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POISSON APPROXIMATION FOR THE FINAL STATE
OF A GENERALIZED EPIDEMIC PROCESS

BY CLAUDE LEFEVRE AND SERGEY UTEV!

Université Libre de Bruxelles and University of Novosibirsk

A so-called generalized epidemic model is considered that describes
the spread of an infectious disease of the SIR type with any specified dis-
tribution for the infectious period. The statistic under study is the number
of susceptibles who ultimately survive the disease. In a pioneering pa-
per, Daniels established for a particular case that when the population
is large, this variable may have a Poisson-like behavior. This result was
discussed later by several authors. In the present work, a necessary and
sufficient condition is derived that guarantees the validity of such a Pois-
son approximation for the generalized epidemic. The proof relies on two
key ideas, namely, the building of an equivalent Markovian representation
of the model and the use of a suitable coupling via a random walk.

1. Introduction. There is a considerable body of mathematical literature
concerned with the spread of an infectious disease of the susceptible~infected—
removed (SIR) type. We refer the reader to the book by Bailey (1975) for the
relevant work through 1974 and to the paper by Lefévre (1990) for a short
review of the more recent theory.

A rather general standard model can be defined as follows. Consider a pop-
ulation of » initial susceptible individuals and let the epidemic start by intro-
ducing m newly infected individuals. It is assumed that any pair of individuals
make contact at the points of a homogeneous Poisson process of rate 8 and
that contacts between different pairs are mutually independent. A susceptible
if ever contacted by an infective is infected and becomes immediately infec-
tious. Any infective i, initial or subsequent, is infectious for a period of time
of random length D;. All the D;’s are i.i.d. and distributed as the variable D,
say. After that period, the infective dies or is immune, and plays no further
role in the infection process: it is regarded as removed from the population.

This model is referred to here as the generalized epidemic process. It ex-
tends a classical model, named the general epidemic, which corresponds to the
- particular case where D is exponentially distributed (of parameter u, say).

Now, for this generalized epidemic, it is clear that the disease process even-
tually terminates at some finite time A, as soon as there are no more infectives
present in the population. Then a statistic of great relevance is S(A), the ul-
timate number of susceptibles surviving the disease.

We indicate that when interest is focused on the variable S(A), the gen-
eralized epidemic covers another standard model, known as the Reed—Frost
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1140 C. LEFEVRE AND S. UTEV

epidemic, which is obtained by supposing that D is equal to some constant
[see, e.g., Von Bahr and Martin-Lof (1980)].

Moreover, it is worth mentioning that as far as S(A) is concerned, the
model can be reformulated as a special case of the randomized Reed—Frost
epidemic introduced by Von Bahr and Martin-L6f (1980). Briefly, the latter
model describes a similar SIR infection schema, but it is here supposed that
during its infectious period, any infective i fails to transmit the disease to any
given susceptible with the random probability ;. All the @;’s are i.i.d. and
distributed as the variable @, say. Thus, we see that the generalized epidemic
corresponds to the situation where @ = exp(—BD). Further extensions have
been developed by Martin-Lof (1986) and Picard and Lefevre (1990).

The distribution of S(A) has been studied extensively. There is no simple
explicit form for the exact law, but Picard and Lefevre (1990) derived a compact
expression for its probability generating function in terms of a nonstandard
family of polynomials. Much of the research deals with the asymptotic behavior
of S(A) as the initial susceptible population size is large (n — oo) and the
initial global infection rate per infective is constant (8 = B,/n with 8, — B).
Very briefly, under these conditions, there exists a threshold phenomenon such
that for small outbreaks the final size n — S(A) is finite and distributed as
the total progeny in a branching process (possibly conditioned on extinction),
while for large outbreaks, the final size is a positive fraction of n and S(A) has
a Gaussian limit approximation [see, e.g., Von Bahr and Martin-Lof (1980)].
The alternative asymptotic approximation of S(A) by a Poisson law has been
much less investigated. This is the object of the present paper.

In a pioneering work, Daniels (1967) proved for the general epidemic that
when roughly “m is finite, u/gB is large and n is much larger,” then S(A) has
a Poisson-like behavior. The asymptotic expansions used by Daniels (1967),
however, are not very enlightening. A formal and direct proof was given by
Sellke (1983); in addition, the assumption that m is small was dispensed
with. Lefevre and Picard (1990) examined a similar approximation of S(A)
for the Reed—Frost epidemic, but the results obtained are only partial. For the
above generalized epidemic, the question was discussed by Ball (1986) in a
heuristic way. Recently, Ball and Barbour (1990) considered that model [and
the more general process of Martin-Lof (1986)], and they established, for m
small, a Poisson limit theorem for S(A) with an order of magnitude of the
accuracy.

Our purpose is precisely to provide a thorough treatment of this problem of
Poisson approximation for the final state of the generalized epidemic model.
For that, we construct a sequence of epidemics indexed by n — oo, and defined
as above from the parameters (n, m,, Bn, D). Note that the distribution of D
is supposed to be independent of n, which is not restrictive in practice. Let A,
be the end of the epidemic and let S,(o0) = S,(A,) be the ultimate number
of susceptibles, with law denoted by #(S,(o0)). The main theorem gives a
necessary and sufficient condition on D in order that for any sequence {m,}
there exists a sequence {8,} such that the distributions .#(S,(c0)) converge
weakly to #(b), 0 < b < 00, as n — 0.
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Our method, natural and powerful, exploits directly the probabilistic struc-
ture of the epidemic process. It is based on two key ideas, namely, the building
of an equivalent Markovian representation of the model and the application
of a suitable coupling via a random walk. We indicate that Ball and Barbour
(1990) developed a different technique relying on the Stein—Chen method and
another coupling via a branching process.

2. The main result. Consider a sequence of generalized epidemic models
indexed by n — oo and with parameters (n, m,, B,, D). Let S, (c0) be the final
size of the susceptible population.

DEFINITION 2.1. The quarnitity S,(c0) is said to obey a Poisson limit theo-
rem (PLT) if for any sequence {m,}, there exists a sequence {B,} such that

2.1 Z(S,(00)) =, Z(b), 0<b<oo, asn— oo.

It is clear that if m, = 1,n > 1, then for any n and 8,,

(2.2) P(Sy(00) =n|m, =1) = P(D =0).
Thus, a PLT implies that
(2.3) P(D=0)=0.

