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RADIAL PART OF BROWNIAN MOTION
ON A RIEMANNIAN MANIFOLD

BY M. L1a0o AND W. A. ZHENG!

Auburn University and University of California, Irvine

Let p; be the radial part of a Brownian motion in an n-dimensional -
Riemannian manifold M starting at x and let T = T, be the first time ¢
when p, = ¢. We show that E[p2,] = nt — (1/6)S(x)t? + o(£?), as t | 0,
where S(x) is the scalar curvature. The same formula holds for E[p?]
under some boundedness condition on M.

1. Introduction and main results. Suppose that M is an n-dimensional
Riemannian manifold with d(-,-) as the distance function, X; is a Brownian
motion on M starting from x and p; = d(x, X;) is its radial part. See, for
example, [4] for the definition of Riemannian Brownian motion. If M is a Eu-
clidean space, it is well known that E[p?] = nt. On a general M, we would like
to have an expansion of E[p?] in the form n¢+ ct? + o(¢2), where the constant
¢ involves the curvature. However, without any boundedness assumption on
the global geometry of M, E[p?] may not even be finite (It is known that if
the curvature is not bounded from below, Brownian motion may have a finite
explosion time [3].) Therefore, if one is only concerned with the local proper-
ties, it is reasonable to look at E[p? ], where T = T, is the first time that
X; wanders ¢ distance from x and ¢ is a fixed small positive number. We will
obtain

1) E[p}p ]1=nt—S(x)* +o(t?)  (¢40),

where S(x) is the scalar curvature at x and o(#?) may depend on &. Since
the coefficient of 2 is —(1/6)S(x), the formula illustrates the now well known
phenomenon that Brownian motion dissipates faster on a negatively curved
manifold than it does on a positively curved one.

Under some globlal boundedness condition, it is possible to prove

@) E[p}]=nt — §S(x)£* + o(t?),

where ¢ is not involved. We will show that (2) holds under one of the following
three conditions:

1. M is compact.

2. M is a complete Riemannian manifold with nonnegative Ricci curvature.

3. The Ricci curvature of M is bounded from below and the exponential map
exp, at x is a diffeomorphism from 7', M onto M.
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In fact, (2) holds under more general condition. For example, a certain
growth condition in [6], which is more general than the above curvature con-
dition, implies (2), as will be noted.

Our result supplements Gray and Pinsky’s expansion [2] of mean exit time
of Brownian motion from a ball. We also hope that this work will lead us to
discuss the possible definition of curvatures (in the sense of Schwarz distribu-
tion) on a nonsmooth Riemannian manifold [6].

2. A geometric lemma. Let A be the Laplacian on M and let p(y) =
d(y, x). The following purely geometric lemma does not seem to be well known.

LEMMA 1. Let S(x) be the scalar curvature at x. Then

A%p(x) = —%S(x).

PROOF. Let yi,y2,...,y» be normal coordinates about the point x which
is identified with 0 = (0,...,0). Let I‘J}e be the Christoffel symbols. We have

I}i( ¥)yjyr = 0 for 1 < i < n. Here we used the convention to sum over
repeated indices. Note that this holds for any y near O because ¢ — ¢ty is a

geodesic.
Differentiate this expression three times and then set y = 0 to obtain

(3) 9;T5(0) + 9, T5(0) + i T4(0) =0,  1<i,j,kl=<n.

It is well known that I}i(O) = 0 and J;8z(0) = 0, where g is the metric

tensor and g/* is its inverse.
i . .
The curvature tensor R x1 18 given by

R}y = oxLy — aily; + LT, — LT

It follows that

@) (0) = 3xT}5(0) — 31T (0),
(5) 11(0) = 9;T4(0) — 3,T(0).
From (4) + (5) — (3), we obtain

R%,(0) + R};(0) = =8 9,T3(0).
Hence, .
(6) aiT%(0) = —(1/3)[ R4, (0) + R ;(0)].

Since 9; gt = T} gpr + T}, & pjs it follows that

) 919:88(0) = —(1/3)[ RE,(0) + R%,(0) + R},,(0) + R},,(0)].
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v is S = R? i i — _Ri i — _RJ
The scalar curvature is S = Rgpq. Since R}, = —R7, and R}, = —R;,;, we
have

Riy=0 and Rj, =-S.

A direct computation using (7) yields
d;18(0) = (1/3)8,
Ap? = g*d;onp? — g*T}, 0ip® = 28785 — 28" T yi,
A%p?%(0) = 294 948PP(0) — 4 ai(gjkl}‘)e)(O) =2343,87P(0) — 49415 (0).

