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STABLE PROCESSES WITH SAMPLE PATHS IN ORLICZ SPACES

By RiMAs NORVAISA! AND GENNADY SAMORODNITSKY?
Cornell University

Let X = {X(¢2); t € T} be a measurable symmetric a-stable process, 0 <
a < 2. In this paper necessary and sufficient conditions for X to have almost
all sample paths in an Orlicz space L (T, 1) with a function 9 satisfying the
Ag-condition are given.

1. Introduction and results. Let X = {X(¢); ¢t € T} be a measurable
symmetric a-stable (SaS) stochastic process, 0 < a < 2. If T' is a separable
metric space, then [see Samorodnitsky and Taqqu (1994)] every such process
admits an integral representation

1.1) (X teT) =4 { / h(t,x)M(dx); t € T},
E

where M is an SaS random measure on (E, £) with a o-finite control measure
m, h: T x E — R is a jointly measurable function such that

1/a
(1.2) Galt) = ( / |h(t,x)|°‘m(dx)) <+0 ViteT,
E

and =, denotes equality in distribution. We say that a function ¢: R* — R*isan
M-function if it is nondecreasing, continuous, ¥(z) = 0 if and only if u = 0 and
1(u) — oo as u — oo. A function : R* — R* is said to satisfy the Ay-condition
if there is a finite constant A such that

(1.3) YQu) <Ay@w) VYu>0.

Throughout the paper p is a o-finite measure on the Borel o-algebra of subsets
of T

The problem we study is as follows: Given a measurable SaS process X
with the integral representation (1.1), a measure y on 7' and an M-function
1) satisfying the Ag-condition, is it true that

(1.4) /T P(IXONud) < +o0 as?
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STABLE PROCESSES IN ORLICZ SPACES 1905

If v(u) = u?, 0 < p < +oo, then the following theorem is true [see
Samorodnitsky (1992)]:

THEOREM A. Let X be a measurable SaS process with the integral represen-
tation (1.1), 0 < a < 2. Let (T, u) be a o-finite measure space and p > 0. Then

/|X|pd,u<+oo a.s.
T

if and only if
a/p
/ 1A, 0)[gmida) = / ( / |h(t,x)|p,u(dt)) m(dx) < +00 when p > a,
E E T

pla
/ oPEu(dt) = / ( / |h(t,x)|°‘m(dx)> J(dt) < +00 when p < a,
T T E

. IRt 2| [, [ B, v)|°‘m(dv),u(du))
/T /E IR, )| <1+log+ LT o o) T T iy HOm @) < 400

when p = .

Let Lo = Lo(T, ) be the linear space of equivalenée classes of u-measurable
functions defined and finite y-a.e. on T'. Define

Ly = Ly(T, p) = {f € Lo(T, p): py(f) := /T¢(lf|)du < +<>0}-

L, is a complete linear metric space called a (generalized) Orlicz space when
endowed with the metric

d(f, ) =inf {u > 0: py((f - &)/u) <u}

[see Rao and Ren (1991), Chapter X]. The d-convergence f, — 0in L, is equiva-
lent to convergence py(f,) — 0. The space L, is separable if the measure space
(T, 1) is. Define the quantity

(1.5) 1 flly = inf{u > 0: py(f/u) < 1}‘

In general, if py(f,) — 0, then also || f,||¢ — 0, but the reverse implication is not
always true. The question (1.4) reduces then to the question of whether or not
almost all sample functions of X belong to the space LL,,. This question (including
the L,-case described in Theorem A) can also be viewed as a part of the general
problem of describing a-stable probability measures on function spaces.

The following theorem is the main result of this paper.

THEOREM 1.1. Let X be a measurable SaS process with the integral repre-
sentation (1.1), 0 < a < 2. Let (T, u) be a o-finite measure space and let i) be an
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M-function satisfying the Aq-condition. Then (1.4) holds if and only if

(16) / 1A, ]| mldx) < +oo,
E
@ [ #(oa®)utde) < 400
T
and for some (equivalently, every) constant ¢y > 0,
heD/ IR gy
(1.8) / / I, )| m(da)yu(d) P2 < 4o,
T JE Cooal®) rite

where the innermost integral is set equal to zero when its lower limit exceeds its
upper limit. Here {0,(¢t); t € T'} is defined in (1.2) and

1.9) RG]y = inf{u > 0: / b (|, ©)| /u) u(dd) < 1 } x cE.
T

An important ingredient in our proofs is the approach for describing conver-
gent series in sequence Orlicz spaces developed by Kwapien and Woyczynski
(1987). A direct extension of this result to SaS random series in a (not nec-
essarily sequence) Orlicz space is stated in subsequent text. Let {&;i > 1}
be a sequence of independent real rv’s with the common stable distribution
S4(1,0,0) and let f = {f;; ¢ > 1} be a sequence of real-valued measurable func-
tions defined on T and such that

00 1/
o) = <Z lﬁ(t)la) <400 VteT.
i=1
Then a stochastic process S = {S(¢); ¢ € T'} defined by

o0
S®)=> &fi®), teT,
i=1
is a measurable SaS process with an integral representation (1.1), where the
SaS random measure M is defined on E = N with the counting measure as
control measure m. By Theorem 1.1, S € Ly(T, 1) a.s. if and only if

(1.10) DIl < +oo,
i=1
(1.1D) / B(o£®) uldd) < +00
T

and for some (equivalently, every) constant cq > 0,

0 . Ol gy
(1.12) > /T @)1 (dt) YO < oo,

coo k()
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This statement in conjunction with Propositions 2.2 and 2.4 yields the following
corollary.