From now on, we will suppose that the condition (2.3) holds true.
Put

2.4) h(zx) = fo "P(D > y)dy,
2.5) gx) = [ " P(D > y)dy,
(2.6) t(x)=1— E[e*P].

Hereafter, we will use the concept of slowly varying function (in Karamata’s
sense). An extensive treatment of this subject can be found in the book by
Bingham, Goldie and Teugels (1987).

PROPOSITION 2.2. The quantity S,(oo) obeys a Poisson limit theorem (PLT)
if and only if the two following conditions are satisfied:

2.7 h(x) is a slowly varying function,

(2.8) xIn(x)P(D > x)/h(x) > 0 as x — oo.

" Moreover, under (2.7) and (2.8), a PLT holds with a given sequence of {Bn} if
and only if this sequence satisfies the condition

2.9) (n+mp)t(Br) —In(n/b,) - 0 with b, - b, as n — oo,
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or equivalently,
(2.10) (n+my)Bnh(1/B8,) —In(n/b,) - 0 with b, — b.

We will prove in Proposition 6.5 that (2.8) implies
(2.11) h(x)/In(x) >0 and xP(D>x)—>0 asx— oo
Therefore, Proposition 2.2 might be valid even when E(D) = oo. This is con-
firmed in the corollary below.

COROLLARY 2.3. Suppose that there are positive constants ¢ and xo such
that
(2.12) P(D > x) =c/(xIn(x)) for all x > xo.
Then S,(o0) obeys a PLT [with E(D) = o).

PrROOF. Under (2.12), we have, for x > xo,
A(x) =f0 P(D > y) dy = ¢;Inln(x) + c3,

c1 and ¢y being appropriate constants. Thus, A(x) is a slowly varying function
as required by (2.7). Moreover, we directly obtain that (2.8) too is satisfied,
which yields the result. O

For many applications, E(D) will be finite. It is easily seen that Proposition
2.2 then becomes the following corollary.

COROLLARY 2.4. When E(D) < oo, S,(c0) obeys a PLT if and only if
(2.13) xIn(x)P(D > x) -0 asx— oo.
Under (2.13), a PLT holds with any given sequence {B,} such that
(n+my)B.[E(D) — g(1/Bn)] —In(n/bn) > 0

(2.14)
with b, — b, as n — oo.

In the references indicated in the Introduction, E(D) is supposed to be fi-
nite, and Poisson convergence is generally stated under some specific condition
involving E (D). This leads us to introduce the following definition.

DEFINITION 2.5. Let E(D) < oo. Then S,(o0) is said to obey a strong Pois-
son limit theorem (SPLT) when it obeys a PLT with a sequence {3, } satisfying
the condition

(2.15) (n+ my)BrnE(D) —In(n/b,) — 0 with b, — b, as n — oc.

A' Consider the Reed—Frost epidemic defined from (n,m,, B,, E(D)) and let
S, (c0) denote the corresponding final number f’f susceptibles. From Proposi-
tion 2.2, we see that in fact (2.15) means that S, (co) too obeys a PLT.
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COROLLARY 2.6. Let E(D) < oo. Then a SPLT holds if and only if
(2.16) In(x)g(x) > 0 asx— oo.

PROOF. Suppose that S, (c0) obeys a SPLT. From (2.14) and (2.15), we get
(2.17) (n+mn)Bng(1/Bn) — 0,
and using again (2.15),
(2.18) In(n)g(1/Bn) > 0 asn— oo.

Now we may put m, = 1, n > 1, in (2.15). Then we obtain that In(1/8,) ~
In(n), and inserting this in (2.18) yields (2.16). Conversely, suppose that (2.16)
holds. Clearly, (2.13) then holds too, so that S,(occ0) obeys a PLT. It remains
to verify that any sequence {8,} satisfying (2.15) necessarily satisfies (2.14).
This means that the sequence should satisfy (2.17), or equivalently (2.18),
which is true by (2.16). O

We indicate that if a SPLT holds, conditions (2.14) and (2.15) are equivalent.
In other words, under (2.16), any sequence {8,} that yields a PLT is of the
form given through (2.15). Indeed, (2.16) implies (2.18), which is equivalent to
(2.17) by (2.10), so that (2.14) reduces to (2.15). Moreover, note that condition
(2.16) does hold true for the general epidemic and the Reed—Frost epidemic.

The proof of Proposition 2.2 is rather long, yet natural. It has been sub-
divided into four parts that are presented in the next four sections. In the
last section, we examine briefly the accuracy of the approximation, applying
in particular some well-known results given by the Stein—Chen method.

3. Using a Markov chain representation of the epidemic.

3.1. An alternative representation. To begin with, we are going to associate
with the epidemic process an “equivalent” Markov chain model. By equivalent,
we mean that the variable under study S,(c0) has the same distribution as
the state of this Markov chain when stopped at a suitable Markov time. We
mention that a similar idea was used before in various works [see, e.g., Ball
and Barbour (1990)].

Specifically, we make a change of time scale and we define a new artificial
time £, t = 1,2,..., as the cumulative number of removals in the course of real
time. Put X,(0) = n and for ¢ > 1, let X,,(¢) denote the number of individuals
that escape infectious contacts with the first ¢ infectives removed. For ¢ > 1,
let D; be the length of the infectious period of the ¢th infective removed, and
denote by Z,;(t), 1 < i < 'n, the indicator of the event [the susceptible i
. escapes contacts with that infective (during D,)]. Clearly, we have

Xn(t-1) .
(3.1) Xa(t)= Y, Zni(t), t=1

i=1
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Moreover, for ¢ > 1, each vector Z,(t) = {Z,;(t), 1 < i < n} is a family of
n exchangeable variables having mixed Bernoulli distributions with random
parameter @, ; = exp(—fB,D;). Therefore,

(3-2) Xn(t) =d /'@(Xn(t_ 1)7 Qn,t), tZ 1’

where .# % denotes a mixed binomial law. All the vectors Z,(¢) are inde-
pendent and all the @, ,’s are ii.d. and distributed as the variable @, =
exp(—B,D). Put I,(0) = m, and for ¢ > 1, let I,(¢) denote the number of
infected individuals that are still present just after the ¢th removal. We have

3.3) t+ X, )+ 1,(t) =n+m,, t>0.
We now define T',, as the first time when there are no more infectives, that is,
3.4) T,=inf{t: t+ X,(t) =n+m,}.

Intuitively, we feel that the corresponding state X, (T, ) has the same distribu-
tion as the ultimate number of susceptibles S, (c0). This result is established
in the proposition below.

