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HAUSDORFF MEASURE OF TRAJECTORIES OF
MULTIPARAMETER FRACTIONAL
BROWNIAN MOTION

By MIiCHEL TALAGRAND
Université Paris VI and Ohio State University

Consider 0 < a < 1 and the Gaussian process Y(¢) on RY with covari-
‘ance E(Y(£)Y(s)) = |t12* + |s|?® — |t — 5|2, where |t| is the Euclidean
norm of ¢. Consider independent copies X?,..., X% of Y and the process
X(t) = (XX2),..., X%¢)) valued in R, In the transient case (N < ad) we
show that a.s. for each compact set L of RY with nonempty interior, we
have 0 < u,(X(L)) < «, where , denotes the Hausdorff measure associ-
ated with the function ¢(&) = ™/ loglog(1/¢). This result extends work
of A. Goldman in the case a = 1/2; the proofs are considerably simpler.

1. Introduction. Classical results [1], [5] indicate that for d > 3, a.s.
any portion R of the trajectory of R%valued Brownian motion satisfies
0 < p,(R) < », where ¢ is the function given by ¢(x) = x2 loglog(1/x) for
0 <x < 1/3.[The case d = 2 ([7], [9] is also known—the correct function is
now ¢(x) = x2 log 1/x logloglog 1/x—but lies deeper, due to the recurrence
properties of Brownian motion in that case, and will not be generalized in the
present paper.] This result has been extended by Goldman [2] to the case of
Levy’s multiparameter Brownian motion from R” to R% Goldman’s achieve-
ment is impressive, as he succeeded even though he lacked a key estimate
(Corollary 2.3 below). The original motivation for the present work was to
provide a simple proof of Goldman’s result. It turned out that our approach
works in a more general setting.

The basic process considered in this paper is the Gaussian process X(¢)
from RY to R? such that

(1.1) E(1X(t) — X(s)I*) =dlt — s*%,

where 0 < a < 1 and where |- | denotes the Euclidean distance. Following [3],
we will call this process the (N, d, @) Gaussian process. The process consid-
ered by Goldman [2] is the (N, d, 1/2) Gaussian process; Brownian motion is
the (1,d,1/2) Gaussian process and fractional Brownian motion is the
(1, d, @) Gaussian process. It should be clear that the components of X, which
are processes from R” to R, are independent copies of the (NN, 1, o) Gaussian
process.

Received March 1994; revised September 1994.

. Work partially supported by an NSF grant.

AMS 1991 subject classifications. Primary 60G15, 60G17; secondary 26B15.
Key words and phrases. Haussdorff dimension, Brownian motion.

767

[ ,4’2

ok

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )z
The Annals of Probability. STOR ®

WWW.jstor.org



768 M. TALAGRAND

We denote by ¢ the function (defined for ¢ < 1/3)

1
p(&) = g/ loglog( )

&
and we denote by u, the corresponding Hausdorff measure.

THEOREM 1.1. Assume N < ad. Consider a > 0. Then a.s. we have

(1.2) 0 < wmfX(t);ltl<a} <oo.

When N > ad, a.s. the image of a ball has nonempty interior [6]. What
happens in the “critical case” N = ad is unknown (unless N =1, a = 1/2,
d = 2) and is certainly a deeper question. At this point we have succeeded
only to prove the right-hand side inequality of (1.2) for the natural choice
of o.

We now comment on the methods and the organisation of the paper. As one
moves away from Brownian motion, fewer tools are available, so one must
rely on general principles. In Section 2 we recall those principles we will use.
In Section 3, we make a few observations about the (N, 1, a) process and
prepare the ground to solve dependence-related problems. In Section 4 we
prove the basic estimate and in Section 5 we conclude the proof.

2. General facts. Consider a set S and a Gaussian process (Z(¢)), . .
We provide S with the distance d(x, t) = (E(Z(t) — Z(s))*)'/2. We denote by
N4(8, &) the smallest number of (open) d-balls of radius & needed to cover S
and we denote by D the diameter of S, that is, D = sup{d(x, ¢); s,¢ € S}.

