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SUMS OF INDEPENDENT TRIANGULAR ARRAYS AND EXTREME
ORDER STATISTICS

By ARNOLD JANSSEN
University of Siegen and University of Diisseldorf

Let X, ; denote an infinitesimal array of independent random variables
with convergent partial sums Z, = ¥3?_, X,, ; —an —p §. Throughout, we find
conditions for the convergence of the portion %, of lower extremes Ly (k) =
Ef': 1%Xi:n —bn given by order statistics X;.,. Similarly, Wy (r») denotes the sum
of the r, upper extremes and M, = Z, — L, — W, stands for the middle part
of the sum. It is shown that (L., M,, W,) —p (&1, &2, £3) jointly converges
for various sequences k., r, — oo, where the components of the limit law
are independent such that &; + &3 + &3 =p €. The limit of the middle part
&5 is asymptotically normal and &; (£3) gives the negative (positive) spectral
Poisson part of £. In the case of a compound Poisson limit distribution we
obtain rates of convergence that can be used for applications to insurance
mathematics.

1. Introduction. The convergence of triangular arrays of independent
random variables is one of the most interesting and important classical fields
of probability theory. The class of limit distributions is classified by the familiar
Lévy-Hingin formula for infinitely divisible distributions (2.4) given by a nor-
mal part and a Poisson part, which is determined by a Lévy measure 7. Lévy
(1935) first gave a representation of a stable nonnormal law as an infinite sum of
an extreme value process. This work was continued by LePage, Woodroofe and
Zinn (1981), Csoérgs, Csorgd, Horvath and Mason (1986) and Csorg6, Héausler
and Mason (1988). The last paper gives an integral representation of infinitely
divisible distributions in terms of Poisson processes. They applied the quantile
approach via empirical processes to show which part of a normalized partial
sum of i.i.d. variables contributes to the Poisson part and which part is asymp-
totically normal. This approach seems to be restricted to the case of rowwise
ii.d. random variables. The role of a finite number of extremes was studied
earlier by Loéve (1956). He showed that in the general case the extreme order
statistics are always convergent and their distribution is determined by the
Lévy measure 7.

It is the purpose of this paper to answer the question of which portion of order
statistics of the sum is responsible for the Poisson part and the normal compo-
nent for a general convergent array. Our Theorems 2.1, 2.2 and 3.1 establish
conditions for the convergence of sums of extremes. It turns out that the lower,
middle and upper parts of the partial sum become' independent as n — oc.
We combine the quantile approach of extreme value theory and the classical
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approach via characteristic functions. Earlier considerations of this type appear
in Janssen (1989) for i.i.d. arrays with stable limit laws. In a special situation
of nonnegative random variables and compound Poisson distributions, we give
an upper bound for the amount of upper extreme observations that are needed
to find an approximation at a given level of accuracy. This result is motivated
by problems coming from insurance mathematics. Rates of convergence simi-
lar to Propositions 2.1 and 2.2 were obtained by Janssen and Mason (1990) for
i.i.d. partial sums with stable nonnormal limit laws. Csérgé, (1989a, b) intro-
duced rates of convergence for series representation of infinitely divisible laws
without normal components.

The paper is organized as follows. Section 2 contains the main results,
whereas Section 3 gives auxiliary limit theorems for sums of extremes with-
out centering constants. The series representation of infinitely divisible laws
is introduced in Section 4 and the proofs of the main theorems are given in
Section 5. The results are based on nonnegative correlation of order statistics.
This result is contained in the Appendix.

We will use the following notation. Let 1, denote the indicator function of
a set A and let A® be its complement. Introduce a A b = min(a,b) anda V b =
max(a, b). Let L(¢ | ) denote the image measure of 1 under . Convergence in
distribution and in probability is indicated by —5 and —p, respectively.

2. Main results. Throughoutlet (X, ;);-1,..,, be an infinitesimal triangu-
lar array of rowwise independent, real-valued random variables (r.v.’s) with

@.1) max P(|X, ;| >¢) — 0

1<i<n

asn — oo for each & > 0. Suppose that for suitable centering constants a, their
sums converge in distribution to some infinitely divisible r.v. £:

(22) ZXn,i —Qp /D 5

i=1

It is often convenient to center the partial sum at a restricted mean. According
to Gnedenko and Kolmogorov [(1968), pages 84 and 116ff], there exists a shift
a = a(r) such that

(23) > (X1~ E(Xn il n(Xn0) ) 20 € +a
i=1

in distribution for all continuity points +7 # 0 that receive 0 mass from the Lévy
measure 7 given in (2.4) (briefly continuity points of ). Then the law y := L(é+a)
has characteristic function

) = exp(—g2t2 /2 + / {(exp(iut) —1—iut)l. )
(2.4) R\{0}
+ (exp(iut) — 11, T)c(u)} dn(u)>
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based on the possibly unbounded Lévy measure n on R\{0}. Recall that
(2.5) / (x® A1) dnx) < oo.
R\{0}

Observe also that
(2.6) 6% (n(—o00, =61 +nl8,00)) < / (x? A6%)dn(x) >0 asé|0.

Let p; denote the infinitely divisible law with characteristic function (2.4) with
02 = 0 and 7 := 1(_wo, 07 (the negative spectral part or negative Poisson part of
). Similarly s is by definition the law with o2 = 0 and 7 := 1(9, oo)n. Obviously,
1 is given by the product

2.7 p=p1*N(0, 02) * g

where * indicates convolution of distributions and N(b, 02) denotes the normal
law with expectation b and variance o2. Let now

(2-8) Xl:n < X2:n <. < Xn:n

be the order statistics based on the nth row X,, ;, i = 1,...,n. Then it is well
known that (2.2) implies

(2.9) Xin —0Z

in distribution, where Z < 0 is a random variable with distribution function
exp(—n(—o0,%]), x < 0 [cf. Logve (1956)]. Notice that £ is normally distributed
or degenerate, iff

(2.10) X1 »p0 and X,; —o0;

see also Gnedenko and Kolmogorov [(1968), page 126].

In this section we will show that a sufficiently large but finite number of
extreme order statistics give approximately the entire Poisson part pq * ug of
the limit law p. The rest of the sum is approximately normal.

