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SHARP INEQUALITIES FOR THE DISTRIBUTION OF A
STOCHASTIC INTEGRAL IN WHICH THE INTEGRATOR
IS A BOUNDED SUBMARTINGALE

By WiLLIAM HAMMACK
University of Illinois

We obtain a sharp probability bound on the maximal function of a
strong subordinate of a bounded submartingale. An analogous inequality
also holds for stochastic integrals in which the integrator is a bounded
submartingale and the integrand is a bounded predictable process.

1. Introduction. Let (0,4, P) be a complete probability space with a
right-continuous filtration (%)), , , where %, contains all P-null sets. Suppose
X is an adapted right-continuous real-valued submartingale with left limits
and H is a predictable process with values in the closed unit ball of R?,
where v is a positive integer. We may then define an adapted right-continu-
ous process Y with left limits by

Y, = H,X, + [(0 t]Hs dX,.

Suppose that [|X]l. <1, where [|X|l. = sup,, ol X,ll.. What can be said
about the size of Y ? In particular, can we say anything about the distribution
of its maximal function Y* = sup,, (|Y,? Here, for y, £k € R”, we will denote
the Euclidean norm of y by |y| and the inner product of ¥ and k& by y - k.

It is clear that where X and H start will play a significant role in the
distribution of Y *: for example, on any probability space (Q2,.7, P), for all
w € Q let

-1, 0<t<1, -1, t=0,
Xt(“’)={1, 1<t Ht(“’)={1, t>0,

thus

_J1, 0<t<1,
Yi(w) = {3, 1<t¢,
and P(Y* > 8) = 1. However, as we shall see, if X, =0, then, for any H
satisfying the initial hypotheses, P(Y* > 3) < 5/9. Thus for each A > 0, we
would like to find a function U,:[ —1,1] X R” — [0, 1] such that for any H as
above,

(1.1) P(Y* > 1) < EU(X,,Y,)
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and the U, is a sharp estimate in the sense that given any A > 0, x € [—1,1]
and y € R” with |y| <|x|, then for all B < U,(x, y) there exist H and X as
above with X, = x, X H, = y and
(1.2) P(Y*=A) > B.

As a specific result, we shall show that for any X and Y as above, if A > 4,
then
(1.3) P(Y*=)) < ye 7/4,
where y = (8 + V2)e/12, and this inequality is sharp. In contrast, if in
addition we require X to be a martingale, it is known [Theorem 8.1 of
Burkholder (1991)] that for A > 2, P(Y* > A) < ae”?, where a = e?/4.

We shall make heavy use of the techniques developed by Burkholder
(1991), who used them for the martingale case. The first step, after describing
the U,, is to establish an inequality similar to (1.1) but more general for

discrete-time submartingales. We will then give its implications for stochastic
integrals.

2. The majorants U, . For A > 4, define the following subsets of
[—1,1] XR": ,
A ={(x,y):lyl=A—-1+x},
B, ={(x,y):A—-3—-x<|yl<A—-1+x},
C,={(x,y):1—x<l|yl<A—-8—-x},
D, ={(x,y):0<|yl<1-x},
and let U,:[-1,1] X R* - R be

1, lf(x,y)EA/\’
. 2-2x " B
—_— IS
1+A—x—lyl’ if (x,y) €B,,
={(l1-x F+ax+lyl—A
Ui, ) exp 4 , if(x,y) € C,,
2 4
2 2+2x—|y|
i ——V1+x + |yl exp(1+ 4) if (x,y) € D,.

While for the case 0 < A < 4, define
Ay ={(x,y):lyl=A—-1+2},
B, ={(x,y):1—-x<l|yl<A—1+x},
C,={(x,9)A—-3-x<l|yl<l—=xand|yl<A—1+x},
D, ={(x,y):0<|yl<A—-38—-x},.
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and define U, by

1 if(x,y)EA)‘,
2—2x " B
1+r—x—Iyl’ if (,7) € By,
(A=1+x—|yD(A—-1+x+|yl) . 4
U(x,y)={1- v , if(x,y) €C,,
20 —4\%(1 2+ 2x — |yl
1- -+ ——————=y/1+x+ ,
( A )(3 3(r —2)? = +lyl
if (x,y) € D,.