LEMMA 2.1. Given u > 0, we have

P( sup 1Z(¢) — Z(s)| _>_K(u +[OD Tog N, (S, ) ds))

(21) s,teS ,
u
< exp( - 3) .
Proor. The fact that
(2.2) E sup 12(t) - Z(0)| < K[”\log Ny(S, ¢) de
s,te8 ) 0

is' Dudley’s bound. A more careful walk through the same steps yields (2.1)
([4], Theorem 11.1). An alternative route is to use (2.2) and the Gaussian
isoperimetric inequality ([4], Section 3.1). [
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LEMMA 2.2. Consider a function ¥ such that N(S, ¢) < ¥(¢) forall ¢ > 0.
Assume that for some constant C and all & > 0 we have ¥(&)/C < ¥(&/2) <
C¥Y(e). Then

P(ss?epSIZ(t) -Z(s)l < u) > exp(— ‘If;u) ),

where K depends on C only.
This is proved in [8] and is the main new ingredient since [2].

COROLLARY 2.3. Consider the (N, 1, o) Gaussian process Y(t). Then, for a
constant K depending on a, N only we have, for ¢ < 1,

1
sup|Y(¢)| < s) < exp(—————a).
ltl<1 Keh/

2.3 ( d P(
. - | <
( ) exp & N/a

ProoF. The right-hand side is proved essentially in [6]. For the left-hand
side, letting S = {t € RY; [¢| < 1}, we see that N(S, &) < Ke™N/* [since
d(s,t) = |t — s|”] so that this follows from Lemma 2.2. O

~ 8. Specific facts. The very existence of the (N, 1, a) Gaussian processes
Y(¢) relies upon the fact that RY, provided with the distance d(s, t) = [t — s|,
is isometric to a subset of a Hilbert space. Such an isometry is provided by
Schonberg’s formulae

E(Y(2)Y(u)) =1t + lul** =1t — ul®®

(3.1) . ) dx
= _ ot x) — e U, x)y
ngefRN(l e )(1—e )|x|N+2a’

where the constant ¢ depends on a, N only. Equivalently this means that if
dm is a random Gaussian scattered measure on RY, with E(m(A))%2 = A\(A)
(A Lebesgue measure), then the process

(3.2) Y(t) = c‘/l;w(l — cos(¢, x))l—(jltg—;/)z

is (a version of) the (N, 1, a) process.
In order to solve some dependence problems that are a major obstacle,
given 0 < a < b < », we consider the process

dm( x)

Y(a,b,t) =cf (1—cos(t,x))W.

a<]xl<b
An .’essential fact is that if a <b <a' <b', the processes Y(a,b,t) and
Y(a, b, t) are independent. Also, the next lemma expresses how well Y(a, b, t)
approximates Y(¢). To simplify notations, for a random variable Z, we write
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IZ|l; rather than (EZ2)!/2 and we denote by K a constant depending only on
N, a,d and that may vary at each occurrence. (Specific constants will be
denoted by K, K,,... .)

LEMMA 3.1. [[Y(a, b,t) — Y(D)lls < Ky[I¢%a?2% + b~ 2=]V/2,
PrROOF. We have
E((Y(a,b,t) — Y())%)

(1 (¢, x))° dx +f (1 (t, 2))*
= — cos{t, x P — cos{t, x _
IxIN+2a l2]> b |x|N+2a

|lxl<a

In the first integral we bound (1 — cos{¢, x))? by [£]%| x|, and in the second
one by 2 to get the required bound. O

LEMMA 3.2. Consider b>a>1,1>r >0 and set A = r?a®%* + b2,
Then if A < 32%% and

u ZK(Alog

we-have
2

P( Y(¢) - Y(a,b,t) > )< ( “ )
u b , 0, = < ex —_—.
e (@ “) =P T kA

ProOOF. Consider S = {|t| < r} and on S the distance
d(s,t) =(Y(t) —Y(a,b,t)) — (Y(s) —Y(a,b,s))ll:.
Then d(s,t) < |t — s|” and thus
Ny(s,¢e) < -;—;/iu