For the sequel we introduce the inverse (or quantile function) v;: (0, 00) —
(=00, 0] of the Lévy measure 7, by

(2.11) P1(y) =inf {t: ni(—o0,t] >y} A O;

see Reiss [(1989), Appendix I] as reference for inverse functions. Notice that
(i) 91 is nonincreasing and left-sided continuous, (i) ¢1(x) — 0 as x — oo and
(iii) [;°(2(x) A 1)dx < oo. Property (iii) is based on (2.5) and the quantile
representation of Lévy measures given by (iv) 71 = L1 | A0, 00))j(— 00, 0, Where
(0, o) denotes Lebesgue measure on (0, 0).

In an analogous manner we introduce the right-sided continuous inverse ;:
(0,00) — [0, 00) of x — ng[x, 0), x > 0, by

(2.12) a(y) = sup{t: nzlt,00) >y} V0.
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In order to motivate our result we turn to Theorem 4 of Loéve’s (1956) early
paper and recall that, more generally than in (2.9), the joint distribution of the
r lowest extremes

(2.13) X1y - Xpn) =0 L($1(S1), - .., ¥1(S))

converges in distribution for fixed r € N, where throughout
n
(2.14) Sni=)Y;
i=1

denotes partial sums of a sequence of i.i.d. exponential distributed r.v’s Y; with
mean 1. A modern approach to (2.13) can be given in terms of point processes;
see, for instance, Resnick [(1987), page 222]. Since the infinite sum

2.15) 8= 3 (50 - B(hiS1r06S))

i=1

has distribution p; (cf. Lemma 4.1), one may hope that similarly centered sums
of extremes
,
(2- 16) Z (X;n - E(Xi:n 1(—7-, T)(X;n)))
i=1

approximate pu; well for r large enough. These arguments are made precise
in the main theorems, (cf. Remark 2.2). To give further motivation, consider
rowwise i.i.d. r.v.s (X, ;)i <, with joint distribution function (d.f) F,. It is well
known that

(2-17) (Xlsn, R aXn:n) =D (FJI(SI/Sn+1), oo aFn_l(Sn/Sn+1));

see Breiman [(1968), Section 13.6] or Reiss [(1989), page 41]. Since the quantile
function ¥y ,(x) = F;;}(x/n) A0 of nF, | (_co, 0) converges by (5.4) pointwise to ¢y,
except on a Lebesgue null set of (0, c0), (2.13) follows easily by the strong law
of large numbers.

Let Y; denote independent copies of Y; and set

(2.18) 5. =%,
i=1
(2.19) A = Z (¢2(§i_) —E(¢z(§i)1[o, 7) (1/)2(5';‘))))
~ i=1

We arrange A* to be independent of A~ for the joint limit in (2.41). Notice that
L(AY) = Ha. )
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Consider sequences k,, m,, s, and r, € {0,1,... ,n} and introduce centered
sums of order statistics given by
kn
(2.20) Lntkn) = Y (Xin = E(Xinlcr, »(Xi)) ),
i=1
n—sp
(2.21) M,(my,,s,) = Z (){}:n - E(Xi:n 1, T)(Xi!n)))7
i=mp+1
n
2.22) W)= > (Xin = E(Xinlir, n(Xin) ),
i=n+l-—r,

which are labelled as the lower, middle and upper parts of the partial sum.
Notice that L,(k,) + M, (k,,r) + W,,(r,,) yields a decomposition of (2.3).

We want to find conditions concerning the sequences &, m,, s, and r, such
that L,, M, and W, converge. The results are split in two cases depending
on whether the normal part of 4 is trivial or not. If 62 = 0, then almost no
restrictions are required. Define

1, if 5(—00,0) > 0, _ { 1, if (0, —oc0) > 0,

.23 =
223 ¢ {o, if 7(—00,0) = 0, 0, if 7(0,—c0) = 0.

THEOREM 2.1. Suppose that the triangular array (2.3) converges in dis-
tribution and let 02 = O for the limit distribution (2.7). Let each sequence
Jn = kn, my, n — s,, n — r, satisfy the condition

(2.24) q/(L+j)+p/n+1—j,) -0 asn — oo.
Then (a) M,(mp,s,) —p 0 and (b) (L, (k,), Wn(rn)) —=p (A=, A*) as n — oo.

If the normal part of 41 is not trivial, then obviously additional conditions for &,
and r,, are required. In the case of i.i.d. variables, limit theorems for the middle
part can be found in Stigler (1973).

Let F;;(x): = P(X,,; < x) denote the d.f. of X,, ; and introduce

(2.25) Gu(x):= ) | Fru(®)
i=1

with inverse G, 1. Also introduce for 0 < y < n,

(2.26) 5,,_1(y) i=sup{t: n — Gu(t—) > y},
where -G, ! is the inverse of y— X P(X,,; > —y).
Throughout assume that
2.27) 0 <timinf22?Q  limsup $02 g
n— oo n n— oo n
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hold. If (2.27) is violated, G, may be centered at its “median” and an obvious
modification of Theorem 2.2 can be applied.

THEOREM 2.2. If(2.3) converges, consider for o2 > 0 sequences such that
(2.28) kn+my +s, +r, =on)

and conditions (2.24) and (2.27) hold. Moreover, define j, = k, Vm, and i, :=
rn Vs, and let

hm lim sup { / (x2 A 62) dG,(x)
(=00, G5 Y(jn))

(2.29) 40 n—eo
+ G;l(jn)2( i) — Gn(G,fl(jn)—))} =0,

lim lim sup / (x2 A 62) dG,(x)
(G, Yn), 00)

@30) 0o
+G, G ? (in - (n - Gn(t;‘,jl(in))))} =0,

be satisfied. Then
(2.31) (Ln(kn)a M,(my,s,), Wn(rn)) —p (A7, Z, A*)

as n — oo where A~ and A* are as in (2.15) and (2.19), and Z is N(0,02)
distributed such that A~, Z and A* are independent.

REMARKS 2.1. (a)Itis easy to see that Theorem 2.2 remains true for smaller
sequences k), < k,, m), < my, s, < s, andr, <r, aslong as (2.24) holds. In fact,
condition (2.27) yields 6, := G, (j,) — 0 and thus condition (2.29) is based on
the G, integral of

jn - Gn((sn—)
(2.32) (%% A 6%) (1(_00, 5)(X) + ERCABTEN| 5n—)1{‘5"}(x)>

for —6 < 6,. Thus j, may be made smaller; see also Remark 3.1(b).

(b) The assumptions (2.29) and (2.30) are very natural conditions, which can
be compared with condition (5.7). Observe that (at least in the symmetric case)
expressions of the type

hfnhmsup / (x /\62 dG,(x)

n— oo

indicate whether o2 vanishes or not.

