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A LIMIT THEOREM FOR A CLASS OF
INTERACTING PARTICLE SYSTEMS

By ITALO SIMONELLI

Temple University

Let S be a countable set and A the collection of all subsets of S. We
consider interacting particle systems (IPS) {n,} on A, with duals {,} and
duality equation P[Inf N Al odd] = P[|52 N ¢| odd], ¢, A c S, A finite.
Under certain conditions we find all the extreme invariant distributions
that arise as limits of translation invariant initial configurations. Specific
systems will be considered. A new property of the annihilating particle
model is then used to prove a limiting relation between the annihilating
and coalescing particle models.

1. Introduction. Let S be a countable set and A the collection of all
subsets of S. In this paper we are going to study the limiting behavior of a
certain class of particle systems {n,} on A, characterized by the existence of
different processes {7,} that satisfy the equation

(1) P[Inf N Alodd] = P[I72 N ¢ lodd],
where 7¢ = A C 8, |Al < +x, n{=¢CS,
InfNAl=|{x; € S:x; € nfnA}| and 732N ¢l=]|{x; €S:x,€nANn L}

The processes {7} are called dual processes, and (1) is their corresponding
duality equation.

Among the systems that can be defined via a percolation structure, with
S = Z9, the d-dimensional integer lattice, a well known class that satisfies
(1) is that of cancellative systems. In 1979, David Griffeath proved that if 7,
is any cancellative system without spontaneous birth, and u, ,, is the product
measure with density 1/2, then there is a distribution v, such that

M1,2S(t) > vy ast—> +oo,

where S(¢) denotes the Feller semigroup associated with 7,, u, ,,S(¢) denotes
a version of the process with initial distribution u,,, and — denotes weak
convergence. Furthermore, the distribution v, is such that VA c Z¢ finite,

(2) ve[n:In N Alodd] = 3P[7A # D Vs = 0].

The generality of this raises the question of whether this is an isolated
instance or if, instead, there is a unifying theory for the asymptotic behavior
of those systems. We have a partial answer to this question. Throughout this
paper v, will denote the distribution defined by (2), and for arbitrary n C S,
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142 1. SIMONELLI

8, will denote the point-mass measure concentrated at #. Our main result is
the following.

THEOREM 1. Assume m, and 7, satisfy the duality equation (1) and the
following conditions:

(a) Foreacht>0,x€ S, {CS8, {+ &, we have 0 < P[nf(x) = 1] < 1.
(b) Let &7, = {(n: %, # &, YVt = 0}). Then on &, 7] = +oast - +»a.s.
Then we have:

() For all translation invariant distribution v,

lim vS(t) = v((2)) & + (1 - »({(B) s

Gi) If v, = &, then 8 is the unique invariant distribution.
(i) If vy, # &, then v, ({}) = 0.

The above result was motivated by a theorem proved by Harris (1976).
Even though the statements of these two theorems are quite similar, there
are two important differences between them. One is that Harris’ result
applies to particle systems with duality equation

PlnfnA+ Q] =P[a*n ¢+ 0.
This equation implies that the function
f(¢) =P[nfn A+

is monotone, and this property is an important characterization of the
systems to which his result applies as well as an essential ingredient in his
proof. The other difference is that Harris did not include part (b) of our
theorem as part of his assumptions. Part (b) is equally important in both
theorems, but he proved it to be a consequence of part (a).

This paper is organized as follows. In Section 2 we prove Theorem 1. In
Section 3 we use Theorem 1 to study the asymptotic behavior of specific
particle systems: the branching annihilating processes and the branching
annihilating random walk are the systems that we consider. In Section 4 we
consider the annihilating and coalescing particle models, with common irre-
ducible probability density p(x, y), x, y € Z¢. We denote these two processes
by m, and §,, respectively. For all finite A ¢ Z¢ we prove that

) PlnZ* N Apdd] 1
~ie PleF nA+g| 2

extending a previous result of Arratia (1981). An important ingredient in the
proof of this result is a property of the annihilating particle model proved in
Section 2.
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2. Proof of Theorem 1. Before proving Theorem 1 we need to prove
some related results. Let Cy(A) be the collection of all continuous functions
on A that depend only on a finite number of coordinates. Since in A the class
of cylindrical sets is a class of convergence-determining sets, the weak limit of
a distribution w is uniquely determined by limits of the form

lim ijdMS(t) with £ € Cy(A).

t— +

The next result further restricts the collection of convergence-determining
functions that we need to consider. Since this result is already known
[Griffeath (1979), Chapter 3], we will only give a sketch of its proof.