One can show that d, d,89(0) = —d4948:;(0) (by differentiating g% g,; =
8;j twice) and

9qT%(0) = 3p 9¢8pg(0) — (1/2)3q 3¢ & pp(0).
So, A2p2(0) = —43p dg8pe(0) = —(4/3)S. O

3. Proof of (1). Now let us apply Itd’s formula to p; = p(X;, x):

P2 (Xinr,, x) = Miar, + %[0 T Ap*(Xs,x)ds

t
=Myp, +1 [0 Itser1Ap2(Xonr,, x) ds,
where M; is a martingale. So
® E[pX(Xinr,,x)] = LE [ f Iior,1Ap (XSAT,,x>ds]

By Lemma 1,
A?p*(X,, x) = —58(x) + O(p(Xs, x))-
Also by Itd’s formula,

. sAnT,
©®  BLap(Xoum,x))= 20+ 3B{ [ [-45(0)+ 06 (X, )] dul.

We can write
It ApY(Xonr,, %) = Ap* (X1, %) — I1eor 180 (X 1, X).
So from (8) and (9),
E[p*(Xinr,,%)]

(10) _ %{ [ BLA (Ko 2)1ds — E((t~ ¢ T8>Ap2(xn,x>>}

= nt— —S(x)E[/ (AT )ds] + Ry,
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where the remainder R; is given by
t ps
R =f0 fo E[O(p(X 4, 2)); u < T,]duds — SE[(t — t A T.)ApA(Xr,, %)),

Since E[O(p(X,,x)); u < T;] — 0 as u — 0, the first term of R; is o(¢2).
Let us estimate the second term of R;. From Stroock [5] or [6], there is a
constant C > 0 such that when ¢ and ¢ are small enough,

2
(11 P[T, < t]= P[sup p(Xs,x) > 6] < Cexp{——},
s<t

&
Ct
which is o(#2) for fixed . Since

E[t—tAT,]<tP(T, <t)=0(2) (¢]0),

we have |R;| = o(¢%). Moreover,
E[fot(m Ts)ds] = (1/2)2P(t < T;) + E[¢T, — (1/2)T% T, < ¢]
= (1/2)t* + E[tT? — (1/2)(T% + £?); T, < t]

=(1/2)2 +o(t?) (¢ {0).

Combining with (10), we have proved (1). O

4. Proof of (2). Let us first assume that M is compact. Then p? is
bounded. We have

E[p%(X:,x)] = E[p*(Xin1,,%); t < T 1+ E[p*(X4,x); Ts < t]
= E[p%(Xiar,, %)+ E[—p*(Xirr,, x) + p?( X4, x); T < £]
= E[p*(Xiar,, x)] + o(£?) (¢ 0).

We obtain (2) from (1).

Next we assume that M is a complete Riemannian manifold with nonneg-
ative Ricci curvature. Then it is well known (e.g., see page 173 in [1]) that the
heat kernel p;(x,y) on M satisfies the estimates

(12) ct7?exp(—p(x, )?/ct) < pi(x,y) < C|B(x, %)  exp(—p(x, y)*/Ct),

where ¢t > 0, x, y € M are arbitrary, ¢ and C are some fixed positive constants
and |B(x, d)| is the volume of a ball of radius 6 centered at x. For small ¢,
‘| B(x, t1/2)| &~ ¢1t™?2 for some constant c;.

Using the above heat kernel estimates, one can show (see Lemma I1.1.2 in
[5]) that the inequality (11) holds for all £ > 0 and sufficiently small ¢ > 0.
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Let (p?); = sup,; p?(X, x). We have from (11)

BpD5 To <8l = [ P > u, T, < 1) du

=f0 P(T, <t,T, < t)du:/o P(T\pve < £)du

00 (u vV e)?
< [0 Cexp{—T—} du.

The above expression is essentially C exp(—&2/Ct). The computation for the
compact case can be carried over to prove (2).

Now we assume that the Ricci curvature of M is bounded from below, say by
—(n —1)c, and the exponential map exp, is a diffeomorphism from 7', M onto
M. By Theorem 5.7.2 in [1], the heat kernel on the n-dimensional hyperbolic
space M. of constant negative curvature —c satisfies (12); therefore, (2) holds
on M, by the above proof. By Theorem 5.1, Chapter 6 in [4], p; < p{ holds on
a suitable probability space, where p¢ is the radial component of the Bownian
motion in M.. It follows immediately that (2) holds also on M. O

Finally, we note that by a result in [6], if the volume growth on M is con-
trolled by the exponential of the square distance (Grigor’yan—Karp—Li condi-
tion) and if the bounded geometry radius is bounded below by the negative
exponential of the square distance, then the inequality (11) holds for all £ > 0
and small £ > 0 (see Theorem 3 in [6] for details), which implies (2) as our
proof has shown.
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