Note in the case A < 2, D, = . Also for each A > 0, U, maps into [0, 1] and is
continuous on [ —1, 1] X R” except at those points where x = 1 and |y| = A.
Further for |y| > A, U(x, y) = 1.

Note also that for fixed (x,y) € [—1,1] X R”, the map A —» U(x, y) is
left-continuous on (0,) [this can be seen by considering first the case
(1 — x) > |y| and then considering the case (1 — x) < |y| first for A > 4 and
then for A < 4].

LEMMA 2.1. For A > 0, let ¢,:[—1,1] X R* - R and §,:[-1,1] X R* > R”
be defined to be the derivatives of U, with respect to x and y, respectively, on
the interiors of A,, B,, C, and D, extended continuously to the whole of these
sets. Then whenever x and x + h are in [—1,1], y and k are in R” and
|k| < |hl, we have that

(2.1) (x,y)l < —(x,y),
(2'2) U)‘(x+h»y+k)SUA(x’y)+¢A(x’y)h+¢A(x’y)'k’
and further, with S, = {(x,y) € [-1,1] X R”:|y| # A — 1 + x},

(2.3) o, and i, are continuous on S,.

Proor. For A > 4, we have that

0, if(x,y) €A,
or(x,y) =(-1,0),
2 — 2]yl .
_(1+A—x—|yl)2’ if (x,y) € B,,
o, y) = 3+x 3+x+lyl—2A -
, _( 5 )exp(——4—), if(x,y) € Cy,
2+ 2x + |yl A\
: _(4\/_2—\/1+x+|y| )exp(l—z), if(x,y) € D,\ (—-1,0),
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W(x,y) =
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2 —-2x
(L+Ar—x—ly)

!
59’

4

where y' = y/|yl
While for 0 < A < 4, we have that

e(x,y) =

W(x,y) =

(l—x) (3+x'+|y|—
3 exp| ———M88

1
( T )e"p(l -

)y’,

A

4

B

if (x,5) €A,
or (lxl,y) = (1,0),
if(x,y) € B,,

if (x,y) € C,\ (1,0)

if(x,y) € D,\ (—1,0)

0, if(x,y) €A,or(x,y) =(—-1,0),
21 — 2]yl )

_(1+,\—x—|yl)2’ if (x,y) € B,,

20+ 2x -2 )

SV if(x,y) € C,,

(4+4x+20yhVA-2

_ )\2‘/1+x+|y| if (x,y) € D\ (-1,0)

0, if (x,y) €A, or (Ixl, ) = (1,0),
2 - 2x .

Grase oy T SBamd ) » (10,

2y ]

YR if (x,y) € C,,

2yVA — 2 .

wirery (@) eDand(xy) #(~1.0).

In all cases, (2.1) and (2.3) are satisfied. To show (2.2), let x, y, h and k&
satisfy the assumptions in the lemma and fix A > 0. Since |k| < |A|, we may
assume & # 0. Suppose for some t € R, x + th = 1 and |y + tk| = A. Then, if
d€Rand |x + (¢ + 8)h| < 1, it follows that 64 < 0 and

ly + (¢t + 8)k|l = |y + tk| — |6k|

>|ly+tkl+8h=A—-1+x+(t+d)h;

hence (x + (¢t + 8)h,y + (¢ + 8)k) € A,. In particular, both (x, y) and (x +
h,y + k) € A, and (2.2) is satisfied. Thus we will assume in the following
that if x + th = 1 for some ¢, then |y + tk| # A.
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Now suppose (x, y) € S,. Define G on {¢ € R:|x + th| < 1} by
G(t) =U(x+th,y +tk).