COROLLARY 1.2. Let {¢;i > 1} and {f;; i > 1} be as before. Let (T, u) be a
o-finite measure space and let i be an M-function satisfying the Aq-condition.
Then the series

(1.13) Zﬁi f; converges a.s. in Ly(T, )
i=1

if and only if (1.10), (1.11) and (1.12) hold.

Under additional growth conditions on 1 we show that only one (or two) of
the conditions (1.6), (1.7) and (1.8) are necessary and sufficient for (1.4).

COROLLARY 1.3. Under the conditions of Theorem 1.1 assume in addition
that there is a real number p € (a, +00) such that for a finite constant C,

(1.14) Yxu) < CxP(u) Vx<1,u>0.
Then (1.4) is equivalent to (1.6).

It would not be out of place to compare this statement with known results in
probability in Banach spaces. Note that LL,,(T', 11) is a separable Banach function
space with a function norm || - ||, defined by (1.4) if the M-function v satisfying
the A,-condition is convex, that is, 1 is a Young function, and the measure space
(T, p) is separable. Recall that a Banach space L., has stable type o provided
that (1.10) implies (1.13). Hence, by Corollaries 1.2 and 1.3, L, has stable type
a if the Young function v satisfies the condition (1.14). In this case (¢ is a Young
function) the converse statement to Corollary 1.3 is true. Namely, if (1.6) implies
(1.4), then L has stable type o and therefore has stable type a + ¢ for some
€ > 0 [see Maurey and Pisier (1976)]. Now under additional conditions on the
measure space (T, ), the growth condition (1.14) follows from Corollary 10 in
Kaminska and Turett (1990).

Moreover, if 9 is a Young function, then the statement of Corollary 1.3 also
can be derived from general results in probability in Banach spaces as follows.
By Theorem 7.5.1 in Linde (1986) under the assumption (1.6) for a kernel op-
erator K from a dual space L} (T, ) into L (E, m) defined by

Kf@ = [ heofoudn,  xeE,
T .
there is a probability measure on L (7', ) with the characteristic function

(1.15) exp{— /E IKf(x)lam(dx)}, fels,
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if and only if L, has stable type o.. Now (1.4) will follow from (1.6) under the
condition (1.14) for some p > « if the measurable SaS process X given by (1.1)
induces a cylindrical probability on L, with the chracteristic function (1.15).
Under the condition (1.7) this may be verified using Theorem 3.3 of Norvaisa
(1992). We are done because by the proof of Corollary 1.3, (1.6) implies (1.7) and
because by Proposition 6.4.5 in Linde (1986), (1.4) always implies (1.7).

The following statement describes functions 1 for which the condition (1.7)
is dominating.

COROLLARY 1.4. Under the conditions of Theorem 1.1 assume in addition
that there is a real number p € (0, o) such that for a finite constant C,

(1.16) Pleu) < CxPyp(u) Vx>1,u>0.
Then (1.4) is equivalent to (1.7).

Of course, the condition (1.7) has no meaning in a general Banach space
and hence Corollary 1.4 (for a Young function 1) cannot be derived in a similar
manner as the previous one from what we know about probability in Banach
spaces. Nevertheless, it seems to be an interesting question to compare different
notions of stable cotype a, 0 < a < 2, of Banach spaces [see Chapter 8 in Linde
(1986) for a review of some of them] with the class of Orlicz spaces in which the
statement of Corollary 1.4 holds.

Observe that the condition (1.7) does have a meaning in an arbitrary Banach
function space (or more generally in a modular function space). According to the
main result of Norvaisa [(1992), Theorem 3.7], in the Banach function space L,
with an order continuous dual there is a probability measure with the character-
istic function (1.15) provided (1.7) holds and L, is p-concave, forsome 1 < p < .
Using the characterization of M-functions satisfying (1.16) due to Matuszewska
(1962) (see also our Lemma 4.2), one can prove that the growth condition (1.16)
of ¢ for some 1 < p < +oo implies that L, is a p-concave Banach function space
[cf. Proposition 3.6(2) of Norvaisa (1993)]. This represents another point of view
on Corollary 1.4.

It is easy to see that Corollaries 1.3 and 1.4 yield Theorem A when p > «
and p < «, respectively. When p = a, that is, when ¥ (u) = u*,u > 0, then the
condition (1.8) with the constant

-1
co = ( / / |h(t,x)|°‘m(dx)u(dt)>
TJE

in conjunction with (equivalent) conditions (1.6) and (1.7) also yields Theorem
A. Therefore, Theorem A is a simple consequence of Theorem 1.1.
We conclude with the following corollary.

COROLLARY 1.5. Under the conditions of Theorem 1.1, assume in addition
that there is a finite constant C such that the inequality

(1.17) » Plau) < Cplx)p(u)
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holds for all x,u > 0 and either
 a(r)dr

rl+a

L (r)dr

rli+a

(1.18) < +00

0 1

are satisfied. Then (1.4) is equivalent to (1.6) and (1.7).

It is easy to check that the functions

W) = u*logP(1 +u), p>0,u>0,

and
Y(u) = u*log” (1 +u‘1), p>0,u>0,

satisfy the condition (1.17) and one of the two conditions in (1.18), respectively.

The proof of Theorem 1.1 is based on a series representation for a-stable
random measures [see Section 3.9 in Samorodnitsky and Taqqu (1994)] and
on a reduction of this representation to a convergence of Rademacher series
in the Orlicz space L. The basic tools we use are Hoffmann—Jgrgensen type
inequalities [see, e.g., Kwapien and Woyczynski (1987), Section 2] and Lévy-
type inequalities (Lemma 2.3). The latter result in conjunction with Proposition
2.2 allows us to characterize convergent series in a modular function space
without appealing to the convergence of characteristic functions as in the Ito-
Nisio theorem [see Itd and Nisio (1968)].