Also, by Lemma 3.1, we have d(0, ¢) < KVA, so that the diameter D of S is
< KVA . Thus, by simple estimates,

Kr
[*Viog Ny(s, 2) de stD‘/log—l/—a de
0 0 &
r—® K '
sKr“fD Vlog— dx
0 X

' Kr

< KDh/ log D

1/2

Kr2a
< K| Alog y

Since u + B > u/2 for u > B, the conclusion then follows from (2.1) O
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We now denote by X(a, b, t) the Gaussian process from RY to R¢ such that
its components are independent copies of Y(a, b, ¢).

COROLLARY 3.3. With the notations of Lemma 3.2, if
1/2

Kr2a
u>K A].Og A ’

we have

u?
KA

sup|X(t) — X(a,b,t)| = u) < exp

(3.3) P(
ltl<r
Let us spell out another basic fact.
LEmMMA 34. Ifr >0, u > Kr®, then
u?
P(supIX(t)I > u) < exp( - —;)
ltl<r Kr?
ProoF. Reducing to the components, this is a straight forward conse-
quence of (2.1). O
LEMMA 8.5. If e <r®, we have, for all 0 < a < b, that

P

ProOF. It suffices to prove this for Y(a, b, t) rather than X(a, b, ¢). This
is proved as the left-hand side of (2.3), or can be deduced from it. O

r N
sup|X(a, b,t)l < 8) = eXP(‘K(W) )

ltl<r

4. The main estimate. The main estimate is given in the following
proposition.

PROPOSITION 4.1. There exists a constant & > 0 with the following prop-
erty. Given r, < 8, we have

-a/N
P(EI r,ré<r<rg, suplX(t)IsKr“(loglog;) )

ltl<r

1\2
> 1—exp(—(logr—) )
0

Proor. Consider a number U > 1, to be determined later, and for 2 > 0,

' let 7, = ryU 2%, Consider the largest integer k, such that

< log(1/ry)
0= 2logU
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Thus, for £ < k, we have r, > r2. It thereby suffices to prove that

1 -a/N
P(3Ek <k, sup IX(t)IsKrk“(loglogr—) )

ltl<ry k

1\2
>1- exp(—(logr—) )
0

One certainly wishes to appeal to Lemma 3.5. In order to create indepen-
dence, let us consider the sequence a;, = r;'U2*~! and the processes X, ()
= X(a,,a;,1,t). As k varies, these processes are independent. Moreover, it
follows from Lemma 3.5 that one can find a constant K, such that, if r, is
small enough, we have for each £ > 0 that

(4.1)

—a/N
P| sup le(t)Iusr,f‘(loglog—) )
ltl<ry Ty
1 1 1
> exp| — —loglog— | = —M8M8
p( it grk) (log(1/r,))"*

Thus, by independence,

—a/N
P{3Ek <k, sup IXk(t)IsK2r,§‘(loglog—) )
lel<ry Ty
1 to
(4.2) s1-f1-—21
(log(1/r¢))

1 ko
>1—exp| ————|.
P (log 1/”0)1/4

Let now A, = r2a?~2* + a;2¢. Thus
At = (nay)* " 4 (ray,y) 2= U@ 20 g2e g 2U°%,

where g = 2min(a,1 — a). We appeal to Corollary 3.3 (with A  rather than
A) to see that for

u > KreU #/2(log U)"?

we have

i

u?Uk
P( sup | X(t) — X,(¢) > u) <exp| ———-|.
ltl<r ) Kr,
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Thus we see that provided
1 a/N
(4.3) UB2(logU) "% > (loglog—) ,
T'o
we can take u = K,rX(loglog(1/r,))~%/" to get

—a/N
P| sup | X(t) — X,(¢) > Kzr,;"(loglogr—) )
0

ltl<ry

U#
< exp|— — |
K(loglog(1/r))**/~
Combining with (4.2) we get

—-a/N
(Elk <k, sup lX(t)|s2K2r,§‘(loglog;—) )
3

ltl<ry
(4.4) >1- ( - ko )
' =0 Gog(1/m))”
U8
-k — .
0 exp( K(loglog(l/ro))za/N)