Since we are assuming (x + th,|y + tk]) # (1, A) for all ¢, we have that G is
continuous, G'(0") exists and (2.2) is equivalent to G(1) < G(0) + G'(0™).
Thus it suffices to show that G is concave. Since Uj(x, y) < 1, with equality if
and only if (x, y) € A,, it suffices by the continuity of G to show that G is
concave on the set of ¢ such that |y + tk| < A — 1 + x + th. Because G’ is
continuous for such t, it suffices to show that G”"(¢,) < 0 for those ¢, having a
neighborhood U in R such that the function ¢ — (x + ¢h, y + tk) maps U into
exactly one of B,, C, and D,. After a translation, we may assume ¢, = 0 and
it suffices to show G”(0) < 0.
If (x, y) € B,, then for all A > 0,

G"(0) = 1+r—x-— Iyl)3 (G +Gy),

G _2h2(1 l ! (A ! X, ! l.}l

(y-k)* - |y|2|k|2)

Go=(1-x)(A+1—-x—1yl) |y|3

Thus to show G”(0) < 0, it suffices to show G; + G, > 0. Let 6 =y’ -k /h, so
|6] < 1. By the definition of B,, G; > 0 and G, < 0. After we divide through
by A% and note that |y| > 1 — x, it suffices for us to show that

21+ 6)(A—0+x0—1ly) —(A+1—-x—|yND(1—-6%) >0
or, equivalently, that
(1+6)* (A —1+x—ly)) =0,

an inequality which follows from |y| < A — 1 + x on B,.
For the case A > 4 and (x, y) € C,, we have that

4 32 ’

G"(0) = —exp(
where

G—h21+'k7+ 'k+'k)

1= y 3 xr -y 3 Xy Pk

(y &) —lyl|kl?
Iyl

As in the previous case, it suffices to show G; + G, = 0. By using the same

. G2=4(1—x)(
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steps as before, we only need to show that
(1+6)(7T—x—060+=x60)—4(1-6%)=0.

Since the left side simplifies to (1 + )%(3 + x), this is clear.
If A <4 and (x, y) € C,, then

, —2h? L&
FO== "% )

which is nonpositive from our assumptions on 4 and k.
Finally for (x, y) € D, (so that A > 2),

G, + G,
(A +x+1y)*2)

G"(O) = _')',\(
where
k k
G, = h2(1 +y' 7{)(2|y| + (1 -y ;)(2 +2x+ Iyl)),

(y-k)" = Iyl’IEI®
lyl? )
~ {exp(l - A/4)/(8V2), forA> 4,
Y la—2 /A%, otherwise.
Thus ¥, > 0 and, using the methods of the previous cases, it suffices to show
that
1+0)2lyl+ (1—0)(2+2x+1y))) —2(1 +x+|y)(1 - 62) = 0.

However, note that the left side simplifies to (1 + 6)2|y|.
We have now shown (2.2) holds for (x, y) € S,. For (x,y) &€ S,,y + 0, we
have that (x, y) € A, and for all § > 0,(x,(1 + 8)y) € A, N S,; hence,

U(x+h,(1+8)y+k)<U(x,(1+38)y)

(recall ¢, and ¢, are both zero on A,). By the continuity of U,, letting § to to
zero gives (2.2). Finally if (x,0) € S,, let y, be any nonzero element of R”.
Then for all § > 0,(x, 8y,) € A, N S,; hence U(x + h, 8y, + k) < U(x, 8y,).
Letting 8 go to zero gives (2.2) and completes the proof. 0O

G, =2|yl(1 +x + Iyl)(

3. Discrete submartingales. Let f=(f,),., be a real-valued sub-
martingale relative to a filtration (¥,),., on a probability space (Q,%, P)
with difference sequence (d,), ., and let g = (g,),,. o be a R*-valued process
adapted to (%,), ., with difference sequence (e,),. o, Where v is a positive
integer. We say that g is conditionally differentially subordinate to f if
E(e,|7,_ )| < [E(d,|#,_))lfor all n > 1 and g is differentially subordinate to
f if le,| <|d,|. If g is both conditionally differentially subordinate to f and,
for n > 0, differentially subordinate to f, we say g is strongly subordinate to
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f. For the next theorem we will require g to be differentially subordinate to f
for n > 1.