PROPOSITION 3.1. The process { X ,(t), t > 0} is a decreasing Markov chain,
with

t
(3.5) Xn(t) =q A %B (n’ n Qn,s) , t>1
s=1

At time T, the state X,(T,) has the same law as the variable S,(oc0), which
is provided by the n following relations:

36 E {(Xn(an))/[E(Qﬁ)]nmn—xnm)} _ (Z) ’ l<kh<n

PROOF. The first assertion is obvious from (3.1). The law (3.5) for X, (¢)
is obtained from (3.2) by induction and using the well-known fact that (in
obvious notation)

3.7 HAB(B(,u),v) =g %(l,uv).
From (3.5), we get for 1 < k£ < n that
38) E[(%3)]=(5) @by, e=o

which shows that the process
(54 tm@br, e of

forms a martingale. Now, by (3.4), T, is a Markov time, and applying the
optional stopping theorem then yields the n relations (3.6). These constitute
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a triangular set of n linear equations in the n ultimate state probabilities
P[S,(T,) = k], 1 < k < n. The probability for £ = 0 follows. Finally, we
note that the system (3.6) is identical with the n relations providing the law
of S, (00) [see, e.g., Picard and Lefevre (1990)]. O

3.2. Poisson convergence. As a corollary, a PLT for S, (c0) may be directly
translated in terms of X,(T,). We are going to prove that this is equivalent
to a PLT for X, (n + m,) with the supplementary condition that {S,(co)}
is bounded in probability. Observe that X,(T,) > X,(n + m,), so that the
addition of such a condition is not totally unexpected.

LEMMA 3.2. For any a € N,

(3.9)  P[Sn(00) # Xn(n+my)] < P[Sp(o0) > a]+a?[1— E(Q,)]

PRrROOF. We have, for a € N,
P[S,(0) # Xu(n+my)]
< P[Sp(00) > a]+ P[S,(o0) < a; Sn(00) # Xn(n+my)]
(3.10) = P[S,(0) > a]
+3° PLXA(T) = EIPLX(n 4+ my) # k| Xa(Ty) = AL
k=1

Consider the conditional probabilities in (3.10). By construction, T, = n +
m, — k. Now, arguing as for (3.5), we see that, for ¢t > ¢ > 0,

P[X,(t) # kIXn(t—{) = k]l =1~ P[X,(t) = kIXn(t - {) = k]
(3.11) =1-P[AB (b TTomtg11 Qns) = ]
=1-[E(QH) < k{[1-E(Q.)]
Thus, using (3.11), we obtain from (3.10) that

P[Sy(00) # Xn(n+my)] < P[Sn(00) > a]+[1-E(@x)] i F*P[Xo(Ty) = k]
k=1

hence inequality (3.9). O

PROPOSITION 3.3. The variable S,(o0) obeys a PLT if and only if the two
Jollowing conditions hold:

' (3.12) X, (n+ m,) obeys a PLT (in identical terms),

(3.13) the sequence {S,(00)} is bounded in probability.
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PROOF. Suppose that (3.12) and (3.13) are true. From Lemma 3.2, we then
see that S, (o0) will obey the same PLT if E(Q,) — 1. To show that the latter
condition is satisfied, we proceed by contradiction and we suppose that

(3.14) E(Q,) - g<1 asn— oo
From (3.5) and (3.14), we obtain that
(3.15) E[X,(n+m,)]=n[E(Q,)]""™ - 0 asn— oo,

but (3.15) is in contradiction with the assumption (3.12). Reciprocally, the
weak convergence of 2 (S,(c0)) to a nondegenerate (Poisson) law implies the
property (3.13). For (3.12), Lemma 3.2 shows that a sufficient condition is
again that E(Q,) — 1. Proceeding by contradiction, suppose that (3.14) holds.
We have, for any ¢ > 0 and a € N,

(3.16) P[S,(c0) > ] < P[X,(T,) >al+ Pla> X,(T,) > &].

By construction, the event [a > X, (T),)] is equivalent to [T, > n+m, —a].
Therefore, we obtain from (3.16) that

317 P[S,(0)>¢e]<P[X,(T,)>al+P[X,(n+m, —a)> e&].

Now, by (3.13), P[X,(T,) > a] < ¢ for a large enough. Applying Markov’s
inequality to P[X,(n + m, — a) > &] and using (3.5) and (3.14), we then
deduce from (3.17) that, for any ¢ > 0,

(3.18) P[S,(0) > ] <2¢ for n > n,.
This is in contradiction with the Poisson convergence of S, (c0). O

We are now in a position to give a general sketch of the proof of the main
result announced.

PROOF OF PROPOSITION 2.2. Suppose that S,(cc) obeys a PLT. By defini-
tion, we are allowed to choose m, = 1 for all n. From Proposition 3.3, we thus
know that X,(n + 1) obeys a PLT. Remember that X,(n + 1) has a mixed
binomial law given by (3.5). In Proposition 5.2, we will prove that combining
these two facts implies that

(3.19) n{E[exp(—B,D)]}"*! - b,

(3.20) (n+ 1)Var[exp(—B,D)] — 0 asn — oo.

Using the function #(x) defined in (2.6), we see that (3.19) can be reexpressed
as (2.9), and (3.20) as

' (3.21) n[2¢(Bn) — t(2Bn)] — 0.

In Proposition 6.2, we will establish that (2.9) together with (3.21) lead to the
properties (2.7) and (2.8). Moreover, we will show in Proposition 6.4 that (2.9)
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and (2.10) are then equivalent. Reciprocally, now let {m,} be any sequence,
and suppose that (2.7) and (2.8) hold true, as well as (2.9) or (2.10). As stated
in Proposition 6.4, both (2.9) and (2.10) are then necessarily satisfied. By re-
versing the above argument, we deduce from Propositions 6.3 and 5.2 that
X,(n + m,) obeys a PLT. Thus, by Proposition 3.3, a PLT holds for S, (oc0)
if the condition (3.13) is satisfied. The proof of this property is the object of
Section 4. O

4. Boundedness of the final epidemic state.

4.1. A suitable coupling. For ¢t > 1, put

(41) Wn(t)= 1+Xn(t)_Xn(t_1)
X, (t-1)
4.2) =1- Z [1 — Zn,i(t)].
i=1

From (3.4) and using (4.1), we observe that
mp=Typ+ X, (Th)—n
4.3)
=Wu(1) +---+ Wi (Th).