All preliminary results are contained in the next section. Section 3 is devoted
to the proof of Theorem 1.1 and the proofs of Corollaries 1.3, 1.4 and 1.5 are
given in Section 4. "

2. Preliminaries. In this section we consider random variables with val-
uesin a linear metric space of measurable functions L = L, defined by a function
p as follows. Recall that Ly = Lo(T', ) denotes a linear space (of equivalence
classes) of y-measurable functions defined and p-a.e. finite on 7. Consider a
function p: Ly — [0, +00] such that:

M1] p(f)=0iff f =0 (u-a.e.).

[M2] p(=f) = p(f).

[M3] p(f+g) < p(f)+ p(g) whenever |f| A|g| =0 (u-a.e.).
[M4] || < |g| (u-a.e.) implies p(f) < p(g).

[M5] p(Iz,) < oo for every finite u-measure subset T of T'.

From [M3] and [M4] it follows that
puf +vg) < p(f)+p(g) foru,v>0,u+v=1
We call the function p modular and the set L, defined by

@.1) L, = L,(T, u) := {f € Lo(T' u): lim p(uf) = o}
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a modular space [see Rolewicz (1972)]. We consider a modular p, which in ad-
dition to the foregoing conditions [M1]-[M5] also satisfies the following
conditions:

[A2] There exists a finite constant A such that p(2f) <Ap(f), V f € L,.
[#] The convergence p(f,) — 0implies the convergencef,, — 0in u-measure.
[m] p(X) is a measurable function if X = {X(¢); ¢ € T} is a measurable
stochastic process and p(X) =4 p(Y) for any two measurable stochastic pro-
cesses X = {X(¢);t € T} and Y = {Y(¢); ¢ € T} such that p(X) <  a.s.,
p(Y)<ocas. andX=;Y.

The set L, is a linear metric space and under the conditon [A2] the conver-
gence f, — 01in L, is equivalent to the convergence p(f,) — 0. In passing, for
L, to be a linear metric space and for the characterization of the convergence in
L, in terms of the modular convergence, a weaker variant of the condition [A2]
is sufficient [see Musielak (1983)]. We use the present version of it because we
apply the results of this section to the modular p,, defined by

@2.2) pu(F) = /T w(1F)du,

where 1 is an M-function satisfying the As-condition (1.3), which obviously
implies condition [A2] for p,, with the same constant A. It is easy to see that p,
also satisfies conditions [M1]-[M5], [u] and the first part of the condition [m].
The fact that the second part of condition [m] is satisfied by p,, seems to belong
to mathematical folklore. Because it is important to us, we give a proof.

PROPOSITION 2.1. The function modular py defined by (2.2) satisfies the
condition [m].

Proor. Let X = {X(¢); ¢t € T} and Y = {Y(¢); ¢ € T} be two measurable
stochastic processes on probability spaces (Qx, Fx, Px) and (Qy, Fy, Py), respec-
tively, such that p,(X) < 00 a.s., py(Y) < oo a.s. and X =; Y. Let i be a probabil-
ity measure on T such that u (dt) = ¢(t)ji(dt) for some nonnegative measurable
function ¢. Define on a separate probability space a sequence {¢;; i > 1} of in-
dependent T-valued rv’s with the common distribution z on T'. By the strong
law of large numbers for Px-a.a. w € Qx, we have,

. ~
@.3) Tim ,-l;w(mti,wn)qs(ti)- /T w(1XCw)) ¢ di,

fi-a.e. By Fubini’s theorem for fi-a.a. realizations of {¢;; ¢ € T’} (2.3) holds for
Px-a.a. w € Qx. In the same way one can conclude that for zi-a.a. realizations
of {t,, i > 1} we have

2.4 Jim =3 (¥ 0ot = /T v(YCwl)¢da
i=1
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for Py-a.a.w € Qy. Therefore, there exists a common realization {¢;; i > 1} such
that (2.8) and (2.4) hold. Because X and Y have the same finite dimensional
distributions, it follows that the right-hand sides of (2.3) and (2.4) have the
same distribution too. O

Another example of a modular p satisfying condition [M1]-[M5], [A2] and
[1] is given by a function norm as defined, for example, by Luxemburg (1955).
The first part of the condition [m] for a function norm is known among analysts
as a Luxemburg—Gribanov theorem [see Theorem 99.2 in Zaanen (1983)]. The
second part of the condtion [m] is introduced here due to a lack, in general, of
a nontrivial dual space of L,, which is usually used to identify distributions of
induced Banach space rv’s.

A-'modular p satisfying, in addition, the conditions [A2], [1] and [m] will be
called a function modular and the corresponding space L, defined by (2.1) will
be called a modular function space (MFS). This terminology differs somewhat
from that used recently by Kozlowski (1988). It remains largely a matter of
future investigation to decide how much different assumptions on p affect the
structure of the function space L,.

If, in addition, a modular p satisfies the condition

[oc] p (fIr,) — 0 whenever f € L, and T, | @,

then we call p and L, an order continuous function modular and an order con-
tinuous MFS, respectively. One can prove as in Luxemburg [(1955), Lemma
1.2.2] that the following variant of the dominated convergence theorem holds
in an order continuous MFS L,:

if |f.| <g, g €L, and f, — Op-a.e., then p(f,) — 0.

It is easy to see that an Orlicz space L, is an order continuous MFS if an M-
function 1 satisfies the As-condition [see Theorem 2.3.3 in Luxemburg (1955)

for the converse statement].
We are now ready to continue our study of sums of random variables with

values in a MFS L,.