(¢) The rates k,,my,... of Theorem 2.2 are sharp in the sense that they
cannot be improved in general; see Example 2.1. However, one cannot speak of
a “largest rate” &, such that, for instance,

(2.33) L,(k,) —p A, E, — 00
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holds. We may argue as follows. If u # 111, then condition (2.24) implies n — &, —
0o. Now statement (2.13) implies

(2.34) Xk,, +rmn—p0

for each r > 0. By a subsequence selection principle we may find by (2.34) a
sequence s, — oo with M,(ks, ks + s,) —p 0, which shows that (2.33) remains

valid for &, + s,,.
(d) Under the conditions of Theorems 2.1 and 2.2 we have the joint conver-

gence
(Ln(kn)a Xinseo- ,Xr:n) —D (A_, $1(S1), ... ,¢(Sr))

for fixed r € N. The proof uses the Cramér-Wold device and the lines of the
proofs of the theorems. As an application we have convergence of the slightly
trimmed sums:

kn
Z {Xi:n - E(th 1(—1', T)(X;:n)) }
i=r+1
n 3 {80 - E(mSorcno(is)) |
i=r+1

ExaMPLE 2.1. Consideriid.rv’s X; withd.f F, E(X;) =0and 0 < Var(X;)
< co. If we defined X, ; = X;/n'/?, it is well known that

(2.35) M,(my,s,) —»p N(0,Var(Xy)) iff m, +s, = o(n).
It is easy to see that assumptions (2.29) and (2.30) hold for m,, (and s, respec-
tively) if (2.85) is valid. Notice that G; () = F~( y/n)/n/2.
Then
/ 221 oo, F-1(my /m/n/)0) AGn () = / %21 oo, F-1(my /my®) dF (x) — 0.
The additional term can be written as

F_l(mn/n)z{mn/n - F(F—l(m,,/n) —) },

which vanishes for n — oco. This follows from (2.28) whenever the support of F
is bounded below. Otherwise F~1(m,,/n) — —cc and

/x2 1(—oo,F— l(m,,/n))(x) dF(x) — 0

gives an upper bound of the term under consideration.
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REMARK 2.2. As a further conclusion the motivation (2.13)—(2.16) can be
made precise. Let d denote the Lévy metric [(Al) of the Appendix] that gives
us convergence in distribution. For each € > 0 there exist r, ng € N such that
for all n > ng,

(2.36) d(La(r), A7) <¢
holds. We may combine (2.13) and Lemma 4.1.

In the special case of nonnegative r.v.’s we will now estimate how many upper
extremes are really needed to find an accurate approximation of the total partial
sum. The following propositions are motivated by applications to insurance
mathematics, where

(2.37) Xn,i 2 0

may be interpreted as the total claim of the ith person within a period and n
denotes the total number of contracts under consideration. In this example the
probability

(2.38) Pni '=P(X,, ; > 0)

for the occurrence of a claim is typically small. Define
n
(2.39) DPn = ani~
i=1

Then the aggregate claims ¥7_; X;; of all policy holders is approximately given
by a sparse sum of extremes.

PROPOSITION 2.1.  Suppose that (2.37)-(2.39) hold and let m > p,. Then

i=n+2-m

< 2exp (—(m —Pn)2/ (2"1/3 +4p,/3 — 2 ZP?u‘) ) .

sup
x>0

(2.40)
i=1

Notice that the choice m = [pp,] for some p > 1, where [] indicates the entire
function, gives for large p, the approximate upper bound

(2.41) 2exp(—p,,(1 — p?/(20/3 + 4/3))

of (2.40). That result also provides information about the accuracy of the series
representation (2.13) and (4.3) of compound Poisson distributions obtained by
finite partial sums. Assume that p has characteristic function

(2.42) i) = exp( /( (exp(iut) — 1) dn(u)>
0, 00) )
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with X := (0, 00) < 00.

PROPOSITION 2.2. For each m > )\ we have

m-—1
P( S ¥alS) 9) ~ i~o0,2]
i=1

< 2exp(—(m — N2/ (2m/3 + 4/\/3)).

sup
(2.43) x>0

Further material concerning the accuracy of series approximation (2.15) in
terms of the Lévy metric can be found in Csorgs (1989a, b).

3. Convergence of sums of extremes. In this section we are interested
in the behavior of

kn
3.1) Lk,,(kn) = ZXi:m
i=1

where the centering constants are cancelled. Based on our motivation in Section
2, one may expect that for certain sequences k&,

(3.2) Ly(kn) —»p A7 =) 91(S)
i=1

whenever the condition

3.3) / ] dn(x) < o0
(-1,0)

holds. Then convergence of A~ follows from Lemma 4.1.

THEOREM 3.1. Suppose that (2.3) converges to an infinitely divisible law
such that py#eo is nontrivial and (3.3) holds. Assume that the sequence kp
satisfies the conditions k, — oo, k, = o(n) and

lim lim sup (|| A 6) dGr(x)
(3.4) 610 n—oo J(~o00,Gy ka))

+]G k)| (Fn = G (G (k) — )) =o.
Then assertion (3.2) holds. :

.REMARKS 3.1. (a) Notice that condition (2.29) implies (3.4) if we take (2.32)
into account. Consequently, the portion of lower extremes %, of Theorem 3.1 is
smaller than in Theorem 2.2 provided liminf, _, ., G,(0)/n > 0. In the case of
Example 2.1, we arrive at a portion &, = 0(n'/2) such that (3.2) remains true.
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That portion cannot be increased in general. For instance, consider a two point
distribution with mean zero in connection with Example 2.1.

(b) As pointed out in Remark 2.1(a), condition (3.4) remains true if &, is
decreased. ’

(c) Under the conditions of Theorems 2.2 and 3.1 we have

o0
Lp(kn) = Lka) = > E (108017, 0 (¥1(S0) )
i=1
Thus (L, (ky), M (my, 5,), W, (r)) remain asymptotically independent. Upper
extremes can be treated similarly.
4. Series representation of infinitely divisible laws. The following
technical lemma gives a representation of “one-sided” infinitely divisible dis-
tributions of Poisson type that is related to the form of Csérgd, Hausler and

Mason (1988). Special attention is paid to L;-convergence forj = 1, 2.