Now, let r be any positive integer. With r, we associate the sequence of random
variables G, (t)’s, t > 1, defined as

44) Gr(t) = 1= Y [1 = Zos(0)].
i=1

We point out that the G, ,(¢)’s are i.i.d., their distribution being given by
(4~5) 1- Gn,r(t) =d /@(r, 1- Qn,t), t > 1.

Applying a coupling argument, we are going to establish the crucial inequality
below.

PROPOSITION 4.1. For any r € N,

k
(4.6) PX,(T,)>r]<P |:sup D Gur(t) = mn] .

k=T, t=1

PROOF. Since {X,(¢), t > 0} is decreasing, we obtain from (4.2) and (4.4)
that on the set [ X,(T,) > r], we have

(4.7) Wa(t) < Gpr(t), 1<t<T,.
From (4.3) and (4.7), we deduce that
mpy < Gn,r(l) +oeee 4+ Gn,r(Tn)
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and, therefore,
k
(4.8) My < sup Y Gn,(t).
szn t=1

The inequality (4.6) then follows directly. O

From (4.6), we can write, for any r and d € N,
k
4.9) P[X,(Ty)>r]<P(T,<d)+P [supz Gnr(2) > mn] .
k>d =1
Using (4.9), we propose to establish that if a PLT holds, then the sequence
{X.(T,)} is bounded in probability.
LEMMA 4.2. Under (2.7), (2.8) and (2.9), for any a € (0,1),
(4.10) P(T,<an)—0 asn— oco.
PrRoOF. Fix a € (0,1). Since T, > m,, P(T, < an) = 0 when m, > an.
Thus, to establish (4.10), it suffices to discuss the case where m, < an for all
n>1. Putry, =[(1-a)n]eN and consider the variables G, ,(¢)’s, t > 1,

introduced in (4.4). With these r.v’s, we associate a new sequence of random
variables H, ,, ,(t)’s, t > 1, defined by

(4.11) Hn,rl,n(t) = Gn,rl,n(t)I[Gn,rl,n(t) >0]- I[Gn,rl,n(t) < 0],

where I[-] denotes an indicator variable. From (4.4), (4.5) and (4.11), we see
that the H,, ,(¢)’s are ii.d., their distribution being concentrated on three
points —1,0,1. We will show in (4.19) that their mean is negative for n large.
It is also clear that

(4.12) Hypy,(t) 2 Goppy W (8), 21
Now, by construction, we have

P(Ty <an) < P{Xy(T») 2 [(1—a)r]},
and using successively (4.6) and (4.12),

k
P[T,<an]<P [supZ Gnry, () > mn:|
k>1 ¢=1 )

(4.13) \
= P l:supz Hn,r1,n(t) = mn:I .

k>1 =1

To bound the latter probability, we apply Lemma 4.4 below (see Appendix 4.2).
We then obtain from (4.13) and (4.36) that, for n large,

(4.14) P(T,<an)<8 Var[Hn,rl,n(t)]/{E[Hn,n,n(t)]}z-
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From (4.5) and (4.11), the law of H, ,,(¢) is given by
P[Hy,,,(¢) = 1] = P[Gn,r,,(¢) = 1]
(4.15) = E(Q.")
= E[exp(—r1,,f.D)],

P[Hn,rl,n(t) = 0] = P[Gn,rl,n(t) = 0]
(4.16) = raBlQ N (1- Q)]
= rinE{[exp(—(r1,n — 1)B.D)][1 — exp(-B.D)1},

the point —1 carrying the remaining probability mass. Note that, for n large,
rin—1>(1-a)n—2>(1-a)n/2, so that (4.16) then yields

P[Hn,rl,n(t) = 0]
< rinE{[exp(—1 —a)/2)nB,D)][1 — exp(—B.D)]}.

Now, we will prove in Proposition 6.6 that if a PLT holds, any sequence {3}
satisfying (2.9) with m, < an, n > 1, is such that

(4.17)

(4.18) nB, — 0o asn— o0o.

Moreover, we will show in Lemma 4.5 below that under (2.3), the condition
(4.18) implies that the right-hand sides of (4.15) and (4.17) tend to 0. Therefore,
we deduce that

(4.19) E[Hn,,(t)]— -1,

(4.20) Var[H,,,,(t)]—> 0 asn — oc.
Inserting (4.19) and (4.20) in (4.14) then leads to (4.10). O

PROPOSITION 4.3. Under (2.7), (2.8) and (2.9),
(4.21) P[X,(T,)>1]1—- 0 asl— oo, uniformly in n.

PROOF. Fix a € (0,1) and &£ > 0 very small. By Lemma 4.2 and since
T, > m,, we have, for n large enough,
(4.22) P[T, <a(n+m,)/2] <e.

Thus, choosing d = [a(n +m,)/2] € N in (4.9) and using (4.22), we obtain, for
any r € N,

. k
"(4.23) P[X,(T,)>r]l<e+P sup Y Gur(t) = my|.
' k=[a(n+m,)/2] t=1

Applying Lemma 4.4 below to (4.23) would then give
(4.24) P[X,(T») = rl<e+8 Var[Gn,r(t)]/({E[Gn,r(t)]}z[a(n + mn)/z])
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From (4.5), we easily get
(4.25) E[Gr ()]=1-r[1-E(Q)],

(4.26) Var[G, (t)] = r(r — 1)Var(Q,) + rE(Q,)[1 - E(Q,)]
Therefore, we have
Var[Gn, ()] _ { r[1- E(@x)] }2
{E[Gn()]}2 ~ |1-r[1-E(Q,)]
g { Var(@.) 1 }
[1-E(Q,] rl[1-E@u]}"

Put ro, = 1+ [2/(1 — E(Q»))] € N. We note that by (4.25), E[Gy,,,(t)] <0
and by (2.9), ro, ~ 2(n + m,)/In(n). From (4.27), we obtain that, for some
constant c,

(4.27)

Var[Grr,, (D] _ [ Var(1- @Qn) 1}

(4.28) {E[Grro, 0172 = “\[1- B(@WT

c
<c+ EEICME

Combining (4.24) and (4.28) yields, for some constant ¢,
(4.29) P[X,(Ty) 2 ranl < e +&/(n+my) +¢/{(n+my)[1— E(Q)]}.
By (2.9), (n + m,)[1— E(Q,)] ~ In(n). Thus, we deduce from (4.29) that
(4.30) P[X,(T,) >=re,] <2& forn=>n,.
Now, let [ > 0. For any r and n € N, we have
(4.31) P[X,(Ty) 211 < P[Xu(Ty) 2 r]+ Plr > Xu(Tn) 2 1]

In (4.31), choose r = rg, defined above. From (4.30) and the construction of
the model, we get, for n > n.,

sy LX) 2] <26+ P[Ty > n+my —ra, and X, (Ty) > 1]
<2e+ P[X,(n4+m, —rg,) = 1]
Using Markov inequality and (3.5), we obtain from (4.32) that
P[X(Ty)>1]1<2c+E[Xn(n+my—r2,)]/l
=2+ n[E(Q,)]"™ /L.