LEMMA 1. Let f € Cy(A). Then f can be written as a linear combination of
functions of the type

llnnAlodd or 1|17!'1A|even with A c S, |A| < +oo,

Proor. It suffices to consider functions f of the type
f(n) =H(n, A) = T] n(x),
x€A

where A is any fixed finite subset of S, n(x) =1 if x €y and n(x) =0
otherwise. Furthermore, for such functions the result will follow once we
show that Lemma 1 holds for functions g, g(n) = n(2)- 1, 4aa» Where
z € S and A is as before. If z & A, it is easy to show that

17(2) ' 1|1;nA|odd = %[lmnmodd + 1|170Au(z}|even - 1|nn(z)|even]'
If ze€A,
n(z) - 1, Ajodd = n(z) —n(z)- 1,n A\(2}lodd

and we are back to the previous case. The result now follows. O

DEFINITION. For a any'distribution w, A C S finite and t > 0, let
(3) fu(A) = wS(t)[n:In N Alodd].

From the above definition we can derive the following relations:
By s(A) = fA1|; n Ajoaa A0 S(t +5)(¢) = fAS(S)1|z n aloda A S(E)( L)
= [Pl 0 Alodd] dpS(£)(¢) = [ B[ 0 £lodd] duS(2)(¢)

a A CZS P[2 = Cl1icn gj0aa A S(2)(£).
ICl< +



144 I. SIMONELLI

Thus we have

Bees(4) = L P[0 = C] [ Lon ioaa drS()(£)

ccS
ICl< +
(4) = L Plat = ClP[ln 0 Clodd]
cS
ICl< +
= X P[a*=cC]i(0).
CcS
IC|< +

Furthermore, if u is invariant, that is, uS(¢) = u V¢ > 0, from (4) we have

a(A) = ¥ Pla2=c]ic).
Ol se

The next two results are very important for the proofs of Theorem 1 and
Theorem 6 in Section 4. The motivation is the following. Let 7, be a system
that satisfies Theorem 1 and view 7, as a collection of particles. Then, if u is
any translation invariant distribution with u({}) = 0 and ¢ is fixed, o/ will
contain an infinite number of particles, with probability 1, and they will
uniformly cover the space. Moreover, if A ¢ S is large enough, A will also
contain a very large number of particles. If the coordinates of n* were
independent, it would immediately follow that for large A the probability of
having an odd number of particles in A will be close to 1/2, with the
difference going to zero as the size of A goes to infinity. The next two results
will show that the conditions of Theorem 1 are sufficient for this to occur.

LEMMA 2. LetY,Y,,...,Y, be random variables with 0 < Y, <1and
P[1-86<Y,<8]l=1-s, 1<i<k forsomee>0,38¢ (3,1).

Then E[[1 — 2Y,|- 1 — 2Y,]] < & + (26 — D*.

PrROOF. Let X; =1 -2Y;[. Then0 <X, <1,P[X; > (26— 1)] < £ and we
need to show

E[X, - X,]<e+ (26 -1)*.

The proof is based on applying Hélder inequality 2 — 1 times, each time with
different conjugates p; and q; (1/p; + 1/q; = 1). Precisely, p, =k, p, =k —
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1,..., p,_1 = 2. Using these conjugates we obtain

_p\k-1/k
E[X, - X,] < (EX{e)l/k(E(XZ e X))

< (EX{‘)l/k(EXZI?f)l/k(E(X3 Xk)k/(k—z))(k—z)/k

Ex}t)"*(Ex})"" - (EXE)"
k
max E(X}).

1<i<k

IA

IA

Since for arbitrary i, 1 < i < %, we have

E(XF) = Xk dP + XkdP < e+ (286 — 1)*,
(Xf) f{xi>(zs—1)} ! f{xis(za—l)} ! ( )

we obtain E[X; -+ X, ] < e+ (26 — 1)* as desired, and the lemma is proved.
O

THEOREM 2. Let u be a translation invariant measure with u({J}) = 0.
Then Ve > 0, Vt > 0, 3k = k(e,t) such that if A C S with |A| > k&,

|P[In# N Alodd] — P[In# N Aleven]| < e.