THEOREM 3.1. If fis a submartingale relative to a filtration (%,), . , such
that ||fll- < 1 and g is an adapted process that is conditionally differentially
subordinate and, for n > 1, differentially subordinate to f, then for all A > 0,

(3.1) P(g* = A) <EU\(fo, 8)>
where g* = sup,,, lg,| and || fll. = sup, ol f, |l

Proor. Fix A > 0. It suffices to show that

(3-2) P(lg,l = A) <EU(f), &)

since if (3.2) holds for all A > 0, then for all 0 < ¢ < A, with 7= inf{n >
0:lg,l = A — &}, 7 is a stopping time, f" = (f,,,),>0 is a submartingale,
Iflle < 1and g" = (g, » )nso is conditionally differentially subordinate and,
for n > 1, differentially subordinate to f”. We then have

P(suplg,l= A~ ) = P(g.0al 2 A = £) < EU_(fo, &0)-

m=<n

Letting n — o then implies P(g* > A) < EU,_,(f,, &,)- (3.1) now follows by
the left-continuity of U, as a function of A.

Since U(x,y) =1 for |y|> A and U, > 0 we have that P(lg,l> ) <
EU\(f,, g,). Thus to prove (3.2), it suffices to show EU\(f;, g;) <
EU\(f;_1,8;-1) holds for 1 <j < n.

Let ¢, and ¢, be as in Lemma 2.1. Since, by assumption, le;| < |d;l, (2.2)
implies

Ui(f &) < Ui(fj-1,8-1) + & (fi—1, 85-1)d; + W(fi-1,85-1) "¢;-

Assuming for now the integrability of ¢\(f;_1,8;-1)d; and §(f;_1,8,_1) "€,
taking the conditional expectations relative to #,_; of both sides of (3.3) gives

E(U(f; g)\%-1) < Ul(fi-1,8-1)
+ ‘P).‘(f;'_p gj—l)E(dng';'—l) +¢A(f;'—1, gj—l) 'E(ejl'%q)-

Since f is a submartingale, E(d;|%,_,) > 0. It then follows from (2.1) and the
assumption that g is conditionally differentially subordinate to f that

l(fi-15 85-1) "E(ejlF_1)l < — o (fi-1, 8- 1)E(d)1F-1)-
Hence
o(fi-1, 8- 1)E(dj\F 1) + (fi-1, 8j-1) ‘E(ejlF-1) < 0

and so
Hi

E(U).(f}’ gj)l'?j—l) < U(fj-1,8j-1)-
Taking expectations of both sides then gives EU\(f;, g;) < EU(f;_1, 8;-1)-
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Thus it remains to show the integrability of ¢(f;_;,g,_,)d; and
(fi_1,8j-1) - e;. Since || < — ¢, and we are assuming Iejf <|djl, it suffices
to show that ¢,(f;_;, g;_,)d, is integrable. We will do this for A > 4, the case
A < 4 being essentially the same.

For (x, y) ¢ B, and for (x, y) satisfying |yl < A — 1,|¢,| is bounded by a
constant depending only on A. Since || fll. < 1 implies |d;| < 2 a.s., it suffices
to Sh(})W e(fj_1, 8j-1)d; is integrable on the set {(f;_;,g;,_1) € B,,lg;_1/ =
A =1L

Fix N> landlet Ry ={(x,y) € B;: A — 21"V <|y| < A — 27V}, Then for
(x’ y) € RN7

< 2N+1

le(x, ¥ <le(1, y)l =

Since (x, y) € B, and |y| > A — 217" together imply that x > 1 — 217V, we
have that (f;_,, g;_,) € Ry implies that d; < 2'~" a.s. Further, since fis a
submartingale,

flRN(ﬂ—l’gj—l)dj = 0.
Hence
flRN(fj—l, gj-1)ld;l < szRN (fi-1,8-1)d; -
Thus
E(IIRN(f;‘—1,gj—1)¢A(f}-1’gj—1)d jl) < 2N+2E(1RN(f}—1’gj—1)d}L)
< 8P((fi-1,8;-1) € Ry).
Since Uy_ Ry = {(x, y) € B,: |yl > A — 1}, it follows that
flleuyazA—n(fj—vgj—l)% (fi-1,8;-1)d,1 < 8,

thus finishing the proof. O

The following corollary will be useful in extending Theorem 3.1 to stochas-
tic integrals.