From Propositions 3.1, 3.3 and 5.2, we know that

(4.33)

(4.34) n[E(Q,)]"™ - b asn — co.
‘Furthermore, by definition of rg,,
(4.35) [E(Qn)] ™" ~exp{[1— E(Qy)]rsn} < exp(3).

Inserting (4.34) and (4.35) in (4.33) then leads to (4.21). O
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4.2. Appendix. We establish here two preliminary results used above. The
former provides an upper bound for the probability that a random walk with
a negative drift reaches a given positive level. This bound is probably not new
but seems to be little known.

LEMMA 4.4. Let U(t), t > 1, be a sequence of i.i.d. r.v.’s (distributed as the
variable U, say), with E(U) < 0. Put S(k) =U(1)+---+U(k), k> 1. Then,
for any r € N,

(4.36) P[sup S(k) > 1] < 8 Var(U)/{r[E(U)*}.

k>r

PROOF. Suppose that r € [27,2/%1) for some j and let S(k) = S(k) —
RE(Y), k > 1. By a standard argument, we have

P[sup S(k) > 1] = P{skt;}r)[S-k +REU)] > 1}

k>r

{ max [S,+kE(U)] > 1}

(4.37) 2i<k<2

[1512132{&1 Sp>1- 2iE(U)].

[e]
<) P
i=j
o0
<) P
i=j
Applying the maximal inequality to (4.37), we obtain

P[sup S(k) > 1] < iVar(Szm)/[l —2EW)T
k>r i=j

(4.38) .
=2 Var(U) Y 2/[1- 2 E(U)T".

i=j

From (4.38), we then deduce that

Plsup S(k) > 1] < {2 Var(U)/[ET) 2} 3 (1/2)),
k>r

i=j
which leads to (4.36). O

The latter result is technical.

LEMMA 4.5. Let a > 0, let X be a positive r.v. with P(X = 0) = 0, and let
{ jn} be a sequence of positive numbers such that nj, — oo. Then,

| (4.39) E[exp(—nj,X)] — 0,

(4.40) nE {exp(—anj, X)[1—exp(—j,X)]} >0 asn— oo.



1152 C. LEFEVRE AND S. UTEV

PrROOF. We have, for any y > 0,
Elexp(—nj,X)] = Elexp(-nj. X)I(nj, X > y)]
(4.41) + Elexp(—nj, X)I(nj, X < y)]
<exp(-y) + P(nj. X < y).
Choosing in (4.41), y = \/nj, yields

(4.42) Elexp(—nj.X)] < exp(—v/njn) + P(X < 1/y/njn).

However, by hypothesis, nj, — oo and P(X < x) — 0 as x — 0+. Thus, from
(4.42) we then deduce (4.39). Now, since 1 — exp(—x) < x and xexp(—x) <
2exp(—x/2) for x > 0, we have

(4.43) nE {exp(—anj, X)[1—exp(—j. X)]} < nE[j,X exp(—anj,X)]

' < (2/a)E [exp(—anj, X/2)].
By (4.39), the right-hand side of (4.43) tends to 0, implying (4.40). O

5. Poisson convergence of mixed binomial laws. In the proof of
Proposition 2.2 (see Section 3), we exploited a characterization of the Poisson
convergence of a certain class of mixed binomial distributions. Because of its
own interest, this matter is investigated here separately. We begin with a

very simple result, most probably known but apparently rarely referred to in
the literature.

PROPOSITION 5.1. Let Y,, n > 1, be a sequence of r.v.’s defined on [0,1].
For n> 1, let Z, be a r.v. having the mixed binomial law .# %(n,Y ). Then,
asn — oo, L(Z,) =, P(b), 0 <b < oo, if and only if

(5.1) nY, »>pb.
PROOF. Let us argue in terms of probability generating functions. Fix x in
[0,1]. We have, for any ¢ > 0,
E(x”")=E{[1-Y.(1-x)]"}
=E{I(nY, <cb)exp[nIn(1 -Y,(1—x))]}
+ E{I(nY, >cb)[1-Y,(1—-x)]"}
=E{I(nY, <cb)exp[nIn(l —Y,(1—x))]} + b.r exp(—cd),

where 0., is some constant in [0,1]. Choose ¢ largé enough in (5.2). We then
see that as n — oo,

o E(x”") ~ E{exp[nY (x - 1)},
which tends to exp[b(x — 1)] if and only if (5.1) holds true. O

(5.2)

We now deduce the result used earlier.
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PROPOSITION 5.2. Let Qns, 1 < s <n+my,, my > 0and n > 1, be a
double sequence of r.v.s such that within each row, that is, for each n, the
Qns’s are i.i.d. and distributed on [0, 1] as the variable Q,, say. For n > 1, let
X,(n+ my) be a r.v. having the law

n+my
(5.3) X.(n+m,) =g 4B (n, ]_[ Qn,s) .
s=1

Then, as n — oo, L(X,(n +my)) =, £(b), 0 < b < oo, if and only if the
following two conditions are satisfied:

(5.4) n[E(Q,)]"*™ — b,
(5.5) (n+ my)Var(Q,) — 0.

PrOOF. By Proposition 5.1, it is equivalent to show that as n — oo,

n+mp

(5.6) nY,=n l_[ Qn,s —pb

s=1

if and only if (5.4) and (5.5) hold true. First, suppose that these two conditions
are satisfied. A direct calculation yields

6D E(nY,) = n[E(Qu)]"" — b,
Var(nY ) = n* {[E(Q)]™ — [E(Qu))|
Var(Qn) ]m »
(E(Q.))?

(5.9) ~ b%(n 4+ my,)Var(Q,) — 0.