ProposITION 2.2. Let L, (T, ) be a MFS. Consider measurable stochastic
processes X = {X@t);t € T} and S, = {Sx(®);t € T}, n = 1,2,...,and an L,-
valued rv S defined on a probability space (2, F, P) such that:

(i) Sp€eLl,as. foralln=1,2,...and

nlinéop(S,, -8)=0 as

(ii) For p-a.a.t€ T,

nlinéo S.t)=X®) a.s.

Then X has a.a. sample paths in L, and X =S a.s.
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ProoF. LetS,(t,w) /4 X(¢,w) mean that S, (¢, w) does not converge to X(¢, w)
as n — oo. By Fubini’s theorem, we have

/Q u({t e T: Spt,w) %»X(t,w)})P(dw)

- / P({w € 0: 8,(6,0)  X(6,0)} ) )
T

=0 by assumption (ii).
Hence, there is an event ; € ¥ with P(Q;) = 0 such that for every w ¢ Q4,
(2.5) lim S,(-,w)=X(-,w), u-a.e.
n— oo

Consider the L,-valued rv S. For an w € Q, pick an arbitrary element S(w)(-)
from the equivalence class S(w) and defines S(¢,w) := S(w)(?), t € T'. By assump-
tion (i), there is another event )y € F with P(Q3) = 0 such that for every w ¢ Q,
lim p(Sp(-,w)—8(-,w)) =0
n—oo
so that
lim S,(:,w)=8(-,w) in y-measure.
n—oo
Therefore, for every w ¢ Qg there is a subsequence {n;(w)} such that

(2.6) klin;o Snyw)(w) =8(-,w), p-a.e.

Let Qg := Q1 U Q. Then P() = 0 and according to (2.5) and (2.6), for every
w ¢ Qo,

,u({t € T: X(t,w) # S, w)}) = 0.
Hence, X(-,w) € L, for every w ¢ o, which completes the proof. O
The following lemma is a version of Lévy’s inequality.

LEMMA 2.3. Let p be a function modular on Lo(T, u) and let X; = {X;(¢); t €
T},i=1,2,..., be a sequence of independent symmetric measurable stochastic
processes with all sample paths in a MFS L,. Let S = {S(¢); t € T'} be a mea-
surable stochastic process with all sample paths in L, and such that for p-a.a.
t € T, the partial sums Sy,(t) := ¥7_ Xi(¢) converge a.s. to the limit S(¢). Then for
ally > 0and 0 < K < +00, we have

@.7) P({ sup p(Sa1(1Sn| > K)) >y}) < 2P({p(Sl(|S| >K)) >y/2})
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and

(2.8) P({sgpp(Rn]I(anl >K)) >y}) S2P<{p(S]I(IS| >K)) >y/2}),

where R, =S -S,,n=1,2,....

PROOF. We use the notation XX := XI(|X| > K). For (2.7) it is enough to
prove that the inequality

(2.9) P({  max, p(SY) >y}> < 2P<{p(SK) >y/2}>

holds for any fixed integer N > 1. For every n > 1, by the property [M3] of p
we have

p(SK) < p((Sn = RIF(S, — Ra| > |Sn + Ra)
(2.10) +(S, + R)EI(|S, + Ry| > |Sy —R,,|))
< p(Sn +Rn)¥) + p((Sn — R)K).

let 7 := inf{n > 1: p(SX) > y}. Then by (2.10) we have
N
P({,max, 0 (65) >5}) = Sor(r =)
n=1
N
(2.11) < ZP<{¢=n, p (S¥) >y/2})
n=1
N
+ ZP({T =n, p((S, — R)) >y/2}).

n=1

Because R, has the same distribution as —R, and {r = n} only depends on
Xi,...,X,, we conclude that corresponding probabilities in two sums in (2.11)
coincide. From this, (2.9) follows. To prove (2.8), one may argue in a similar way
using 7/ = sup{1l < n < N:p(REK) > y} instead of 7. The proof of Lemma 2.2
is complete. O

PRrOPOSITION 2.4. Let L, (T, p) be an order continuous MFS and let X; = {X;
(); t € T} be a sequence of independent symmetric measurable stochastic pro-
cesses with all sample paths in L, Assume that for p-a.a. t € T, the par-
tial sums S,(t) = ¥7_,Xi(t) converge a.s. to a measurable stochastic process
S = {S(t); t € T}, with all sample paths in L,. Then

lun p(S,—8)= 0 a.s.
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PrOOF. Fix an arbitrary ¢ > 0. Due to the order continuity of p, there exists
Ty C T with u(T) < +oo and such that

(2.12) P({p (SIz/z,) > s}) <e.

By Lemma 2.3 we get

(2.13) P({ sup p (Sulz/7,) > 25}) < 2e.
n>1

Let po := p(-Ir,). Using once again the order continuity of p, one can find a
finite constant K such that

2.14) P({po(SK) > 5}) <e.
Lemma 2.3 implies that

(2.15) P({ sgppo(S,{{) > 25}) < 2
and

(2.16) P({ sup po(RE) > 25}) < 2,

where R, = S — S,.. Using the property [M3] we have

p(Sn — ) < p((Sn — SMzyz,) + po((Sn — SN(ISa] < 2K))
+po (S = SN(S| > K)I(1Sn| > 2K)) + po(RY)

4
= Z Il(n)

Denoteby ;, i = 1,...,5, the events whose probabilities appear in the left-hand
sides of (2.12)—(2. 16) respectlvely Then on the event (}_; 2 we have

sup I1(n) < 3Ae,

n>1

supI3(n) < 3As,
n>1

supIy(n) < 2e.
n>1

By the order continuity of po, it follows that

nli_}moolz(n): 0.
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Hence

n— oo

P<{ limsupp(S, —S) > 6Ac + 26}) < 8.
Because ¢ is arbitrary, the proof is complete. O

For an f € LL, denote
(@) =f®/1VIfl,), teT,
where [cf. (1.5)]

171l = inf{u > 0: p (F/u) <1}.