ProoF. Let £> 0, t > 0 be given. For every s € [0, £], assumption (a) of
Theorem 1 implies that

pS(¢)[n: P"[n,(0) = 1] =1] = 0.

Therefore, 35, € (3, 1) such that Vs € [0, ¢],
P
pS(¢)[n: P"[n,(0) = 1] > §,] < ra

A similar argument, combined with the assumption u({}) = 0, gives the
existence of 8, € (3, 1) such that Vs € [0, ¢],

wS(¢)[n: P[n,(0) = 0] > 8,] < g.
Let 6 = max{§;, §,}. Then Vs € [0, ¢] we have
(5) uS(t)[n:1 — 6 < P[n,(0) = 1] < 8] > 1—§.
Let A be an arbitrary subset of S, that is, A = {x;, x,,..., x,}, and let

f.(A) = P[In#* N Alodd] — P[In/* N Aleven] = fA(ll,,nAI(, ~1,na,) drS(2),

where o= odd and p =even. For 1 <i <n we define A=A and A, =
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A;_ 1\ {x;}. Writing
llnﬁAilv —1yn Ajlp
= (1 - ﬂ(xi))lmn Aot n( xi)1|nnA.~_1|p - (1 - n(xi))llnnA,«_llp
- 7’( xi)1|nnA,-_1|¢7
= (1 =20(%)) (Y0 a, o = Lo ar_yip)s
we have
£(A) = [ = (1= 2n(21)) - (1 - 20(x,)) duS(2).
Since g,(n) = (1 — 2n(x;)) € C,(A), and the map s — S(s)f is continuous for

every fixed f € Cy(A) [Liggett (1985), Chapter 1], we can findan r,,0 < r; < &,
such that if 0 < h;, <r,,

IS(h;)g; — &:ll <

&£
3|A] 3-n’

Moreover, if we let r = min{r,, -+, r,} we have

3
£1(n) * ga(n) < (1= 28(r)m(21))ga(n) = £u(7) + 5—

2¢e
< (1= 28(r)m(x))(1 - 28(r)n(%0)) ~ &x(n) + 5

< (1 - 28(r)n(2))(1 - 25(r)n(x)) (1 - 28(r)n(x,))

ne

+ .
3'n

Hence,
g1(n)  ga(m) <L - 28(r)n(x;)l+ 11 = 28(r)n(x,)| + g

Since —(g(m)gy(n) -+ g,(n)) also satisfies the above inequality, we have
&
Iful M) < [11 = 28(r)n(xp)l+ 11 = 28(r)n(x,)lduS(t) + 5.
Next let Y;(n) = S(r)n(x,) = P[n"(x;) = 1]. Then Y, is a random variable on
A,0 <Y, <1, and by (5) we have that uS(#)[n:(1 - 8) <Y, <8l =>1- &/3.
Therefore, the Y’s satisfy the conditions of Lemma 2, and we have

£ n e
(Al <5+ (28 -1+ 2.

Hence, if we let k(e,t) = k, be any integer such that (26 — 1)*0 < £/3, then
If.(A)l < & whenever |A| > %, and the proof of Theorem 2 is complete. O
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REMARK. The requirement t > 0 in Theorem 2 can be relaxed if we
exclude the case u = §,.

Finally we are ready to prove Theorem 1.
Proor oF THEOREM 1. First we note that the existence of (1) implies that

8 is an invariant measure, that is §,S(¢) = 85 V¢t > 0. Next let v be an
arbitrary translation invariant distribution. Then » can be written as

v—v({J
v=v({d}) & + (1 - v({<})) —1:—5{({%)}?@
=v({@}) & + (1 - v({D})) .,

where u is translation invariant and u({J}) = 0. Hence

v—v({JD
i w003, + (1wt | Snei o

lim »S(t)

t—> 4+

v({2})
v({9) & + (1 - v({9))) lim wuS(2).
Therefore, we need to show that lim, , ,, uS(¢) = v,, and by Lemma 1, it
suffices to show that for all finite A c Slim,_, ,, 4,(A) = 7,(A), where

2,(A) and ,(A) are defined by (3). First let us assume that P4[.#/,] = 0 and
note that (1) also implies that {J} is an absorbing state for %,. Then

lim {,(A) = lim P[ln®* N Aledd] = lim f B[I7A N ¢lodd] dp(¢)
t— 4+ t— + o t— +ooJA
. A~ A —pal ] =
< lim P[a* # @] = PA[4] - 0.