LEMMA 4.1. Suppose that p = y; is as in (2.7) with 0% = 0 and 1y = 0.
(a) The infinite sum

(4.1) Z (¢1(Si) - E(lbl(si)l(—r, 0l (¢1(Si)))>

i=1

is convergent in probability and it is distributed according to p.
(b) The sum (4.1) is convergent in Lj(P) whenever the condition

4.2) / ixld diy () < 00
(—o00,—1]

holds forj € {1,2}
(¢) Under condition (3.3) the infinite sum

(4.3) > (S
i=1

is almost surely finite and its characteristic function is given by

(4.4) t— exp( / (exp(iut) — 1) dnl(u)>.
(—00,0)
(d) Under conditions (3.3) and (4.2) the series (4.3) converges in L;(P).

REMARKS 4.1. The proofis based on the following elementary properties of
quantile functions for Lévy measures. Let 1; be as in (2.11) and choose § < 0.

(a) Then 75 := )(—, 51 has the inverse

(4.5) ¥1,5(3) = Y1) L(— o0, 61 (¥1(3))-
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(b) The inverse of 7® := s, o) + 7(—00, 6]e;s is given by

(4.6) P9 = Y1316, 0 (¥1(5)) + 61 00,51 (¥1(9)).

(c) Let X denote a Poisson r.v. with mean A > 0. Then 6X and (4.3) are equal
in distribution for § < 0 provided 1 = 61, z. ,

PRrOOF OF LEMMA 4.1.

Step 1. Assume that 7,(6,0) = 0 for some § < 0. Thus #; is bounded and
¥1(y) = 0 whenever y > 7;(—00,0). Consequently, the series (4.3) converges
almost surely. We now determine its limit law. Consider a sequence (U,), of
i.i.d uniformly distributed r.v.s over (0, 1) and define

4.7 X,i=ialU),  i<n.

As shown below, the partial sum ¥7_; X, ; converges in distribution to a com-
pound Poisson r.v. X with characteristic function (4.4). One easily verifies the
sufficient conditions (5.2)—(5.5) for 7 < |§|. In order to do so, notice that for
x <0,

(4.8) P1(nUy) <x  iff nU; < n(—00,4]
and thus
nP(X, 1 <x)=nP(U; < n(—oc0,x]/n) = n(—oc0,x] An.

Observe also that X, ;1_.,¢)(X,, ;) = 0 for |§] > € > O [cf. (4.5)]. The proper
choice of order statistics U;., [see (2.17)] implies

Y Xni=0> ¥1(nSi/Sns1),

i=1 i=1

which converges almost surely to (4.3) by the strong law of large numbers. Thus
X =p X2, 41(8S;) holds.

Suppose now in addition that condition (4.2) holds. Routine differentiation
of the characteristic function (4.4) proves that E(X) exists for j = 1 and Var(X)
exists for j = 2 with

00, 0)

(4.9) EX)= / xdny(x), Var(X) = / x2dny(x).
(—00,0) (-

For these reasons the monotone convergence theorem proves L;-convergence
(and Lo-convergence, respectively) of the partial sums ¥7_, 11(S;) and

00, 0)

4.10) S E((S)) — BX) = /( x ()
i=1 -
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as n — oo. Hence assertions (b)—(d) are proved for the special type of Lévy
measures of Step 1. Next the influence of the centering constants given in (4.1)
is studied. For this reason consider (4.6) for —7, which implies

(4.11) D E(WTS)) = / xdn ().

i=1 (=70 4
Similarly, consideration of 77 = n(—oco0, —7]e_, yields the related 1 function
D1(3) = =710, (=00, ~11(¥) = =T L0, -1 (¥1(3))

by considerations similar to (4.8). Thus

(4.12) N E(-1r08)) = /( O)xdﬁ(x).
i=1 —o0,
Combination of (4.11) and (4.12) proves
(4.13) Z E (@bl(Si)l(-T, 0) (1/11(3;'))) = /( o xdm(x),
i=1 -7

which gives the difference of (4.1) and (4.3). Altogether, (4.4) and (4.13) yield
the desired form of the characteristic function of (4.1) in Step 1.

The general situation uses a truncation argument that is based upon (4.5).
For 6§ < 0, introduce
(4.14) Ay := Z {1/)1(5';')1(-00,6] (¥1(S)) — E(%(Si)l(_f, 8 (¢1(Si))) }

i=1

LEMMA 4.2. Suppose that (4.2) holds for j = 2. Then Ay is an Lo-Cauchy
sequence as 6 1 0. Its limit distribution has characteristic function (2.4) for

B = p1.
PROOF. According to Step 1 of the proof of Lemma 4.1 and (4.5) the r.v.
Ay has characteristic function (2.4) with Lévy measure 75 and 02 = 0. The

continuity theorem for characteristic functions implies convergence in distri-

bution of Ay as é 1 0.
The L,-convergence is based on the variance formula (4.9). For fixed 7 > 0,
consider —7 < § < a < 0. Then E(A; — A;) =0 and

Var(A; — Ay ) = Var ( Z {101(31')1(6, a1 (¥1(S)) })
(4.15) { ( {'l/)l(S )1(5 al ’l/)l(S )) +61_ —00, 6] (¢1(S )) })

1
(Z«‘?l( o0, 8 (¥1(S; )))} = 2(Vy + V).

1
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By (4.5), V is the variance of a r.v. with Lévy measure 7, o) + 7(—00, 6les:
(4.16) V= / u? dn(u) + §%n(—o0, 81.
(8, al

Up to a constant, the second term is a Poisson r.v. with variance
(4.17) Vy = 62n(—o0, 81

The integrability condition (2.6) of the Lévy measure ensures that V; + V; is
small whenever § is sufficiently small. Thus Ay is an Ly-Cauchy sequence. O

Step 2 (of the proof of Lemma 4.1). Throughout we establish the proof for
Lévy measures with bounded support, which gives the boundedness of ;. In-
troduce partial sums

(4.18) A™(n) = Z {¢1(Si) - E(1/)1(Si)1(—r,0) (lbl(Si))) }
i=1

and similarly Aj (n) for 11(y)1( oo, 51(11(y)) instead of 1, for § < 0. Also define
remainder terms Rs(n) by

(4.19) A~ (n) = Ay (n) + Rs(n).