By Tchebychev inequality, we then deduce (5.6). Let us prove the converse. We
start by noting that E(@,) — 1and thus @, —p 1. Indeed, if E(Q,) - q < 1,
then E(nY,) — 0, which is in contradiction with (5.6). Now, let us express
(5.6) as

(5.8) = (n[E(Qu)1"+™ ) { [1 -

n+mp

(5.10) In(n)+ Y In(Qns) —>p In(d).

s=1
Forl<s<n+m,andn>1, put
(5.11) Xns=[1/(n+m,)]In(n/b) +In(Q,).

Clearly, the variables X, ; are i.i.d. within each row and X, s —p 0 as n — oo.
»Thus they obey the condition of infinite smallness [see, e.g., Petrov (1975), page
+ 63]. Moreover, (5.10) states that
n+m

(5.12) S X —p 0.

s=1
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By a standard result [Petrov (1975), Theorem 3], (5.12) together with the
previous property are equivalent to the three following conditions:

(5.13) (n+m,)P[| Xn1|>t] >0,

(5.14) (n+ mn)E{“ Xn,l |]I[| Xn,l |< t]} — 0,

(5.15) (n +mn)Var{[| Xn,l [1I[] Xn,l |< t]} — 0,

for every t > 0. Using (5.11), these become

(5.16) (n+m,)P(Qn < q)—> 0,

(517 (n+my)E{[(1/(n+my,))In(n/b) +In(@:)I(Qn > q)} = 0,

(5.18) (n+ my,)Var{[(1/(n+ m,))In(n/b) +In(Q,) (@, > q)} — 0,
for every q in (0, 1). Furthermore, inserting (5.16) in (5.17) leads to

(5.19) In(n/b) + (n + m,)E[In(Q,)I(Q» > q)] - 0.

After multiplication by [1/(n + m,)]In(n/b) (— 0), (5.19) implies that
(5.20) In(n/b)E[In(Q,)I(Qr > )] — 0.

By (5.17) and (5.20), (5.18) reduces to

(5.21) (n+ my)E{[In(Q,)P1(Q, > q)} — 0.

Since | In(1 — x) |> x for x > 0, (5.21) implies that

(5.22) (n+mn)E[(1- Q,)’1(Q > q)]— 0.

We are now ready to derive (5.4) and (5.5). From (5.16), (5.22) and the fact
that E(Q,) — 1, we directly obtain (5.5). By (5.22), (5.19) yields

(5.23) In(n/b) + (n+ m,)E[(Q» — 1)I(@, > ¢)] — 0,

and applying (5.16) then leads to (5.4). O

In Section 7, we will estimate the accuracy of the Poisson approximation in a
PLT. To this end, we need to examine that question within Propositions 2.1 and
2.2 above. Let d(-,-) denote the total variation distance between probability
distributions over N; for a concise presentation of this notion, see, for example,
Appendix A.1 of the book by Barbour, Holst and Janson (1992).

PROPOSITION 5.3. Let Z,, n > 1, be a sequence.of r.v.’s distributed as in
Proposition 5.1. Then for any b > 0,
d[£(Zy,), 2(b)]
< min(1,1/6){n2 Var(Y,) + n[E(Y,) ]2 + n[E(Y,)] - b}.

In particular, if Z, = Xp,(n+my), n > 1,is distributed as in (5.3), then (5.24)
holds with E(nY ,) and Var(nY ) given by (5.7) and (5.8), respectively.

(5.24)
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PROOF. Obviously, Z, =4 .# %(n,Y,) is the sum of n indicators that are
increasing functions of Y,. By Theorem 2.E in Barbour, Holst and Janson
(1992), these indicators are positively related. Thus, applying their Corollary
2.E.1 yields

d[£(Zy,), #(b)] < min(1,1/b){Var(Z,) — b+ 2n[E(Y,)]*},

which reduces to (5.24). The special case is straightforward. O
6. Application to the embedded Markov model.

6.1. Convergence condition. Let us come back to the epidemic context (and
to the proof of Proposition 2.2). To obtain the characterization (2.7) and (2.8)
on D ensuring a PLT holds, we used Proposition 5.2 through the three results
that are derived below. We start by stating a simple technical lemma from
real analysis.

LEMMA 6.1. Let gi(x),i=1,...,k+1, with k, 1 > 1, be monotone contin-
uous functions from R* to R*. If there exists a sequence {j,} such that

Jn = 00, Jnldns1 — 1,

gz(]n)/gl(.]n+l)_>1, l=1”k+l’

k k+1
ngi(.jn)/ [] gi(jn) > A asn— oo,
i=1 i=k+1
then
k k+1
]_[gi(x)/ [] g(x) > 2 asx— .
i=1 i=h+1

PROPOSITION 6.2. Let {B,} be a sequence satisfying (2.9) with m, =1, n >
1. If, in addition, it satisfies (3.21), that is,

(6.1) n[2t(Br) —t(2B,)] > 0 asn — oo,
then (2.7) and (2.8) hold true.
PROOF. First, let us show that under (6.1), {8,} is such that, for any A €
[1,2],
(6.2) t(AB)/t(Br) > A asn — oo.

Note that (6.1) implies (6.2) for A = 2. Since #(x) is a continuous increasing
,c'oncave function, with ¢(0) = 0 by (2.3), we can write, for A € (1,2),

(6.3) (1/M)t(Ax) < t[(1/A)Ax + (1 — 1/1)0] = ¢(x),

(6.4)  t(Ax)=t[(2—Mx+(A—1)2x] > (2 — AN)t(x) + (A — 1)#(2x).
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From (6.3), (6.4) and (6.2) with A = 2, we get
lim sup[#(AB,)/t(Bn)] < A,

lim inf[#(AB,)/t(Ba)] =2 - A+ (A =1)2 =4,
which yields (6.2). Now, it is clear that, for any sequence {3, } satisfying (2.9),

(6.5) t(Bn)/t(Bry1) > 1 asn — oo.
Furthermore, under (6.1), we have
(6.6) Bn/Brnt1 — 1 asn — oo.

Indeed, suppose that there exists a subsequence {n’} such that, for instance,
Br > ABwa41 for some A > 1. Put A = A A 2. Since #(x) is increasing and using
(6.2), we obtain that

tBn)/t(Brs1) = t(ABn’+1)/t(Bn’+1) - A>1,

which is in contradiction with (6.5). At this point, we are ready to establish
that ¢£(1/x) is a regularly varying function of index —1, that is [see Bingham,
Goldie and Teugels (1987)], for any A > O,

(6.7) t(A/x)/t(l/x) > A as x — oo.