Next we assume that P4[sZ] # 0. Then

lim f,(A) = lim | ¥ P[a%,=C]-4(C)| [by(4)]
t—> 4+ t— + CccS
L ICI< +

im | ¥ P[aA, = ClaL] - PA[Z] - £,(0)|,
i+ ccs
| ICI< +

where the above the equality holds because

lim P["h s = CL}V;C] P’A[%C] : ils(C)
i+ ccs
[Cl< +
Let £> 0 be given. By assumption (b) of Theorem 1, on &, |7, = + as
t - +» a.s., that implies

3t,(&) such that on &7, [7,| > (&, 5) Ve >t(e),
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where k(e, s) is chosen as in Theorem 2. Hence, by Theorem 2, Vt > t,(&) we

have
- . _ - K%
B2, = Cla] - PA[s] - a(C) - [—]
CccS
ICl< +
Therefore,
lim B, (A) = 1PA[5, + DVt > 0].

Since the above hm1t also covers the case P4[«,] = 0, part (i) of Theorem 1 is

proved. Next let us assume v, = §, and let u be an arbitrary distribution.
Then VA c S finite,

P[In# N Alodd] = f [Inf N Alodd] du(¢)

- fAIS[Ith N ¢lodd] du(¢) < B[aA + 9.
Since, v, = 8, if and only if 15“’[.9%0] = 0 for all A finite, then
Jim Pl N Alodd] < Tim P[aA + @] =o0.
Therefore, lim, , , ., uS(¢) = §, and part (ii) of Theorem 1 is also proved. For

part (iii) we assume v, # §, and want to show v, ({J}) = 0. Let £ > 0 be
given. We are going to show v, ({J}) < &. By definition,

vo((2) = tim [ TT(1=n(x))duS(2) = lim h(t),

where u is any translation invariant distribution with u({J}) = 0. Let ¢’ > 0
be arbitrary but fixed. Then 3¢, such that if ¢ > ¢,

v (D)~ (D) =

Moreover,

ve({@) = [ T1 (1 - n(x)) duS(¢) + %
AxeS

< [ 110 - n(z)) dus®) + 5

for all integers n > 0 and for all {x,, x,,..., x,} € S. Let ¢ > ¢,. If we proceed
similarly as in the proof of Theorem 2, we can find a §, 3 < 8 < 1, such that

!

2¢
fﬂ(l—n(x))dus(t) ——t 8

Hence, if we let ¢’ < £/3 and choose n large enough, we have

' ’ ’

v, ({9}) < —8-+8”+?<28 <e.
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Since ¢ was arbitrary, this implies that v*({Q}) =0, and the proof of
Theorem 1 is now complete. O

It is interesting to note that the invariant measure v; obtained by Harris
is defined by

v(A) = lim Pln# nA+ Q] =P[3t + Vs > 0],

suggesting some similarities between the limiting behavior of these two
classes of systems.

3. Applications (Part 1). In this section we are going to use Theorem 1
to study the asymptotic behavior of specific systems. That is, we are going to
show that they satisfy the conditions of Theorem 1. Throughout this section
S =Z4,

Branching annihilating processes (BAP) with death rate 8 > 0. The BAP
(8 > 0) is an interacting particle system n, which evolves according to the
following dynamics:

1. Each particle gives birth to a new particle on a neighboring site at rate 1.
2. If there is a birth on a site that is already occupied, annihilation occurs.

3. Each particle dies at rate § > 0.

THEOREM 3. The BAP (8 > 0) satisfies the conditions of Theorem 1.

REMARK. The result that, for the BAP (6 > 0), v, is the unique measure
that arises as the weak limit of translation invariant distributions u’s, with
n({)) = 0, has been already proved by Bramson, Din and Durrett (1991),
and for the case § = 0 independently by Sudbury (1990). For the case 6 = 0,
Bramson, Din and Durrett and Sudbury also proved that indeed §, and v,
are the only invariant measures. Moreover, their proofs contain the proof of
Theorem 3.