The following lemma can be proved along the same lines as Lemma 3.1 of
Kwapien and Woyczynski (1987).

LEMMA 2.5. Let {f;; i > 1} be a sequence of functions from a MFS L,, and
let {r;; i > 1} be a Rademacher sequence, that is, a sequence of symmetric iid
real rv's with only two values +1 and —1. The following two conditions are
equivalent:

(i) The series ¥;r;f; converges a.s. in L,,.
(ii) For some (equivalently, every) 6 > 0, the series ¥;r;[6f;] converges a.s. in
L, and #{i > 1:||fill, > 671} < +oo.

3. Proof of Theorem 1.1. Without loss of generality we may assume that
m is a probability measure on (E, €). Indeed, left 7 be a probability measure on
(E, &) such that m(dx) = k*(x)m(dx) for some nonnegative measurable function
k and let E(t,x) = h(t,x)k(x),t € T, x € E. Then the conditions (1.6), (1.7) and
(1.8) for the pairs A,m and E, m are equivalent. Moreover, we have

{ / h(t,x) M(dx); t € T} = { / h(t, x)M(dx); t € T},
E E '

where M is an SaS random measure on (E, £) with the control measure 7. This
in conjunction with Proposition 2.1 allows us to assume that m is a probability
measure.

The advantage of this reduction to a probability measure is that now we can
use a series representation for the SaS random measure M. Let I' = {T';; { >
1} be a sequence of arrival times of a Poisson process with unit arrival rate
defined on a probability space (Q1, F1,P1), let V = {V;; i > 1} be a sequence of
independent rv’s, defined on a probability space (Qg, F2,P2), with values in E
and with the common distribution m and let r = {r;; i > 1} be a Rademacher
sequence defined on a probability space (Q3, F3, P3). In that case [Samorodnitsky
and Taqqu (1994)],

(3.1 {/h(t,x)M(dx); te T} =4 {S®); t € T},
E
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where for every ¢ € T, S(¢) is an a.s. convergent series defined on (Q,F,P) =
(1 x Qg x Q3,F; @ Fy ® F3,P1 x Py x Pg), given by

(3.2) S@y=c¥*> " nyVene, vy, teT,

i=1

0o -1
Co = (/ x~% sin xdx) .
0

Let us outline the proof of the theorem before giving the full story. In the
sufficiency part we show that under conditions (1.6), (1.7) and (1.8), the partial
sums of the series S induce a convergent series in L, (T, ). Then (1.4) will follow
by Proposition 2.2. In the necessity part we will use Proposition 2.4 to conclude
that if (1.4) holds, then S induces a convergent series in L (T, 1) and then (1.6),
(1.7) and (1.8) will be derived. However, to use Proposition 2.4, we have to show
first that

and

(3.3) /T V(R D)) uldt) < 400 for m-a.a.x € E.
By (1.4) and (3.1) we have

/T P(IS®|) u(de) < +00  ass.,
implying by Proposition 2.1,

/T $(18®)) uldd) < +00 as.,

where

S@) = cl/= (rlr‘l_l/“h(t, LOED I iy 02 V»), teT.
i=2

Inequality (3.3) now follows from the Aj-condition for .
Now we are ready for the proof of necessity.
Necessity. (1.4) = (1.6). By (3.1), (3.3) and Propositions 2.1 and 2.4, the series

(3.4) Z rl;] Yep(.,V,) converges a.s. in Ly(T, ).
i=1

By Fubini’s theorem, (3.4) holds for a.a. fixed w; € Q; and wy € Q5. Then by
Lemma 2.5, it follows for every 6 > 0,

3.5) P({6r; %Ik VDIl > Tio}) =o0.
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Note that I'; = 2}=1ej, where e;’s are iid exponential rv’s with Ee; = 1. By the
strong law of large numbers, we have

(3.6) lim Iy/i=1 as.

1— 00

Hence, for all 6 > 0,
P({IRC Vlly > /6 i.0.}) = 0.

By the Borell-Cantelli lemma, it then follows that
S P({IAC- Voly > ¥/%/8} ) < +oo,
i=1

which is obviously equivalent to (1.6).
(1.4) = (1.7). By (3.4), Fubini’s theorem and Lemma 2.5, we conclude that
for a.a. fixed w; € Q; and wy € Qg and all § > 0, the series

o0
(3.7 S = Zri [HFi_l/ah( -, V)] converges Ps-a.s. in Ly,

i=1
By Fubini’s theorem once again, one can conclude that for a.a. fixed w; € Q;,
the series in (3.8) converges Py 3(:= Py x P3)-a.s. in Ly. Then by Corollary 2.1
of Kwapien and Woyczynski (1987) for a.a. fixed w; € Q7 and all 6 > 0,

(3.8) E2,3/¢(
T

By the strong law of large numbers (3.6), there are numbers 77, 72 € (0, 00) such
that

SorferyYenc, vol@

i=1

) p(dt) < +oo.

