s inequality. Trans. Amer. Math. Soc. 309
557-580.

LIGGETT, T. M. (1989). Exponential L2 convergence of attractive reversible nearest particle sys-
tems. Ann. Probab. 17 403-432.

MEYN, S. P. and FRATER, M. R. (1990). Recurrence times of buffer overflows in Jackson networks.
In Proceedings of the 29th IEEE Conference on Decision and Control 2 876—-880. IEEE,
New York.

SENETA, E. (1981). Non-Negative Matrices and Markov Chains, 2nd ed. Springer, New York.

DEPARTMENT OF MATHEMATICS AND STATISTICS DEPARTMENT OF MATHEMATICS
MCMASTER UNIVERSITY UNIVERSITY OF OTTAWA
HAMILTON, ONTARIO 585 KING EDWARD

CANADA L8S 4K1 OTTAWA, ONTARIO

CANADA K1N 6N5