We recall that &, <log(1/r,) and that k, > (log(1/ry))/4log U Gf this
number is greater than or equal to 1). Thus we see that one can take (among
many other possible choices) U = (log(1/r,))'/ . In that case, (4.3) holds and
the right-hand side of (4.4) is at least 1 — exp(—(log(1/r,))*/2) when log1/r,
is large enough. O

COMMENT. Proposition 4.1 is actually much more precise than what we
really need, but no extra work is required to get this precision.

5. Proof of Theorem 1.1. The easiest part is the left-hand side of (1.2).
The proof is the obvious adaptation of the (simple) argument of [2]. In the
proof of Theorem 2.3 of [2], it suffices to replace the use of Theorem 21 of [2]
by that of Lemma 7.1 of [6] (of which Theorem 21 is actually a special case).
Thus, we turn to the proof of the right-hand side inequality. It suffices to
assume a = 1. We set B = {t € RY; sup, . yl¢;l < 1}. For £ > 1, consider the
set

R,={teB;3r,27% <r<27*;
(5.1) -a/N
sup |X(s) —X(¢)l $K2r°‘(loglog;) },

Is—tl<r
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where K is the constant of Proposition 4.1. It follows from that proposition
[and the fact that (X(s) — X(2)) is distributed like X(s)] that P(¢ € R,) > 1
— exp(— yk/2). Denoting by A Lebesgue measure on R”, it follows from the
Fubini theorem that the event

A(Ry)
A(B)

0=

vk
>1- exp( - T) infinitely often

occurs with probability 1. Let us recall that a dyadic cube of order / is a
product of intervals of the type [ p27%,(p + 1)27'[ (I € N). It is well known
and follows in particular from Lemma 3.1 that the event (},, defined as “for
each [ large enough, and each dyadic cube C of RY of order ! that meets B,
we have sup, ,.c|X(t) — X(s)l < K27'*VI” also has probability 1. Given
w € Q) N Q,, we show that (with obvious notations) u,(X,(B)) < . Con-
sider % such that A(R,) > A(BX1 — exp(— vk /4)), where the random set R,
is given by (5.1).
We denote by C;(x) the dyadic cube of order ! that contains x. If x € R,
we can find ! with 2k + £, > | > k (k, depending on d only) such that
sup |X(s) - X(¢)| < K2-'*(loglog2!)™*/".

s, teCy(x)

[If » witnesses that x € R,,, [ is simply the smallest integer for which each
point of C,(x) is within distance r of x.] Thus we can cover R, by a union V
of sets V)(k <1 < 2k + k) such that each set V, is a union of dyadic cubes C
of order ! for which

sup |X(s) — X(t)l < K2-'=(loglog2!)™*"".

s, teC
In particular, X (C) is contained in a ball of radius

0, = K2‘“l(10g10g2’)_a/N.

Simple estimates show that
0}/*(loglog ;)" < K27
so that ¢(g,) < K27'N = KXC). Since
Y Y MC)=XNV) <K,

l CCV[

we see that X, (V) is contained in the union of a family of balls B; of radius
0; that satisfy ¥,¢(9;,) < K. Now B\ V is contained in a union of dyadic
-cubes of order q = 2% + %, none of which meets R,. There can be at most

2N)\(B\R,) < K2N"‘exp(— Lf—)
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such cubes if & (hence q) have been taken large enough, and since we assume
that o € Q,, for each such cube C, X(C) is contained in a ball of radius

o0 =K279%/q. Now
¢(0) <K27N1gN/?* log q

so that X(B\ R,) can be covered by a family B, of balls of radius ¢,(= o)
such that

Y o(o) < (K27Ng"/2* 1og Q)(KzN" eXP( - @)) <1

for k large enough. Because k was arbitrarily large, the proof is complete. O
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