Employing Step 1 and Lemma 4.2, we have A;(n) —» Ay and Ay — A~ as
6§ 1 01in Lo, where A~ denotes the limit r.v. of Lemma 4.2. By Lemma B of the
Appendix it remains to check that the remainders become uniformly small in
L,. To be explicit it suffices to show

(4.20) %i%% lim sup Var (Rs(n)) = 0

since E(Rs(n)) = 0 for § > —7. Obviously
(4.21) Var(Rs(n)) = li?(l) Var (A (n) — A;(n)) ,

and analogously to (4.15),
Var(A;(n) — A (n))

< 2{Var( Z {101(5';')1(5, a1 (¥1081)) + 61— o0, 51 (¥1(S5)) })
i=1

+Var<261(_oo,5] (1/)1(Si))> } =la,

i=1 .

(4.22)

for § < a < 0. Next let ¢ denote any bounded nondecreasing function.
Employing Lemma A and (2.17), we obtain

(4.23) Cov(p(Sy), ¥(S))) = nlingo Cov ((p (SnS,- > , w(;sjl >> >0.

n+l
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This result is applied to (4.22), which gives
(4.24) an < Qpam, meN.

On the other hand, we may make use of the Ly-convergence (Step 1) of the
partial sums of the right-hand side of (4.22) showing a, 1 2(V; + V3), where Vi
and V, are taken from (4.15). The choice of « | 0 yields

(4.25) Var(Rs(n)) < 2/ u? dn(u) + 46%n(—o0, 61,
(6,0)

which converges to zeroas 6 1 0.

Step 3. The general case. Let n be an arbitrary Lévy measure on (—oo, 0).
For —7/2 < § < 0 let us split the Lévy measure and consider 7;, 7® and their
-functions (4.5) and (4.6). Thus

(4.26) PO + 115 = 1+,

where 9 := § 1(— oo, 61(¥1(+)) is the -function of a Poisson r.v. Note that the series
(4.1) and (4.3) with 1) replaced by 1/1(1‘”, 1,5 and 7 are also convergent in L,
under the assumptions of (b)—(d). Then (4.26) implies the convergence of (4.1)
and (4.3). If we now consider the 1/)?) series for § — —oo, the continuity theorem
for characteristic functions determines their limit distribution. This completes
the proof of Lemma 4.1. O

REMARK 4.2. The series representation can be compared with the integral
representation of u; of Csorgs, Hidusler and Mason (1988) given by improper
Lebesgue—Stieltjes integrals. Let X; = —3°,1(9, (S;) denote a left-continuous
Poisson process on (—oo, 0). Under the conditions of Lemma 4.1., the r.v. (4.3) and

(4.27) X, dy1(s)

(0, 00)

are equal in distribution. Moreover, it can be shown that (4.1) and

(4.28) (Xs — $1pn(—oco, —11,00)(8)) dipr(s) — 31 (n(—00, —71)m(—00, —7]

(0, o0)
have the same distribution. That proof must be obtained first for n with (4, 0)
=0, § < 0. Here one uses integration by parts and (4.13).

5. Technical results and the proofs. We begin with the well-known
inequality of Bernstein [(5.1); cf. Bennett (1962)]. Let X, ..., X, be independent
r.v’s such that o? = Var(X;) and |X — E(X;)| < 1 almost surely fori=1,.

Then for each ¢ > 0,
(5.1) P( a) < 2exp (—;2/<2ZU?+25/3)> :
i=1

n

> (X -EX))| >

i=1
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Throughout we use a few technical tools concerning the convergence of trian-
gular arrays quoted from Gnedenko and Kolmogrov [(1968), page 116]. The
partial sums (2.3) have the limit distribution (2.4) iff the following conditions
(5.2)-(5.5) hold:

(5.2) 11m lim sup Var < ZX,, il—s, 6)(Xn, J)
n—oo l 1
(5.3) }Slf% l}lrglol.}f Var ( ;Xn’il(_,s, 5(Xn, l)) = o2

Restricted to continuity points x of 7, one has

(5.4) ZP(X"J < x) — n(—00,x], x <0,
i=1

and

(5.5) Y P(X,;>x) > nlk,00), x>0
i=1

Further equivalent conditions are needed.

LEMMA 5.1. Assume that the array is infinitesimal [see (2.1)] and let (5.4)
and (5.5) be satisfied. Define ay; := E(X, ;1(_., (X3, ;). Then condition (5.2) and
either of the following are equivalent:

n
(5.6) 11m lim supZ / 22 dF,;(x + o) = 02,
610 nooo i1/l <6
5.7 hmhm supZ/ /\62 dF,;(x + ap;) = 02
n—oo .

The equivalence also holds if limsup,, _, . is replaced by liminf, _, .
ProoF. The equivalence of (5.2) and (5.6) is already contained in Gnedenko

and Kolmogorov [(1968), page 119ff]. On the other hand, (5.4) and (5.5) together
with (2.6) yield

(5.8) 823 P(|X,,i] > 8) — 62 / 2 dnx),

i=1 x| > 6
which becomes arbitrarily small as é | O restricted to continuity points §. O

The proof of Theorem 2.1 requires the following lemma.
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LEMMA 5.2. Let X denote a Poisson r.v. with mean X = n(—oo0, —6], where
—6 < 0 denotes a continuity point of n. Then for each k € N,

n
(5.9) Jlim | kZIP()(i:n < =6) = E(X1g, 00)(X)).
i=k+

Proor. By Poisson’s limit theorem one gets

n
&= Lo, -a(Xn ) 2 X

i=1
and
E¢, Nk)—EXAE) asn — oo.
Notice that
E(én) = ZP(Xi:n S _5) = E(X)
i=1
by (5.4) and

k
E(é.n AER) = ZP(Xi:n < _6),
i=1

which proves (5.9). O
PRrROOF OF THEOREM 2.1. (a) Condition (2.24) together with (2.13) implies
(5.10) Xn,n —p0 and X,_; ., —p0.
In the next step we will use the identity
x=(=6)VrAS+(x— 65 00)®) + (x + 6)1(_ o0, —g7(x)
for § > 0, which gives us the relation
(5.11) My(my,s,) =28 + X2 + Y2,

The r.v’s on the right-hand side are defined for continuity points +6 of 7, 0 <
6 <T,by

nfn {(—6) VXin N6 —E((—6)V X; A 6)},

i=mp+1

(5.12) Z%:

S {Ken — O i) = E (K — O Xi)

i=mp+1

(56.13) X?:

> {4 1o, -1 Xim) — E(Kin + O)1r, (X)) }.

i=mp+1

(5.14) Y?:
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By Lemma 5.2, the exceptional part of X asymptotically vanishes since

(5.15) Z E((}{zn +6)1(—1',—6]()(i:n)) <7 Z P()(zn < —-6)—0
i=m,+1 i=m,+1

as n — oo. A similar result holds for Y?. If we now combine (5.10) and (5.15),
then we obtain

(5.16) X +Y. —p0
for fixed 6. According to Lemma B of the Appendix it remains to show
(5.17) %ifn lim sup Var(Z¢) = 0.