(39) P1 ({ supI‘,-/i < ’)’1}) < 15/16
i>1

and

(310) Pl <{ supi/I‘,- < ’)’2}) > 15/16
i>1

Let us denote by Qfll) the event defined by the left-hand side of (3.9). It follows
from (3.5) that

P({ supT; /*|I(-, Vi)lly < +oo}> =1
i>1

Therefore, by Fubini’s theorem there is an event 9(12) of full probability such
that for all w; € 9(12), K

Py ({ Supfgl/a,,h(."/illllp < +oo}> =1.
i>1
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Fix any w; € Qfll) n 9(12) and choose 6y = 6y(@1) > 0 so small that

(3.11) P, ({ supl"i(al)‘l/"‘”h(~,Vi)||1/, > 951}> <1/16.
i>1

Finally choose € > 0 so small that
(3.12) P({|§| > s(ca'yl’yz)l/a/ao}) > 3/4,

where ¢ is a real rv with the stable distribution S,(1, 0, 0). Taking into account
the monotonicity of ¢, we have for every ¢ € T,

o |

> Y(e0a(t))Py,3 ({ Zri [oTs(@1) " *R(-, V)] @) > saa(i)})

i=1
> 1/1(€Ua(t)) <P2,3 ({ > 80a(t)}>

~Pas ({ sup Ty(@y) ™2 IAC, Volly > 90-1}»,

Furthermore, using the contraction principle for probabilities twice, we get by

(3.10) and (3.12),
Z"ioofi(a~11)_1/ah(t, V| > ecm(ﬂ})

i=1
> orimMent, v)| > ev)/ aaa(t)/00}>

>271P, 4 ({
i1

>2°1p ({ > i, V)
(3.14) =1
> 47! (P ({ > ()" *oalt)/ 90})
- P({ supi/T; > ’Yz}))
i>1

>471 (P({Iﬂ > 6(007172)1/“/90}) - 1/16> >'11/64.

Integrating (3.13) and using (3.11) and (3.14), we conlcude by (3.8) that

co+ > /T Es, s ( )u(dt) > 2;72 /T ¥ (eaa(®)) u(de).

> ri[BoTu@)~Yeh(-, V)] @)
i=1

(3.13)

Z riboli@1)~Yht, V;)
i1

> 5’711/a0a(t)/90, i <yl V z})

> onrYene, vy
i=1

Y ri[6oTu@) Y on(t, V)]

i=1
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Hence (1.7) holds.
(1.4) = (1.8). Note that if (1.6) and (1.7) hold, then the condition (1.8) is
equivalent to

[ (o) 210 > oot )

Because the rv I'; has a gamma distribution with i degrees of freedom, we have
for eacht € T and 4 > 0,

dr m(dx)

L o (@)oo > coratn) 27

_ 1 - -1/a LY. -1/a -
- i EE{w( o7, VOO (o7 A, V) > cooat®) )
Therefore, it is sufficient to prove that for some 6 > 0,

(3.15) /T iE{w([api—l/am(.,m);])u( [T % (-, V)] > coaa)}dp < +00.
i=1

We know that for a.a. fixed w; € Q, the series Sin(3.7) convergesin L, Py z-a.s.
for any 6 > 0. By Corollaries 2.1 and 2.2 of Kwapien and Woyczynski (1987),
for a.a. fixed w; € Q1, we have

(3.16) Eysupy ([0 *h(:, V)| ®)) ) < +00
T i>1

for all & > 0. First we prove that we may replace E in (3.16) by E; 5. By the
strong law of large numbers (3.6), (3.16) yields

(3.17) Ezsupw([ “UR(, VI ®) () < 400

i>1
for all 6 > 0. Now for every positive integer iy put
(3.18) M, = inf (1,/i)"*
1 2 1]

It is a simple computation to check that for any H > 0 there is an integer
io(H) > 0 such that

(3.19) EM (E) < +00.
Observe that for anyi > ipand all ¢ € T,

[0~ Y |R(, V] @) > (M3 A 1) [0T Y IR(-, VD[] @)
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and so for every i > ig and all ¢t € T', we have
3200 ({6 IRC, VD) ®) 2 A7 (0, A 1) T [oT7IRC, VD) @),

where H =log, A [see (1.3)]. We conclude by (3.17) and (3.19) that

[ B,,5 sup o ([or7/*IhC, V)@ ) )
i>ig(H)

G20 _ AR (M A1) B suFH)¢([ i/, VDI ) pide)
l>lo

< +00

for all > 0. Furthermore, for every positive integer i, we have

/ E1p max ([0 1hC, V)| @) )

ig
<S B / (R, VI Vil (de) < i < +oo.
i=1 /T
This in conjunction with (3.21) yields
(3.22) / By 2 supy([00; Y (-, V)[)(®) ud) < +o0
T i>1
for all 8 > 0. Therefore, for every integer iy and all § > 0, we have
ig
L SSE[w(or e vore)
Ti=1

x 160 A (-, Vo] > coaa(i))] pdt) < +oo.

(3.23)

To prove finiteness of the remainder of the series in (3.15), we proceed as follows.
By Proposition 2.2 of Kwapien and Woyczynski (1987), for everyt € T, 6 > 0
and y > 0, we have

Pz({sup[ i/ ., V)l](t)>y}>

i>1

> ri[6i Y h(-, VD))
=1

(e[

x ZPZ({[Hi‘l/“lh(‘,Vi)](t) >y}).
i=1

)
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For v, as in (3.9) choose 6 > 0 so small that
P({lel > cl/*eo/20%,*}) < 1/32,

where ¢ is a real rv with the stable distribution S,(1, 0, 0). Using the contraction
principle for probabilities, we get for all y > coo4(2)/2,

(|5 -+})
< { )
([ Srremee] o) eon (i)

< 4P({|€l > cocg/a/zayif"}) +1/8<1/4.

[6i=2/*R(-, V)] ®

Y oraVen@, v

i=1

I/\

S rIT YR, V)

i=1

Therefore, for all ¢ € T and y > coo4(t)/2, we have

P, <{ sup [ l/alh( V)l (t) >y}> %Z ({ —1/a|h(.,Vi)”(t) >y}).

i>1

Observe that for all¢ € T and 0 <y < ¢o0(t)/2,

P2<{[ 6i=/|h(-, Vil o [6i /= A V)I](t)>cooa/2)>y}>

=P, ({ [6i= Y |h(-, VDI @& > coaa/2}>.