COROLLARY 3.1. Under the assumption of Theorem 3.1, if in addition
leol < |dyl, so that g is strongly subordinate to f, then
8+v2

sup AP(g* > \) < .
x>0 3

PROOF. Since (8 + V2)/3 > 3, it suffices to consider A > 3. It follows from
the partial derivative of U, with respect to x being nonpositive for all A, that
for all y, U(x, y) < U(—-1, y). By considering U,(—1, y), we see that for
lyl < 1,U(—1, y) is maximized whenever |y| = 1. Let y, € R"” satisfy |y,| = 1.
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Then
2 + 1 1 A if A >4
-+ = - — >
37 62 eXp( 4)’ ! ’
l]A(_l’yO)= 2/\_4 2 1 1
1- _—— if3 < A<4.
( A )(3 3(A—2)3/2)’ Ha<as=s

As a function of A, AU,(—1, y,) is increasing on the interval [3, 4), decreasing
on the interval [4,®) and continuous on [3, ). Hence

8+ V2

AP(g* =2 M) < AEU\(fo,80) < AU(—1,5,) <4U,(—1,y,) = 3 o

4. Inequalities for stochastic integrals.

THEOREM 4.1. Let (0, %, P) be a complete probability space with a right-
continuous filtration (%)), o, where F, contains all P-null sets. Suppose X is
an adapted right-continuous submartingale with left limits such that || X|l. < |
and H is a predictable process with values in the closed unit ball of R*. Then
with

Y, =H,X, + H_dX,,
(0,¢]

we have that, for A > 0,
(4.1) P(Y* > 1) <EU(X,,Y,).

PrROOF. First consider Y of the form

n
(4.2) Y,=H X, + > ak[er/\t - X’r]_l/\t] ’
j=1
where a,,...,a, are in the closed unit ball of R* and 0 =7y < 7y < -+ <7,

are stopping times taking only finitely many values, all of them finite. Let ¢
be an upper bound for 7,. Let 7 = inf{s € [0, ¢]:|Y,| = A}. By the right-continu-
ity of X, on {1 < },Y, > A. For j =0, 1,--, n, let fi=X,,,and g; = YTJ,\T.
Since X is bounded we can apply Doob’s optional sampfing theorem to get
that f is a submartingale. Since ||f|l. < 1 and g is strongly subordinate to f
we can apply Theorem 3.1 and get

P(?* > A) =P(g* 2 A) <EU(fy,80) = EU\(X,,Y,).

Thus any Y of the form in (4.2) satisfies (4.1).

In particular with » =1, this and Corollary 3.1 show that X is an
* L*integrator in the sense of Bichteler (1981).

By the additivity of the integral and Theorem 4.1 of Bichteler (1981), there
exist Y" of the form in (4.2) such that P(limsup(Y” —Y)* > 0) =0. It
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follows that for all 0 < & < A, there exists an n such that P(Y" — Y)* > &)
< £ and since the Y" satisfy (4.1), we have

P(Y*2A) <P((Y")*>A—s)+e
=< El]/\—s(XO,YO) + e.

Letting £ go to zero now gives (4.1) by the left-continuity of U, as a function
of A. O

REMARKS. As in the proof of Corollary 3.1, if y € R” satisfies |y| = 1, then
by Theorem 4.1, for A > 4 we have that

P(Y* > )\) < EU(X,,Y,) < Uy(-1,y) = ye */%,

where y = (8 + Y2)e/12. This gives inequality (1.3). The sharpness will
follow from Theorem 5.1 with x, = —1 and y, = 1.

5. Sharpness of the U,. We will now show that the inequality in
Theorem 3.1 is sharp even for the case in which g is assumed to be a
+ 1-transform of the submartingale f. This will yield the sharpness of the
inequality in Theorem 5.1. Since U, as a function of y depends only on |y|, we
may assume v = 1, that is, we will consider U, as a function from [ -1, 1] X R
into [0, 1].