In fact, combining (6.2), (6.5) and (6.6) and applying Lemma 6.1, we find that
(6.7) holds true for A € [1,2]. From this, we directly see that (6.7) is also valid
for A € [1/2, 1]. Now note that any A > 0 can be expressed as A = 0" for some
reNand 0 € [1/2, 2]. Therefore, writing

t(07/x)/t(1/x) = [£(67/x)/t(07 /)] - [8(6/%)/(1/x)],
we deduce that (6.7) holds for any A > 0. Moreover, we observe that the
Laplace—Stieltjes transform of A(x) is given by
6.8) f =% dh(x) = t(s)/s,  Re(s) > 0.
0

From (6.7) and (6.8), we then obtain [see Bingham, Goldie and Teugels (1987),
Theorem 1.7.1] that, as stated by (2.7), A(x) is a slowly varying function. We
mention that, as a consequence,

(6.9) xt(1/x)/h(x) > 1 as x — oo.
Let us prove (2.8). We have
26(B2) ~ 28,) =2 [ P(D > t/Bn)e (1= <) dt
(6.10) o .
: > 2P(D > 1//3n)f e t(1—e) dt,
. 0
so that (6.1) implies that
(6.11) nP(D>1/8,) > 0 asn — oo.
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However, (2.9) with m,, =1, n > 1, and (6.9) yield successively

(6.12) n~ ln[l/t(Bn)]/t(Bn) ~ ln[l/t(Bn)]/[Bnh(l/Bn)]
Furthermore, from (6.3), (6.9) and (2.7), we get that, for every ¢ > 0,
(6.13) Brt(1) < t(Bn) ~ Bah(1/Bn) < By °c(n, &),

where ¢(n, &) — 0 as n — oo [see Bingham, Goldie and Teugels (1987), Theo-
rem 1.5.4]. Thus, from (6.12) and (6.13), we obtain that

(6.14) n ~1n(1/B,)/[ Brh(1/Br) ]
Inserting (6.14) in (6.11) and applying Lemma 6.1 then leads to (2.8). O

PROPOSITION 6.3. Under (2.7), (2.8) and (2.9),
(6.15) (n+m,)[2¢(Br) — t(2B8,)] > 0 asn — oo.

PROOF. From (6.10), we have
0 < 2t(Br) — t(2Bx)

1 ’ 00
G16) <2 PD>t/ptdt+2P(D>1/p,) [ e dt

1/Bn
_ 23,21[ P(D > t)t dt + (2/e)P(D > 1/B,).
0
Thus, a sufficient condition for (6.15) is that when multiplied by n + m,, each
term in the right-hand side of (6.16) tends to 0. Arguing as for (6.12) and
(6.14), we obtain from (2.9) and (2.7) that, for n large,

(6.17) (n+my) < ¢ In(1/Bn)/[Bnh(1/Br)],

for some constant c¢. Put x = 1/8, — oo. From (2.8) and (6.17) we then deduce

that
n p 1/Bx
6.18) (n+myp)P(D > 1/B)
<cx In(x)P(D > x)/h(x) > 0 asn — oo.

Moreover, from (6.25) below, we get

1/Bn
(n+ mn)B,%f P(D > t)t dt
(6.19) 0 . ‘
<c ln(x)/o P(D > t)t dt/xh(x) — O,

which completes the proof. O

PROPOSITION 6.4. Under (2.7) and (2.8), the two conditions (2.9) and (2.10)
for {B.} are equivalent.
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PrOOF. We have
| t(Bn) - Bnh(]-/ﬂn) |

1 [e9}
(6.20) = Vo P(D > t/Bn)(1—e™) dt—[1 P(D > t/Bn)et dt

2 l/Bn
< ano P(D > t)t dt + (1/e)P(D > 1/By).

Suppose that {3,} satisfies (2.9). We have shown in Proposition 6.3 that (2.7)
and (2.8) imply (6.18) and (6.19). Thus we obtain from (6.20) that

(6.21) (n+my)[t(Br) — Brh(1/Br)] > 0 asn — oo.

Combining (2.9) with (6.21) then leads to (2.10). Conversely, suppose that {3, }
satisfies (2.10). By (6.20), a sufficient condition for (2.9) is that (6.18) and (6.19)
hold true. From (2.7) and (2.10), we find that 1/8,, > 4/n for n large. Therefore,
we get from (2.10) that, for n large,

(6.22) (n+my) <2 In(n/bn)/[Brh(1/Bn)] < ¢ In(1/Br)/[Bnh(1/Br)],

for some constant c. Now, as above, (6.22) together with (2.7) and (2.8) imply
(6.18) and (6.19). O

6.2. Complementary results. We derive hereafter two related propositions
that have been applied earlier [see (2.11), (6.19) and (4.18)].

PROPOSITION 6.5. Under (2.7) and (2.8),

(6.23) xP(D > x) - 0,
(6.24) h(x)/In(x) — O,
(6.25) 1n(x)f0x P(D > t)t dt/[xh(x)] = 0 as x — oo.

PrROOF. We start by showing that (2.8) alone implies (6.23) and (6.24).
Put &, = x In(x)P(D > x)/h(x), x > 0. By (2.8), there exists x¢ such that
£z, < In(2) for all x > x,. We have, for x > x,

2x )
h(2x) = h(x) +f P(D > t) dt < h(x) + xP(D > )
! = h(x)[1+ &2/ In(x)] < In(2%)[A(x)/ In(x)].
By iterating, we obtain, for x > 2¥1xy, £ > 1, that

(6.26) h(x)/In(x) > h(2x)/In(2x) > --- > h(2kx)/ In(2*x).
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Since A(x) is increasing, we deduce from (6.26) that, for x € [2¥~1xg, 2%x0],
k>1,

h(x) < h(2*x0) < In(2*x0)h(x0)/In(x0)

(6.27)
< In(2x)h(x0)/In(x0) < c(x0) In(x),

for some constant c(xg). Inserting (6.27) in (2.8) then yields (6.23). Moreover,
fix u > e. We have, for x > u,

x
h(x)5u+/ P(D > ¢) dt
(6.28) u
< u+ {sup;s,[P(D > £)t]} In(x).