Therefore, for all £ € T and y > 0, we have

P2<{ 11)[ i~ Y/ V)I](t)>y}>

(3.24) %ZP ({ iR, V)] @)

i=

x n([oi—l/a,h( SVl @ > coaa(t)/2) > y})
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Let vy, be a Lebesgue—Stieltjes measure such that
P(u) = / vydy) VYu>0.
0

Then (3.24) yields

Eau sup 61V VO

/ Pz({sup[ i Ve V)I](t)>y})V¢(dy)
0 i>1

>13 / P, <{[9i‘1/°‘lh(-,Vi)l](t)
0

X ]I([Hi*l/alh( .,Vi)|](t) > coaa(t)) > y}) vy(dy)

=1 ZEw([oi—l/a,h( . Vi)l](t)]I<[0i—1/a|h( S Vll@) > coaa(t))>

i=1

for every ¢ € T. In the notation of (3.18) with H = log, A, we have now for every
1> i9(2H),

E1» [w([er;” A, w)|](t))u([ar;1/“|h( LV @ > coaa(t))]
< AELZ{ (Miyom) A 1) “”z/;( [6i7/ *|n(., V,-)l](t))
x 1( [0/ |hC, V)@ > co0a(®)
< []I( (6, VDI)(0) > eooa(0)/2)
(3.25) + 11([ Ve, VI @) < coaa(t)/Z)] }
< AE; (M om A 1) g, [u;([erl /e|h(., Vi)l](t))

X ]I([Bz Ve, V@) > coaa(t)/Z

l__l

+A(E1 (Mio(2H) A 1) —2H) 1/2¢(Coga(t)/2) ( ({l/].-‘ > 204})) v
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Integrating (3.25), we obtain

/T > El,z{fﬁ([ﬁl‘i_l/alh(-,V,-)I](t))

i > ig(2H)

x H([GFi—l/a|h( SVl @ > coaa(t)) }u(dt)

< Cl/Ezz/z(su;l) [0i_1/°‘|h(-,Vi)l](t)>u(dt)
T i>

+C 3 (Pl({I‘i <2‘°‘i})>l/2 /T B(cooa®)/2) u(de) < +00

i>ip(2H)

by (3.22) and (1.7) for some finite constants C; and Cs. This in conjunction with
(3.23) yields (3.15). Hence (1.8) holds and the proof of the necessity is complete.

Sufficiency. By Propositon 2.2 it is enough to prove that the series (3.2)
converges a.s. in L. If is enough to show Ps-a.s. convergence of this series
for a.a. fixed w1 € Q7 and wy € Q. This allows us to use Lemma 2.5 in the
opposite direction. Because the condition (1.6) implies (3.5), it remains to show
that for a.a. fixed w; € Q7 and w, € (g,

foo

for some 6 > 0. This will obviously follow once we prove that for a.a. fixed

w1 € Ql,
/ E2,3¢<
T i

for some 6 > 0. By Proposition 2.1 of Kwapien and Woyczynski (1987), for any
fixed w; € Q1 and for all ¢t € T and 4 > 0, we have
oo
S r[ory VR, V)@
=1

- )

(3.26) AE, 3sup;>; w([er,.‘”“lh< ‘. Vi)l](t)> +8A%Y(aa(2))
<

1/3 - 4A%P, 5 <{w(| 552 60T R, V) @)]) > 9(0a®) })

S r[ory YR, V)@

i=1

)u(dt) < 400

ri [T Y R(-, VD)@®)

oo
=1

)u(dt) < 400

By the strong law of large numbers (3.6), the event

O := {nlgnoo T./n = 1} n{r; > 0}
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has P;-probability 1. Fixany w Q(13) . Choose a finite number 3 = y3(&w) such that

P, ( { supI;/T(@) > 73}) < 1/96A2.

i>1
For this 3 choose a positive number 6y = 6y(@) such that
Py({lel > cl/2/6oyy” *}) < 1/964%,

where £ is a real rv with a stable distribution S, (1, 0, 0). Now by the contraction
principle for probabilities, we have for each ¢t € T,
) > P(0a(®) })

(o
=Py ({ iri [T @)~ *R(-, V)] )] > aa(t)}>
i=1
< zpm({ fjrieori(m-‘/ah(t,m > aa(t>}>
i=1
i riT; YR, V)| > 0a®)/80r © })
i=1

oo

+2P; ( { supT;/T;@) > 73}) < 1/24 A%

i>1

Z T [QOPi(&)_ l/ah( y V;)] (t)

i=1

By (8.26) we conclude that for every w € 9(13) andt e T,

o |

< 6A{E2 sup 1/)([001"i(c71)_1/a|h( 5V (t)) + 841 (0o(1)) }

i>1

Z r; [HoFi(G)‘l/"h( ) V;)] (t)

i=1

By (1.7) and the As-condition, it is enough to show that
(3.27) / By 5 sup ([0 /% |h(-, VO[] () w(de) < +00
T i>1
for any 6 > 0. Observe that forallt € T'and i > 1,
v ([, V)
< (cooa(®) + 1/;([91“;1/ IR, V)] (t))

x 1([6r7 VR C, V@) > ooal®)).
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Therefore,

Ey,psup (07, V/IRC, V) ®)) (de)
T i>1

< [ wleoratt)utan
T

v [ S B w(lor v me o)
i=1
X ]I( [GFi—l/oe|h( 5 VI @) > cooa(t)) },u(dt).

Because condition (1.8) is equivalent to (3.15) [under (1.6) and (1.7)], the right-
hand side of the last inequality is finite and this implies (3.27).
The proof of Theorem 1.1 is now complete. O

4. Some consequences of Theorem 1.1. To prove Corollaries 1.3 and
1.4 we need some characterization results of M-functions due to Matuszewska
(1962). Recall that a function ¢ is equivalent to a function ¢ if there are positive
constants a, b, k1, ks such that

ap (kiu) < ¥ (u) < bp(ksu) Yu>0.

