The Annals of Probability
1995, Vol. 23, No. 4, 2022-2056

LP-BOUNDEDNESS OF THE OVERSHOOT
IN MULTIDIMENSIONAL
RENEWAL THEORY

By PHILIP S. GRIFFIN! AND TERRY R. MCCONNELL

Syracuse University

Let T, be the first time a sum S, of nondegenerate ii.d. random
variables leaves a ball of radius r in some given norm on R¢. In the case
of the Euclidean norm we completely characterize LP-boundedness of the
overshoot [|Sy || — r in terms of the underlying distribution. For more
general norms we provide a similar characterization under a smoothness
condition on the norm which is shown to be very nearly sharp. One of the
key steps in doing this is a characterization of the possible limit laws of
Sz, /IS, || under the weaker condition [|Sy |l/r —, 1.

1. Introduction. We extend to multidimensions results from renewal
theory on the boundedness of moments of the overshoot of a random walk at
the exit time from a ball of radius r. Roughly speaking, the results of this
paper cover the nonzero mean case; when combined with those in [4] they
provide necessary and sufficient conditions for the overshoot to be bounded in
L?. The results apply to many norms in addition to the Euclidean norm, for
example, all /9-norms, where 1 < g < «. We also show that the basic di-
chotomy that occurs when studying the overshoot is not between the mean-
zero and non-mean-zero cases, but between two analytic conditions related to
relative stability and asymptotic normality. These conditions are reflected
probabilistically in a sharp difference in the exit behaviors of the walk.

Let Z,Z,,Z,,... be a sequence of nondegenerate, independent and identi-
cally distributed Rd-valued random vectors, and set S, = X7_,Z;. Let || |l be
an arbitrary norm on R? and define T, = min{n: ||S, || > r} The overshoot,
ISz Il — r, is one of the main objects of study in classical renewal theory. For
example, in many applications of renewal theory, d =1 and the Z, >0
represent the lifetimes of components of some device which are replaced by
identical copies upon failure. The overshoot, Sy —r, then represents the
remaining lifetime of the component in use at time r. If d = 1, but Z is not
assumed to be nonnegative, then instead of [|Sy | — » many authors have
considered the one-sided overshoot, that is, with T, replaced by T =
min{n: S, > r}. We will consider only the two-sided case since it generalizes
naturally to higher dimensions.
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Our interest in the multidimensional overshoot comes from the problem of
trying to determine when it is bounded in L?, that is, sup, . o, E(ISy |l — r)? <
«, In one dimension this problem has been studied in two quite distinct cases:
the first when EZ # 0 and the second when EZ = 0. As the following
standard result suggests, the behavior of the overshoot is strikingly different
in these two settings.

THEOREM 1. Assumed =1 and p > O:

(L1)  ifEIZI""? < wand EZ # 0, then supE(ISy| — r)" < o;

r>0

(1.2) if E|Z|**? < % and EZ = 0, then supE(ISy | — r)’ < =.

r>0

This result can be derived from the corresponding one-sided version. The
one-sided version is obtained from results for nonnegative walks by passing
to the ladder height process; see, for example, [6] and [9]. This approach does
not generalize to higher dimensions.

We found in [4] that the following condition played a crucial role in
extending (1.2) to higher dimensions:

(E)

For a complete description of the LP-boundedness of moments of the over-
shoot we need to modify this condition slightly. Let u be a measure supported
on the unit sphere, and let V be the smallest subspace of R? which contains
the support of u. We say that u is complete if w(I') > 0 for every cone I', with
vertex at the origin, which is open in V. Thus, for example, a measure
supported on {(1, 0), (0, 1)} is not complete, but one supported on {(— 1, 0), (1, 0)}
is. We then introduce the following exit condition on the walk:

The family Y, =Sy /lISr |l has no subsequential limit
supported on a closed half-space.

(©) every subsequential limit of the family Y, is complete.

The following results are minor modifications of two of the main results in [4].

THEOREM 2. Fix p > 0. Then the following are equivalent:

(1.3) ElZ|**? <~ and EZ =0;
(1.4) supE(IISy || - r)” <= and (C).
r>0

The result corresponding to p = 0 is the following theorem:

THEOREM 3. The following are equivalent:
(1.5) ElZ|* <> and EZ =0,
(1.6) (IISy Il - ) is tight and (C).
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The corresponding results (Theorems 1.2 and 1.3) of [4] are different in
that (C) is replaced by (E) and the random variables are assumed genuinely
d-dimensional, that is, not supported on any affine subspace. The proofs of
Theorems 2 and 3 are slight modifications of those of Theorems 1.2 and 1.3 in
[4].