0 n—oo

The variances can be bounded by Lemma A of the Appendix, which is applied to
o(x) = (—=6) Vx A 6. Since order statistics are nonnegatively correlated, we have

Var(Z3) < Var(Z(—a) VX A 6) = Var((-6) VX,,; A )

i1 i=1
(5.18) < 2{ Zvar(Xn,il(—ﬁ, (X, )
i=1

+ Zvar(_al(—oo, —6](-Xn,i) + 51[6, oo)(Xn,i)) }
i=1

Since 02 = 0, the convergence condition (5.2) proves that the first sum of the
right-hand side of (5.18) converges to zero if first n — oo and then § | 0. On the
other hand, observe that the second sum is bounded above by

(5.19) 82 P(1X,,i| > 6) — & / x® dn(x),

i=1 x| > 6

which becomes arbitrary small for é | 0 [cf. (2.6)].

(b) Throughout we will prove convergence of the marginal distributions of
L, and W,,. We restrict ourselves to L, since the proof for the upper extremes
is similar. Following (2.13) we have

620 Lym) — 50 = > {8~ B (S lirn(1(50) |

i=1

for each m € N. Let d be the Lévy metric of the topology of convergence in
distribution (A1). We will now ¢onstruct a sequence m, — co, m, < n/2, such
that

(5.21) d(L,,(m,,),A'(m,,)) —0 asn — oo.
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The sequence m,, is defined as follows. For fixed j we may choose n; > 2 and
nj>nj_1 with

(5.22) d(L.(N, A™()) < 1/7,

whenever n > n;. If we set ny = 0, we have

s

(523) N= (nj,nj+ 1].

Jj=0

For each n € N we have exactly one index j with n € (nj,n;,1]. If we take m, =j,
we obtain

(5.24) d(Ln(myn), A=(my)) < 1/my,

which implies (5.21). Since A~ (m,) —p A~ holds (see Lemma 4.1.), statement
(5.21) proves

(5.25) L,(m,) »p A™.
On the other hand, observe that for m, <k,,
(5.26) L,(k,)=L,(m,) + M,(m,,k,),

where the middle part of (5.26) vanishes by part (a). An obvious modification
of (5.26) also applies in the case m, > k,. Thus (5.25) proves the desired con-

vergence of L,(k,).
The asymptotic independence of the three parts of the Theorems 2.1 and 2.2
is based on the splitting lemma, which is proved first. O

LEMMA 5.3. There exists a sequence 0 < 1,, — 0 such that
(5.27) Y, =(R,,8,,Tn) >0 Y :=(R,S,T),
where L(Y) = p11 ® N(0,02) ® g and
n
RByi= Y {Xn,ilicoo, o Xni) = E(Xn iLir, —rp(Xa,) },
i=1

Sn= 3 {2 i) = B (X b, (K0)

S 1

Toi= Y {Xniltn, 00 En,i) = E(Xn, i, (X, ) }.
i=1

An additional result is needed:
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LEMMA 5.4. Let x, <0, x, — 0. If (2.3) converges, then the condition

(5.28) lim lim sup (% A 8%) dGy(x) = 0
610 nooo J(—oo,x,)
implies
529 > {Xnilcoo, ) En,) — E(Xnilr)(Xa,0)) } ~2 R,

i=1
where L(R) = p;.

PROOF. According to (5.2)-(5.7) it remains to check the condition

n

(5.30) }sim lim sup Z / x2 dF;(x + Bn;) = 0,
(8, %)

10 n—oo o1

where 3,; = f(_ﬂxn)xani(x). Since 3,; < 0, we have for § < 0,

/ %2 dFp;(x + Bni) < / (& — Bni)® A 6%) dF i)
(6, xn)

(—00, 2 + Bni)

(5.31)
< / (% A 6%) dF ().
(—00,%,)

Thus assumption (5.28) implies (5.30). O

ProoF oF LEMMA 5.3. Choose a sequence 0 < 7, — 0 such that

(5.32) }sifn lim sup (x2 A 62) dG,(x)=0

n-— oo [—7n, Tal®

holds. This sequence exists since (5.19) implies (5.32) for each sequence of pos-
itive constants. In the next step the convergence of the one-dimensional distri-
butions of R,, S, and T}, will be established. By Lemma 5.4 we have

(5.33) R, —pR, T, —opT.

Thus (5.2) applied to X, ;1(_ oo, —r,)(Xp, ;) Proves

n
limlim sup > Var(Xe,il-s,6) - (-, 7)(Xn,i))

T
. n
(5.34) < 1§fn11ﬂs;p2; {Var (X, 15, —n(X0, )

+ Var (X, ilin, (%5, } = 0.
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The treatment of S, requires the variance inequality

(5.35) [Var(X,) — Var(Z,)| < Var(X, — Z,) + 2(Var(X, — Z,)Var(Z,)) ">,

A suitable choice of X,, and Z,, together with (5.2) and (5.34) now proves

n
(5.36) lim supZVar(Xn,ill_Tn,T"](Xn,i)) = o2

n — oo .
i=1

and the same for liminf, _, ., which proves S, —p S in view of the validity of
the conditions (5.2)—(5.5).
The independence proof uses the following device. Let

(5.37) Y, = (R, S8,,T,)

be copies of Y, such that R,, S, and T, are independent. Due to the Cramér—
Wold device it is enough to show that the limit distributions of \Y,] and )\YT
coincide for each A = (A1, \g,)s) since obviousl A\Y] —p AYT. For these
reasons, define

(6.38) Y, = MXn,il(coo, —m)(Xn, )+ 22 Xs, i L r 7, )( X, )+ X3X0, i 1, 00)( X, i)
whose partial sum up to a shift coincides with \Y,T. By (5.34)—(5.36) one gets

(5.39) hm lim sup ZVar (Yn,il—s,6/(¥n, 1)) =

n— oo
=1

and the same statement for liminf, _, .,. On the other hand, we can calculate
the Lévy measure 7, at all continuity points x < 0 as

(5.40) Y P, <x)—=n({y: My <x y<O0}u{y: A3y <x,y>0})
’ i=1

= M ((—oo,x])

and similarly for x > 0. Thus 7, coincides with the Lévy measure of \YT. More-
over, the shift, which ensures convergence of \Y]], is only based on expectations
[cf. Gnedenko and Kolmogorov (1968), page 117] and it is the same for \Y, and
MY, All together we see that Y, converges in distribution to the same limit

distribution as AY]. O

THE INDEPENDENCE PROOF FOR THEOREM 2.1. Without restriction we may
assume pq #0. Otherwise A* or A~ vanish. Since we may subtract middle parts,
it suffices to give the proof for one pair of sequences &, ry.