Choosing u = 1/In(x) in (6.28) and using (6.23) then leads to (6.24). Now, let us
prove that (2.7) and (2.8) imply (6.25). By (2.7), A(x)/In(x) is a slowly varying
function [see Bingham, Goldie and Teugels (1987), Proposition 1.3.6]. Thus,
we obtain by their Proposition 1.5.8 that, for x > e,

(6.29) fx[h(t)/ln(t)] dt < ¢(h)xh(x)/In(x),

for some constant ¢(%). From (6.29), we find, for x > e,
x x1/3 x
/(; P(D > t)tdt= /0 P(D > t)t dt +f1/3 e h(t)/In(2)] dt

< 22 4 £n f  [h(0)/In(0)] dt
< 223 4+ £,58(h)xh(x)/In(x),
which yields
(6.30) In(x) fo ’ P(D > t)t dt/xh(x) < In(x)/xPh(x) + £,58(R).

Since by (2.8), &,1s — 0 as x — 00, (6.25) follows directly from (6.30). O

PROPOSITION 6.6. Under (2.7), (2.8) and (2.9), and if m, < an, n > 1, for
some a > 0, then nf3, - oo as n — oo.

PrOOF. From (2.7) and using (6.9), we can write that for n large,
(6.31) £(Bn) < c1Bah(1/Bn) < c2v/Bns
. for some constants c1, c2. As m, < an, we obtain from (6.31) that, for n large,
(6.32) (n+mp)t(B,) —In(n/b,) < (1+ a)czn\/E —1In(n/b,).

By (2.9), the left-hand side of (6.32) tends to 0. Thus, we may say that there
exists a constant cs such that c3 In(1/8,) < In(n/b,) for n large. From this
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together with m, < an, we get, for n large,
(n+my,)Bnh(1/Bn) —In(n/by,)
< h(1/B)[(1+a)nB, —c3 In(1/B,)/h(1/Br)].

By Proposition 6.4, the left-hand side of (6.33) tends to 0. Since by (6.24),
In(1/8,)/k(1/B,) — oo, we then deduce that n8, — oo as announced. O

(6.33)

7. On the accuracy of the Poisson approximation. Let us examine
the case, generally true in practice, where E(D?) < oo. We directly see that
the condition (2.16) is then satisfied. Therefore, by Corollary 2.6, a SPLT holds
and {B,} is necessarily of the form (2.15). Now, a further problem is concerned
with quantifying the accuracy of the Poisson approximation. The technique
developed in this work enables one to obtain an order of magnitude for the
error involved.

A main point is that when m, is small, the rate of convergence is rather
slow, typically of order 1/In(n). The reason for that comes from the nature
of the model itself. For illustration, consider the general epidemic process (D
having an exponential law of parameter u), with m, =1, n > 1. From (2.15),
we have

P[Sp(c0) =n | this model | = u/(n+ Bnn) = O(1/In(n)).
Thus, the total variation distance between .Z(S,(c0)) and £(b) is such that
.1 d[.Z(S,(c0) | this model ), £(b)]
= p/(p+ Ban) — P[Z(b) = n] = O(1/1In(n)).

In fact, it can be shown that the upper bound for d[-,-] is also of the same
order. That result is in agreement with Corollary 2.6 in Ball and Barbour
(1990).

We are going to point out that when m, is sufficiently large, the approxi-
mation becomes significantly better.

PROPOSITION 7.1. Suppose that E(D?) < co and m, > an, n > 1, for some
a > 0. Then, for any b > 0, when n is large,

(7.2) d[Sn(00), 2(b)] < ¢(1+b)*[In(n)]*/n,

where c is a constant function of a, E(D) and E(D? ); but independent of b.

PROOF. To begin with, we indicate that all the constants cj,cg,... intro-
duced hereafter have the above property. We also note that since 1—exp(—x) <
x for x > 0,

(7.3) E[(1-Q.)%] < BLE(D).
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By well-known properties of d[-,-], we can write
d[£(Sn(00)), 2(b)] < d[-£(8Sn(00)), £(Xn(n+mn))]
+d[£(Xn(n +my)), 2(b)]
< P[Sy(00) # Xn(n + my)]
+d[£(Xn(n+my)), P(n[E(Qn)]™)]
+d[Z(n[E(Qn)]"™), 2(b)]
= p1(-) + de[-,-]+ds[-,-], say.
By Theorem 1.C in Barbour, Holst and Janson (1992), we have
dsl-,-]1 <In[E(Q:)]""™ - b].
From (2.15) and since m, > an, we then obtain, for n large,
(7.5) ds[-,-] < e1b[In(n)?/n.
From (3.5) and Proposition 5.3, we get

(7.4)

n+mp
do[,-1<n? Var( I1 Qn,s) +[E(Qn)]"™.
s=1
Combining (2.15), (5.8), (7.3) and m, > an then leads, for n large, to
(7.6) dsl-,-]1 < c2b®[In(n)*/n.

To bound pi(-), we will use Lemma 3.2 and an argument similar to that
followed in Proposition 4.3. First, note that T, > m, > an. With rg, defined
as before, we deduce from (2.15), (4.9), (4.24), (4.27) and (7.3) that, for n large,

(7.7) P[Sn(oo) = r2,n] < c3/n.

Let us choose in (4.31), r = rg, and [ = ¢bIn(n), for any ¢ > 0. From (7.7), we
then obtain

(7.8) P[S,(c0) > ¢b In(n)] < cs/n+ P[X,(n+m, —rg,) = ¢b In(n)].
However, it is clear that
P[X,(n+ my — rg,) = ébln(n)]
<d[£(Xn(n+mp—r2,)), P(n[E(Qy)] )]
+ P[2(n[E(Q,)]"*™ ™) > ¢bIn(n)]
= dal-,-]+ us(), say

Arguing as for ds[-, ], it can be shown that d4[-,-] has an upper bound of the
same order [given in (7.6)]. In us(-) choose ¢ sufficiently large. Since for any
A, kand A >0,

P[2(A) = k] < exp{—hk — A[1 - exp(h)]},

(7.9)
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we get from (2.15) and m, > an that, for n large, an upper bound for us(-) is

of order 1/n. Inserting these bounds in (7.9) and (7.8) yields
(7.10) P[S,(00) > ¢bIn(n)] < cs(1 4 b%)[In(n)1P/n.

Now, let us apply (3.9) with @ = ¢b In(n). From (7.10) and (2.15) with m,, > an,
we obtain that, for n large,

p1() < ca(148%)[In(n)?/n + c5b*[In(n) P /n
< c6(1+6*)[In(n)P/n.
Combining (7.4), (7.5), (7.6) and (7.11) then implies (7.2). O

(7.11)
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