Proor oF THEOREM 3 (Sketch). Let m, be a BAP (8 > 0). Using a graphical
representation for the construction of the 7,, Bramson, Din and Durrett have
shown that indeed there is a dual 7, that satisfies the duality equation

P[Inf N Alodd] = B[1nA N ¢lodd] V¢, A CZ%,|Al <,
and that 7, is an independent copy of the original 7,. Condition (a) of

Theorem 1 can easily be verified by looking at the dynamics of the process. It
is left to show that on &7, |7,| = + a.s. For the case & > 0 this follows from
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the result that

> 0,
0<|Bl<n 2d + 8)

where the above bound follows easily from the dynamics of the process (see
Bramson Din and Durret for the details, or proof of the next theorem for
similar arguments). For the case § = 0 the above argument cannot be used
because the LHS of (6) equals 0. In this case the desired result follows from
showing that the 7, dominates an oriented percolation process with parame-
ter 1 — g, with the property that if ¢ is small enough,

on O, = (W, # forall n}, W - +was.asn—> +o,

where W = {y € Z%: there is an open path from (0,0) to (y, n)} [Bramson,
Din and Durrett (1991)]. O

(6) inf P[7f = & for some ¢ > 0] > (

Branching annihilating random walk (BARW). The BARW is an inter-
acting particle system 7, with the following rate:

1. A particle at site x jumps to a site y with probability p(x, y) at rate
a> 0.

2. A particle at site x gives birth to a particle on site y with probability
p(x, y) at rate 1.

3. If two particles occupy the same site, annihilation occurs.

We will assume throughout this section that the Markov chain associated
with the p(x, y)s is irreducible, that is, Vx, y € Z¢, 3n > 0 such that
p™(x,y) > 0.

The BARW, with p(x,y) = 1/(2d) was studied by Bramson and Gray
(1985) in the context of extinction and survival of the process. They showed
that in Z if a < 1/100, the process starting from any finite and fixed
configuration will survive with positive probability, and if « is “large enough,”
then extinction is certain. In 1991, Bramson, Din and Durrett gave a much
simpler proof of the survival result of the BARW with small «, and they
extended it to all d > 1, and p(x, y) any arbitrary random walk.

We are going to prove the following theorem.

THEOREM 4. The BARW satisfies the condition of Theorem 1.

PrOOF. It is clear from the dynamics of the process that condition (a) of
Theorem 1 is satisfied. Next we want to show the existence of a dual %, such

that
P[n*nAlodd] = B[InA N Llodd] V¢, A CZ%|Al < +e.
To accomplish this we will construct the BARW using a graphical representa-

tion. The following approach is based on defining a percolation structure
invented by Harris (1978) and developed by Griffeath (1979).
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Graphical representation of BARW. Let us consider Z¢ X [0, ), and think
of this as assigning a time line to each x € Z%. For each x, y € Z? with
p(x,y) >0, let {T{*(¢),t >0}, i = 1,2, be two independent Poisson pro-
cesses with rate 1 and «, respectively, and {T(" 'Y n > 1} their respective
arrival times. At each 7', » we draw an arrow from (x, T{%P) to (y, T ),
and at each T§*” we draw an arrow from (x, T§% ") to (y, Tz(" ) and put ad
at (x, T§% 7). We say that there is a path from (x, s) to (y, ¢), s < ¢, if there is
a chaln of upward vertical and directed horizontal segments leading from
(x, s) to (y, ¢) that does not go through any &’s.
Let N;*(y) be the number of paths from (x, 0) to (y,t) and

NA(y) = X Ni(y).

x€A

Define
(7N n* ={y € Z%: NA(y) = 1 mod 2}.

LEMMA 3. 7 is a BARW.