Throughout let 7,,R, and T, be as in Lemma 5.3. Choose r, = k, — o0,k,
< n/2, such that

(5.41) By — 0. -



1786 A. JANSSEN

Thus it remains to prove
(5.42) R,—-L,(k,)—p0 and T, — W,(k,)—pO0.

We restrict our attention to R,. Consider r.v’s }_(,,, i =X i1 oo, —7,)( Xy, ), their
order statistics Xj., 1(— oo,—7,)(Xi:n) and the related upper sum W.(-) of }_C,,, ;- The
first part of the proof of Theorem 2.1 yields

(5.43) W.(n —k,) —pO.

Consequently,

kn
(5.49)  Ro— Y {Xinl oo, o (Xin) — E(Xinlcr, —ry(Xin) } =2 0.

i=1
The same type of argument shows

kn
(5.45) S~ {Zinlin, 00Xin) = E(Xinliy, 00 Xin)) } =2 0.

i=1

In addition, (5.41) yields

(5.46) <2k,7, — 0.

kn
S {Xin o Kin) = E(XinLr,, 7)(Ki) }
i=1

The statements (5.44)—(5.46) prove the first assertion of (5.42). The proof of the
second claim is similar. Thus the proof of Theorem 2.1 is complete. O

PROOF OF THEOREM 2.2. Let R,,S, and T}, denote the r.v.s of Lemma 5.3,
where 7, may fulfill condition (5.32). Introduce

(5.47) 6n := G, Y(k,) where §, — 0.

By (2.27) we have §, < 0 whenever n is large enough. The proof is based on
assertions (I) and (II), which are proved below:
n
D &= {Xnilcoo,00n) — E(Xnilor,6)(Xn,)) } =R =2 0,
i=1
kn
I Y (Xin — Er,n(Xin)

i=1
- Z {Xn, i 1(—00, 6,,)(Xn, i) - E(Xn, i]-(—‘r, 6n)(Xn, 1)) } —p 0.
i=1
The claim Calll then be deduced as follows. Combining (I) and (II), we arrive at

(5.48) Ln(kw) — Ry —p 0.
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An analogous consideration for upper extremes yields

(5.49) Wa(rn) = Tn —p 0.

The middle part can be dealt with by the following arguments. Notice that
(5.50) L,(m,)+ M,(my,,s,)+ Wy(sp,) =R, +S, +T),.

Next we may substitute k&, by m, and r, by s,. Then (5.48)—-(5.50) yield
(5.51) S, —M,(m,,s,) —p 0.

Thus Lemma 5.3 implies the result. It remains to prove (I) and (II).

(I) Let 6 < 0. Consider n large enough such that -7 < §, < 7, 7, < 7 and
8§ < —7n A 6, hold. Next define B, = [-7,,6,) if -7, < 8, and B, = [6,, —74)
otherwise. Then E(¢,) = 0 and

Var(¢,) = Var ( ZXn,AB”(Xn,i)) < S E(X2 15,(X, )

i=1 i=1

(5.52)
</ (62 A 62) dGo(x)
(—00,— 71 V 6,)

hold. By (2.29) and (5.32) the right-hand side of (5.52) converges to zero if we

take first lim sup, _, ., and then § | O.
(II) Throughout we may assume —7 < 6, < 0. Due to Lemma 5.4 it is

transparent that

553)  Zni= > {Xnilcoos)Xni) — B(Xnilir,5)(Xn) } oD R

i=1

with L(R) = u. Similarly to (5.42) one gets from Theorem 2.1,

(5.54) Z {‘in 1(—00, 6,.)(}{1’:71) - E(Xln 1(—7', 6,,)(Xi:n)) } —p0

i=ky,+1

and, consequently,

kn
(655 3 {Xinloo,60(Xin) ~ E(Xinlor,5,)Xin)) } = Zn =2 0.
i=1

Thus it remains to check
kn

(5.56) Z {Xi:n 1[6,” oo)(Xi:n) - E()(i:n]-[&,.,r)(}{i:n)) } —p 0.
i=1

This assertion will be rewritten in an equivalent form. Consider r.v’s Y, =
Y160 L(—o0, 6,)(Xn, ). Notice that

(5.57) Var(Y,) — 0
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by assumption (2.29) since

(5.58) Var(Y,) = 82Ga(6,—) < /( (02222 dG,

foreach § < 6n. Lemma A of the Appendix applied to ¢(x) = 6,1(- o, 5,)(x) yields
(5.59) Var(Y,) — 0,

where f'n = Zf'; 160100, 5,)(Xi:n). If we now add 17,, — E( 17,,), then statement
(5.56) is equivalent to

ky
(5.60) > {0V Xin — (60 V Xin s, (n V Xin) } —p 0.
i=1
Four different steps prove the validity of (5.60):
Step 1. The expectations of (5.60) can be treated partially by proving

kn
(5.61) an =Y E(6, VXin AO) — Spkn — 0.
i=1
Observe that
kn
(5.62) 0 <an < [6a] Y PXip > 6,) = by.
i=1

For each i < %k, and ¢ = G,(8,) + 1 — i we can apply Bernstein’s inequality (5.1),
which shows

n
P()(i:n > 6n) = P(Z 1(6,,,00)(Xn,j) >n+1-— l)

Jj=1

D 15,,00(Xn, ) — (1 — Ga(8,))
j=1

(5.63) < P(

> Gp(6p)+1 - i)

(Ga(8,) +1—1i)?
< 2exp (_ 8G.(6,)/3 )’

since the variances ¥.7_, 02 of (5.1) are bounded above by G,(6,). The required
convergence of b, (5.62) is first established under the additional assumption

(5.64) G.(6,) =k,.
For 2 := 4k, /3 we get
k ,
n kn 1—14)2 kn +1
> exp (—(—L——‘)—> < V217, / dN(k, +1,57)
i=1 0

(5.65) 252

< V27r7,.
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Since 62G,(6,—) — 0 holds by (5.58), the assumption (2.29) implies 82k, — 0.
Consequently, b, (5.62) converges to zero.