LEMMA 4.1. Let 1) be an M-function and let 0 < p < +oo. The following
are equivalent:

(i) There are finite constants C1, Cy such that

(4.1) Plxu) < C1xPP(Cau);

forallx < landu > 0.

(ii) There exists an M-function ¢ equivalent to i and such that the function
u — oul/P) is convex.

Proor. The property (i) of ¢ is equivalent to ¥(u) = u?x(w) for all « > 0,
where y is a pseudo-increasing function, that is, there are positive constants
m, n such that

x() > mx(nu) forallv>u > Q.

The proof that this is equivalent to property (ii) of ¢ is the same as the proof of
the statement 2.7.3 of Matuszewska (1962) for large u. O

Now we are ready to prove Corollary 1.3.
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PROOF OF COROLLARY 1.3. Itisenough to show that (1.6) implies (1.8) and
(1.7). Let I3 denote the integral (1.8). By the assumption (1.14), we have

r|ht, x)| r|h(t, x)| dr p(dt)m(dx)
’3‘/ / IR x)"¢/ (uh( >||¢>I(||h<~,x>n¢ >c°""“)) F+a

<c / rp-a=1g, / 1,23 / (",'fz(t x))|||¢) (d) m(dx)

< — h(-,x)||$m(dx).0
< == [ wIgma

Thus (1.8) follows from (1.6). Turning to this integral I, in (1.7), let ¢ be an
M-function equivalent to ¢ from Lemma 4.1 and let I; denote the integral in
(1.6). Using Jensen’s inequality twice and the As-condition (1.3), we get

I, < b/Tgo(kgaa(t)),u,(dt)

LA, %) [|hC, 2| )l/a
-° * / dx dt
/Tw< 2( e TRG01G I m(dx) 1(dt)

1/p
kaly |ht, x)|>" 1¢I5
<b dx a
= /#’((/E( A %)y o M) e

koIY/®|h(2, 2)| ARG 20lg
<b/ Lo(Zics =P R

log, A
P

Therefore, (1.6) also implies (1.7) and the proof of Corollary 1.3 is complete. O

LEMMA 4.2. Let ¢ be an M-function and let 0 < p < +oco. The following
statements are equivalent:

(i) There are finite constants C1, Cy such that the inequality (4.1) holds for
allx>1andu > 0.

(ii) There exists an M-function ¢ equivalent to v and such that the function
u — ¢ Wl/P) is concave.

The proof of Lemma 4.2 is the same as the proof of Lemma 4.1 with the
furiction x being pseudo-decreasing instead of pseudo-increasing.
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PROOF OF COROLLARY 1.4. It is enough to show that (1.7) implies (1.8) and
(1.6). Let I3 be again the integral (1.8). By the assumption (1.16), we have

he [z [0 pnThdD
oo (t)

/ [ bimonaey 220

< — o dt).
< =5 L Heora®)uan
Thus (1.8) follows from (1.7). Turning to the integral I; in (1.6), observe first that

under (1.7), [|A(-,x)|ly < oo for m-a.a. x € E. Indeed, by (1.9) this is equivalent
to saying that

(4.2) /1/1(|h(t, X)) p(dt) < +00, m-a.e.,
T

but (1.7) implies that

1/
oo+ > (kl </ |h(t, x)|°‘m(dx)> ),u,(dt)
1/
(kl (/ |h(2, x)|ag—1(x)g(x) m(dx)) ),u(dt)

1/p
(kl / |h(t, x)|PgP/ *(x) glx) m(dx)> ) w(dt)

> / </E (p(kllh(t, x)|g‘1/a(x)) g(x)m(dx)) N(dt)
T

>1 / / w(lil-lh(t, x)|g™/ “(x))u(dt) glx)m(dx),
bJe\Jr \k2

where g > 0 is such that [,gdm = 1 and ¢ is the function from Lemma 4.2
equivalent to 1. By the A,-property of v, (4.2) follows. Now, for every integer
n > 1denote

E, = {x € Ap:|h(, 0|3 < n},

where {A,; n > 1} isa sequence of measurable sets of finite m-measure in-
creasmg to E and

L) = /E 1A, )G midz).
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Therefore, it is enough to show that (1.7) and the assumption that I;(n) tends
to 1nﬁmty as n — oo lead to a contradiction. Using again Jensen’s inequality

twice, we get
koo (t)
——— | u(dt)
/Tw (klli/a(n)> g
|h(t x)|°‘ |R( x)II,,,
>2
b

Ealh(t, )| 1A, 2)3
/ / <||h< )II¢> i e O

By the Ay-condition of 4 and (1.7), the left-hand side of (4.3) tends to zero if I 1(n)
tends to infinity as n — oco. This contradiction completes the proof of Corollary
14. O

PROOF OF COROLLARY 1.5.  We need to show that (1.6) and (1.7) imply (1.8).
With I3 again denoting the integral (1.8), we have, by the assumption (1.17),

_ . o rih(t, x)| r|h(t, x)| dr u(dt)m(dx)
Is ‘/ IR ”‘)”1”/ / ‘”(|h<~ x>||¢>“<||h<~,x>n¢ >c°"°‘“)> e
<cC / 1A, Grlel) / '”(fif’.

Under the first assumption in (1.18), (1.8) follows from (1.6). Under the second
assumption in (1.18), we get by (1.17),

h< [ oz ()¢< eeD
cooalt

By S
<c® | $leooa®)udt / ¥ndr

Thus (1.8) follows from (1.7). O
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