THEOREM 5.1. Let A >0 and (x4, y,) €[—1,1] X [0,2). Then for all
B < U(x,, ¥,), there exist constants &, &, ..., &, with ¢;= +1 for all j and
a probability space (Q,F, P) having a family of random variables
d,,d,,...,d, such that with fy=x,,80=y, and, for 1 <m <n, fo =
fno1+d, and g, =g, _1+ &,d,,, we have the following:

(f1n)o<m <n i8 @ submartingale relative to the filtration (%), _; >
(5.1) where , is the o-algebra generated by (fo> fir--s 1y)
andfor 0 <m < n,|f,ll. <1;

(5.2) P(g*= 1) > B.

Proor. Fix A > 0.If x, = 1, let (0, 7, P) be any probability space and let
fo=1, g0 =y, Then P(g, > A) = U(x,, y,). Thus we may assume x, < 1.

For (x4, y,) € A, U B,, we can actually achieve U,(x,, ¥,), for example, let
(Q,Z, P) be the unit interval [0, 1] with Lebesgue measure. For (x,, yo) € 4,,
let d, =1 — x4, and &; = 1. Then (5.1) is satisfied and g, =y, + 1 — %o = A;
hence P(g* > A) = 1 = U(x,, ¥¢)-

For (x,, y,) € B,, we first go to the line y = A — 1 + x, and then use the
method used above for A,, that is, let d; = (1 — x¢)1, ,, — al;, 1 Where a
satisfies y, + a = A — 1 +x, — @ and y = a/(1 — x, + @). Note that Ed, =
0. Since (x,, ¥,) € B,, we have that a > 0 and x, — a > —1. Now let &, =
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-1,dy =1 -x,+ a1, and &, =1 Then f,=1 and g, = (y, +x, —
1)1[0 »n T Yo+ 2a+1—x0)1, . By the definition of &, y, + 2a = A — 1 +
xo; hence, P(g, = A) = 1 — y = U,(x,, ¥,) and (5.1) and (5 2) are satisfied.

Turning to the case (x,, ¥,) € C,, we first consider the case A > 4. Since as
N goes to »,(1 — (A — 3 —xy — y,)J4N)" 1)V converges to exp((8 + x, + y, —
A)/4), we can find an N > A such that

1—x, 1 A—3—x,—y0\"
2 - 4N

Let (Q, %, P) be a probability space on which are defined independent identi-
cally distributed random variables s,, s5,..., sy and a random variable q,
independent of the (s;), such that

> B.

+ x, 1-—x,
2 ’ P(q=_x0_1)= 2

and, with a = (A =3 —x, —y,)/2N)and y =2 — a,

Y o

E, P(sl=7)=—2_

(Note that the inequality N > A implies y > 0.) Let d, = q, &, = —1. Then
P(fi=-1,81=1+x,+y)) +P(fi=1,8,=yy+%x,— 1) = 1.

For j> 1, let dy; = aly  s1pdajr =8 L, ﬂ), g9, =1 and &5;,, = -1

Finally let donio = 21(f2N+1#1) and &yy,, = 1. Since g and the (s;) are all

independent and have expectation 0, it follows that the f; form a submartm—

gale. For all j>1,we Q, f(w) €{-1,-1+ a,1}; hence (5.1) is satisfied.

For (5.2) note that by the 1ndependence of the random variables we have
P(gani2=A) 2 P(fons1= —1, 8841 =4 — 2)

ZP(Q= —xo—landforlsjgN,sj= _a)

1—x5\(7\V
=( 2 )(5)

1 —x, A=38—x5—y,\V
=( 2 )(1_ 4N

1
P(g=1-x) =

P(s; = —a) =

> B.