If (5.64) is violated, the proof of (5.61) can be modified as follows. Define
Pn =&y —Gr(6,-)) (G,,gc‘i,,)—G,,(c‘i,,—))’1 and let Z; denote i.i.d. B(1, p,) binomial

r.v’s. Define new r.v’s X, ; by
X, i=Xn ifX, ;%6

Otherwise set X, ; = &, if Z; = 1 and X, ; = 0if Z; = 0. Thus X, ; > X,, ; holds
and

(5.66) P(Xi, > 6,) < P(Xip > 60).
The related d.f’s of 5(,,,; satisfy
(5.67) Fy,1(60) = F, i(60—) + Du(Fn,i(60) — Fr (60 -)),

which implies E}n(én) = k,,. Evidently, assumption (2.29) remains true for én.
Thus the previous proof gives the result for X;.,. Altogether, we see that b, —s 0

and the proof of Step 1 is finished.
Step 2. The proof of statement (5.60) depends on a second inequality for
expectations. We would like to prove

kn
(5.68) > E(Xinlio, n(Xin)) < TEnP(Xp,n > 0) — 0.
i=1
Inequality (5.63) together with x exp(—x) < 1 for x > 0 yields
8G,(0)/3
(Gu(0) + 1 — )’
By our assumptions (2.27) and (2.28) we obtain k,/G,(0) — 0. Thus (5.69)

implies condition (5.68).
Step 3. Suppose that &, — co. Similarly to (5.63) and (5.69), we have

(5.69) EnP(Xp,m > 0) < 2k,

(5.70) P(Xiyn > 62) < o (1+1‘k")_2_>o
‘ B 72 G U GaGy)
since G(6,) > k.

Step 4. Now we are in the position to put everything together and to give the
proof of (5.60). Two cases must be considered. If ¢ = 0, then assumption (2.24)
implies that &, does not converge to infinity. Suppose that %, remains bounded
along a subsequence. Then (5.60) holds along that subsequence since 1; = 0
and X;., —p O for each i.

Therefore we may assume %,; — co. Then Step 3 implies

kn
(5.71) D 60V Xin — knbn —p 0.
i=1 ’
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If we combine (5.61), (5.68) and (5.71) we obtain the desired statement (5.60).
This completes the proof of assertion (II). O

PROOF OF PROPOSITION 2.1. Note that

{ zn: Xim Sx}\{ Zn:Xn,i Sx} C {Xn+1—m:n > O}-

i=n+2—-m i=1

As a conclusion of Bernstein’s inequality we have, as in (5.63),
n
> 10,00(Xn, )~ Pn

>m —pn>
Jj=1

B (m _‘pn)2
§2exp< 2Z?=1(pm‘—P3i)+2(m_p”)/3)‘ o

PROOF OF PROPOSITION 2.2. Consider rowwise independent r.v’s X,, ; with
compound Poisson distribution given by the Lévy measure n/n and character-
istic function (2.42). For each n the sum is equal in distribution to u. On the
other hand,

P(Xn+1—m:n >0) = P(

m—1 m-—1
> Xnvioin— Y $2(S)
i=1 i=1

in distribution by (2.13). Notice that p, = n(i — exp(—\A/n)) — X implies the
result. O

ProoOF oF THEOREM 3.1. Suppose that &, fulfills the conditions of Theorem
3.1. Repeating the proof of (5.20)—(5.24) we can find a sequence m, — oo, m,
< k,, with

(5.72) d(Ln(my), A7) -0

if m,, :=j Ak, is chosen in connection with (5.24). To prove (3.2) it is sufficient
to check that

kn
(5.73) > Xin—pO.

i=my,+1

We have 6, — 0 for 6, given in (5.47). Again Bernstein’s inequality yields P(X}, .,
> 6,) — 0 as in (5.63) and (5.70). Check also that assumption (3.4) implies
6n 1{6»}(Xi:n) —p 0 since

kn .
i=mp+1

6,Gr(6p—) — 0 and .k,6,— 0
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as n — oo. Thus (5.73) is equivalent to

kn
(5.74) & = Z )(i:n]-(—oo, 6,,)()(1‘:71) —p 0.

i=mp+1

Condition (5.74) is now proved via Lemma B of the Appendix. Define

(5.75) (6) = Z )(znllé 6,.)(in)

i=mp+1

and &, =: 5(6) + §(‘5) For each § < 0 we have §§‘f)n —p 0 since P(X,,,.n < 6) — 0

[ef. (2.13)]. Moreover -
E(60)) < | #ldG
[8, 6r)

y» On

and condition (3.4) implies

hm hm supE(Ig(‘” ) 0.

Thus Lemma B proves (5.74). O

APPENDIX

This Appendix serves to show that order statistics are nonnegatively corre-
lated. Lemma A is our main technical tool. That result was earlier proved by
Bickel (1967) for i.i.d. random variables with densities.

LEMMA A. Let Xi,...,X, denote independent random variables and let
»: R — R be nonincreasing or nondecreasing such that |p(X;)| is square inte-
grable for each i = 1,...,n. Then the order statistics have nonnegative
covariance.

A proof is given by Hajek [(1968), Lemma 3.1]

Throughout, some facts concerning the Lévy metric are recalled. Let X, Y
denote real r.v’s with distribution functions Fx and Fy. The topology of conver-
gence in distribution is given by the Lévy metric

(A1) d(X,Y):=inf{e > 0: Fy(x — ) — ¢ < Fx(x) < Fy(x + ¢) + ¢ for all x € R}
Notice that the condition P(|Z| > ¢) < ¢ implies
(A2) dX+Z,Y) <dX,Y)+e.

Let || - ||2 denote the Lg-norm.
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LEMMA B. (a) Consider sequences of rv.s Y, = X® + Z®. Assume that for
fixed k € N,

(A3) X 5 X®
holds as n — oo and

(A4) XP 55X ask— oo
Suppose also that for each € > 0,

(A5) lim lim supP(|Z£,k)| > 5) =0.

k—00 n—oo

Then Y, —p X follows. If (A3) and (A4) converge in probability, then also Y, —p

X holds.
(b) If (A3) and (A4) converge in Ly, then ||Y, — X|ls — 0 provided (A5) is
substituted by condition

(A6) lim limsup ||Z%||, = 0.
k>0 nooo

Proor. The distributional convergence part is Theorem 4.2 of Billingsley
(1968). The other assertions are quite obvious and their proofs are similar. O
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