PrOOF. Since the dynamics of the BARW guarantees its uniqueness as an
interacting particle system [Liggett (1985), Chapter 1], we need only to check
that the effect of the arrows is consistent with the dynamics of the BARW.
Let n(x) = 1if x € 1, n(x) = 0 otherwise.

before arrow after arrow

(n(x),n(y)) (n(x),n(y))
(0,0) (0,0)
time[ (0,1) (1,1)
(1,0) (1,0)
* Y (1,1) (0,1)

before arrow after arrow

5 (n(x),n(y)) (n(x),n(y))
(0,0) (0,0)
ﬁme[ (0,1) (1,0)
(1,0) (1,0)
x Y (1,1) (0,0) O

Next, by reversing time and the direction of the arrows in the percolation
structure, we can define in the same probability space a new process %,, with
the property that V¢, A c Z¢, with A finite,

P[Inf N Alodd] = P[172 N Zlodd],

where [ N ¢| denotes the number of paths in the new percolation structure
from (A, t) down to (£, 0) [Griffeath (1979), Chapter 3]. By analyzing the
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effect of the reversed arrows, it is easy to see that 7, is a spin system. That is,
change in the configuration only occurs at one site at a time, and #(x)
changes to 1 — 7(x) at rate given by

" - a) p(x,y)0(y) + X, p(x,9)0(y), if f(x) =0,
) elxm) = a),p(x,y) (1= @(y)) + E,p(x,9)0(y), ifa(x) =1

Next we are going to show that

(9) inf P["h = (J for some ¢t > O] >0,
0<IBl<n

and this will imply that on 7, [, » + a.s. [Bramson, Din and Durrett
(1991)]. We will prove (9) only for the case p(x, y) a symmetric random walk
on Z% the same type of calculation applies to the general case. Let B,
0 < |B| < n, be arbitrary, and suppose first that « < 1. Hence from (8) we
have

P[#7? = & for some t > 0]
15[ = I for some ¢ > 0, [8| > |75 | Vs, u>0]

>
(2a+1) 0,

which implies (9) whenever a < 1. Next suppose a > 1. Let

_fe(x,m), ifn(x)=0,
er(x,m) = {1, if n(x) =1,

and denote by ¢, the process defined by c,. Hence we have
P[#7f = O for some ¢ > 0]

ZIS[ = Jfor some ¢ > 0, |72| > B ,| Vs, u>0]
2}3[{ = (Jfor some ¢t > 0, |§B|>|{s+u|\7’s,u20]
) >0,

which implies (9) whenever « > 1. Therefore, Va’s we have

a n 1\
inf P78 = f t > 0| > mi ( ) , >0,
0<1lB|sn ["h & for some 0] >m1n{ 2a T 1 P 0

and the proof of Theorem 4 is now complete. [

4. Applications (Part 2). - In this section we consider the evolution of an
arbltrary collection of independent particles that perform a continuous time
random walk on Z? that is, each particle at a site x waits an exponential
time with mean 1 and then jumps into-a site y with probability p(x, y),
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where p(x, y)'s are the transition probabilities associated with an irreducible
Markov chain. The evolution is further characterized by introducing one of
the following collision rules: annihilation or coalescence. In the annihilation
case whenever one particle jumps into a site that is already occupied, both
particles disappear; in the coalescence case the two particles merge into one.
These two processes are known as the annihilating particle model (a.p.m) 7,,
and the coalescing particle models (c.p.m) ¢, respectively.

In 1978, Griffeath proved that both models are ergodic, with & the only
invariant distribution. Furthermore, he observed that for arbitrary initial
configurations B  Z¢, it is possible to construct a coupling such that for all
t>0,

B B
n, C&.
This relation motivates the study of the limiting behavior of ratios of the type
P[nE(0) = 1]
p [ gt (0) = 1]

The most general result in this context was proved by Arratia (1981). To
avoid introducing new quantities, we will state a somewhat simpler version of
his Theorem 3.

THEOREM 5. Let m, be an a.p.m. and ¢, a c.p.m. with common probability
density p(x, y). If p is any genuinely multidimensional random walk, or a
random walk on the integers with ¥, p(0, x,)|x;| = +, then

PO =1 1
(10) M Pler0) =1 2

REMARK. Even in its general form, Arratia’s theorem does not cover the
case when “p is a non-nearest neighbor walk on the integers with finite
expectation.”

In this section we are going to extend Theorem 5. In fact, we are going to
prove the following theorem.

THEOREM 6. Let m, be an a.p.m. and &, a c.p.m. with common-irreducible
random walk p(x, y). Then for all finite A c Z¢,

P[In* n Alodd] _ 1
(11) Am PleZna=o] 2

REMARK. If we let A = {0} in Theorem 6, then (10) and (11) are equiva-
lent. r

To prove Theorem 6 we need the following results. It is well known
[Griffeath (1978)] that there is an interacting particle system {;, the voter
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model, that VBA c Z¢ with A finite, satisfies the duality equations

(12) P[In? n Alodd] = P[I¢A N Blodd]
and
(13) P[¢EnA#Q| =P[(AnB+0.