For (x4,y,) €C,, A <4, let (Q,, P) be the unit interval [0,1] with
Lebesgue measure and define y to be (A — 1 + x5 — y,)/A. Let d, = 3(1 —
%o+ ¥0)ljo,yy = 3(A — 1+ x4 — yo)1, ;, and &, = —1. Then Ed, = 0 and on
[0,v), (f1,&,) is on the line y =x — 1, while on [y, 1], it is on the line

y=A-1+x.
Now let dy, =31 - =¥ 5y — 3(A = 1+ x5 + y)l4, o) + (A +
© 1 —xg — yo)1;, ;; and 32 =1, where 6= (A — 1+ x, + y,)/A. Hence
E(dzldl) > 0. On][O 8y), the value of (f,, g,) is (1, 0), while on [ 8y, y) it is on

the line —y = A — 1 + x, and on [y, 1], it is (1, A).



234 W. HAMMACK

Let dy = %)‘1[5%7) and &; = —1. We then have that on the set [dv, 1],
fs =1 and |g4l = A. Since 1 — 8y = Uj(x,, y,), it follows that (5.1) and (5.2)
are satisfied.

Now let (xy, y,) € D,. Then A > 2 since A — 3 > x, + y, > — 1. Note that
D, forms a triangle with vertices at (—1,w + 1), (w,0) and (-1, —(w + 1)),
where w = (A — 3) A 1 and that x, + y, < w. Define h:[x, + y,,w] = R by

1 2+4+2x,—y
0 0‘/1+x0+y0

M S

(for x4 + yo = —1, consider & to be defined on (x, + y,, w]). Then
U(%0,50) = (1 = 2(w))Uy(—-1,w + 1) + h(w)U(w,0).

Since U(-1,w + 1) = U(—1, —(w + 1)) and each of (—1,w + 1), (w,0) and

(=1, —(w + 1)) are in either A, or C,, it suffices to construct a finite length

submartingale f and a +1-transform g, such that the pair (f, g), starts at

(29, ¥o) and ends at the vertices of D, with the probability close to A(w) of

ending at (w, 0).

For the case x, = —1 and y, = 0, this is equivalent to constructing a finite
length nonnegative submartingale f and a +1-transform g, starting at (0, 0)
and ending at the points (0, —1), (0, 1) and (1, 0) such that the probability of
ending at (1, 0) is close to 1/3. This was done in the proof of Theorem 4.1 of
Burkholder (1994) and Example 2 of Burkholder (1993), where it was shown
that for all N > 1, on could construct such a pair (f, y) such that the
probability of ending at (1,0) was 1/3 + 1/6N.

Now suppose (xg,y,) #(—1,0). Fix N> 0 and let 8y =(w —x, —
¥0)/@2N).For1 <j<N+1,let

xJN =%+ ¥y + (27 — 2) 8y
so that x},; = w. By using the ideas of Example 2 of Burkholder (1993), we
can construct a finite length submartingale fV with ||f¥|l. <1 and a +1-
transform of £V, g¥ such that, with pY¥ = P(f3; =z, g3 = 0), we have for
Jj=z1,

(5.3) pY +P(f=0lgfl=1+xY)=1,
1+x,
5.4 V= —,
(5.4) pPi 1+xy+y,
(1 +x}v)2 oy

5.5 N = Ny
(55)  pyis (1+x}V+6N)(1+x}V+26N)p’ 1+ + 28

Note that 4 satisfies the differential equation

h'(x) +- h(x) =

)

2+ 2x 2+ 2x

énd, since we are assuming x, + y, > —1, (A(x + §) — hA(x))/& converges
uniformly to 2'(x) on [x, + y,,w]. It then follows that there exist constants
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ey depending only on N and x, + y, such that limy ., &y =0 and, for
1<j<N,
h(x.) — h(x]) 3+ 3x) + 28y

J

N
20y i (2+2x}V+25N)(1+x}V+23N)h(xf)

1
- < g
2+ 2xY + 48y N

or, equivalently,

2
() - U=5) (=)
(5.6) U 1+ + ey ) (1 +aN +28y) N
5
[ < 28y 8y < 28y ey

Combining (5.5) and (5.6) then gives

(1 + xJN)2
1+xf + 8y )(1+x) +28y)
Since p = A(xd), it follows that

|h(w) — pi 1l < 2N8yey = (w — %o — ¥o) & -

Ih(xﬁl) —pial= (

Thus limy, _,..py,; = h(w), which completes the proof. O
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