Furthermore, the voter model satisfies the following property [Arratia (1981)],
which we state as a lemma.

LEMMA 4. For the voter model {, based on an arbitrary nontrivial random
walk p(x, y) and for every positive integer m,

PlIgo2mlg’ # @) > 1 ast - +.

REMARK. The result of Lemma 4 easily generalizes to any finite initial
distribution.

REMARK. The a.p.m. satisfies the conditions of Theorem 1. The only
condition that has not been verified yet is condition (a), that as usual can be
verified by analyzing the rate of the system.

We are now ready to prove Theorem 6.
PrROOF OF THEOREM 6. Let A C Z¢ be finite. We want to show that

_ P[in?"nAbdd] 1

i P[eF nAa+g| 27

Let s > 0 be arbitrary and define

P[In7’, N Alodd]
PleZna+g|

g(s,t) =

Then by (12) and (13),
P[m?* N ¢Aodd]
g(s,t) = P[22
Teezi o)< +=P[ 44 = C]P[In?* N Clodd]
P2+ 2
Y P[zA=cClg # D] P[m?* N Clodd].

cczé
IC|< 4+
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Hence,
lim g(s,¢) = lim Y, P[{A=Cl¢t # @ P[In? n Clodd] = 3,
t— +© t—> +x Ccczd
ICl< +

where the last equality follows from the remarks after Lemma 4, and
Theorem 2. Next, let {¢,},~; be a sequence such that ¢, » +x as & = +©
and

. P[InZ' n Abad]
im - = a,
b=+ P2 A +

for some « > 0. Choose an arbitrary & > 0, and let 0 < s < ¢,. Then
P[in% nAlodd]  P[IgA, N nZ"lodd]
P[eZ nA+ 0 Pl + 9]

B P[I{t‘:_s N nszdlodd]
CP[iA a1t + O P+ 9
_ g(s’tk _s)

Pl¢r+ @t + 2]’

where the second equality holds because {J} is an absorbing state for {;.
Hence,

. g(s’tk —S)
a= lim " = .
kot P2+ D1+ O

Since lim, _, , ,g(s,t, — s) = 3 for all s > 0, then
: A A

Jim P[f+ @t + 2
also exists and is independent of s. By Lemma 5 this limit is equal to one.
Therefore, all convergent subsequences will converge to the same limit and

. P[m¥ nAbadd] 1

lim ] = —.
t— +o P[gtz nA;&@] 2

O

Acknowledgments. This paper is adapted from a portion of the author’s
doctoral dissertation, written under the advisement of Professor Janos
Galambos. The author wishes to thank Professor Galambos for his guidance
and support. The author also wishes to thank the referee for the many
valuable comments.

0

REFERENCES

ARRATIA, R. (1981). Limiting point processes for rescaling of coalescing and annihilating random
walks on Z%. Ann. Probab. 9 909-936.



156 I. SIMONELLI

BraMSON, M. and Gray, L. (1985). The survival of branching annihilating random walk. Z.
Wahrsch. Verw. Gebiete 68 447-460.

BraMsON, M., DIN, W. D. and DURRETT, R. (1991). Annihilating branching processes. Stochastic
Process. Appl. 37 1-117.

GRIFFEATH, D. (1978). Annihilating and coalescing random walks on Z¢. Z. Wahrsch. Verw.
Gebiete 46 55—65.

GRIFFEATH, D. (1979). Additive and Cancellative Interacting Particle Systems. Lecture Notes in
Math. 724. Springer, New York. .

Harris, T. E. (1976). Harris, T. E. (1976). On a class of set-valued Markov processes. Ann.
Probab. 4 175-194.

Hagris, T. E. (1978). Additive set-valued Markov processes and percolation methods. Ann.
Probab. 6 355-378.

LiGGETT, T. (1985). Interacting Particle Systems. Springer, New York.

SUDBURY, A. (1990). The branching annihilating process: An interacting particle system. Ann.
Probab. 18 581-601.

DEPARTMENT OF MATHEMATICS
TEMPLE UNIVERSITY
PHILADELPHIA, PENNSYLVANIA 19122