We now turn to the main results of this paper, which cover the situation
dealt with in (1.1). We need to introduce another exit condition on the walk
which is in a sense at the opposite extreme from (C):

(A) every subsequential limit of the family Y, is an atom.
We shall be concerned only with random walks for which

1Sy |

r

-
p

(1.7)
Observe that this condition is much weaker than either L”-boundedness or
tightness of the overshoot and is presumably the weakest condition under
which study of the overshoot is of interest.

It is perhaps surprising that (1.7) severely constrains the subsequential
limits of Y,. In general it is straightforward to construct examples which
show that any given distribution on the unit sphere can arise as a subse-
quential limit of Y,. However, when (1.7) holds, either (C) must hold or (A)
must hold.

THeOREM 1.1. If ISy lI/r —,1, then either (C) or (A) holds.

We will in fact prove a refinement of this result which gives simple
necessary and sufficient analytic conditions that determine whether (C) or (A)
holds. To describe these results we need to introduce some notation. For
r> 0 let

G(r) = P(IZll > r),
K(r) =r2E(1ZI% 12l < r),
M(r)=r'E(Z;|Zl <r)

and

h(r) = G(r) + K(r) +|M(r)].

THEOREM 1.2. The following are equivalent:

1Sy, |

(1.8) -

-,1 and (A);

Mol
(1.9) rh_{rc}o h(ry
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THEOREM 1.3. The following are equivalent:

(1.10) ”SrT’” -,1 and (C);
. K(r)
(1.11) Mmooy T

These results show that study of the overshoot falls into two distinct cases,
given analytically by (1.9) and (1.11), and giving rise to very distinctive exit
behavior. It is also interesting to note that in Theorem 1.2 the mean term in
h(r) dominates [however, (1.9) does not imply EZ # 0, or even that the mean
exists], while in Theorem 1.3 it is the second moment term which dominates.
These conditions are related (in fact, equivalent in one dimension) to relative
stability and asymptotic normality, respectively; see [3].

In conjunction with the results described above, the following result com-
pletes the characterization of LP-boundedness of the overshoot in the case of
the Euclidean norm. First recall that Z is said to belong to weak L?”, denoted
WL?, if sup, . , r?G(r) < .

THEOREM 1.4. Fix p > 0 and assume || || is the Euclidean norm. Then the
following are equivalent:

(1.12) |ZIl e WL'*?, EZ+0 and E{(Z,EZ)\P <o,
(1.13) supE(IISy Il - r)* < and (A).
r>0

Whereas this result is stated only for the Euclidean norm, Theorems 2 and
3 are valid for arbitrary norms. The difficulty with norms that are not
isotropic stems from the fact that a nonzero mean provides a preferred
direction. As we will see, the behavior of the boundary of the unit ball at the
point i = EZ /| EZ|| plays a crucial role. It seemed to us reasonable to expect
that if (Z, EZ),€ LP"! were replaced by (Z,v),€ L?*! where v is the
outward unit normal at [, then Theorem 1.4 should remain true in all cases
where [ is a smooth point on the unit sphere. This turns out not to be the
case. To state the result for more general norms we need to introduce the
modulus of smoothness

p(h) = sup{3(llz + wll + llz — wll = 2): llzll = 1, lwll = &}.

As we indicate later, p is strictly increasing if (as we may assume) d > 2. The
smoothness condition we must impose on the norm is the integrability
condition (1.14) below. As we discuss in Section 5, this implies the existence
of a unique outward unit normal » at u.
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THEOREM 1.5. Fix p > 0 and assume || || has modulus of smoothness

satisfying

u 1*r du

1.14 — < ®,
(L14) fo( pl(u)) u
Then the following are equivalent:
(1.15) I1ZIle WL'*?,  EZ +#0 and E{Z,v)}'? <
(1.16) supE(ISy |l - r)’ <= and (A).
r>0

In the case of the Euclidean norm p~'(u) ~ u/? and v = EZ/||EZ||, so we
recover Theorem 1.4. More generally for /?-norms with 1 < g < «, p~(u) ~
u/9Va/3 Hence the integral in (1.14) converges, and so (1.15) and (1.16)
are equivalent. We think it likely that the integral test in (1.14) is sharp.
That is, if the integral diverges, then (1.15) and (1.16) are not equivalent. We
will give an example in which the integral barely diverges, and (1.15) and
(1.16) are not equivalent; see Example 5.11. We also point out in Remark 5.9
that all that is needed in (1.14) is a local version of p in a neighborhood of f.
Thus, for example, we can extend Theorem 1.5 to cover the case where [ is a
smooth point on the boundary of the unit ball in the I!- or /*-norm; see also
Example 5.10 for the case when # is not a smooth point.

If the integral in (1.14) diverges, then Theorem 1.5 gives no information
about the L”-boundedness of the overshoot. We present one result which is
considerably easier to prove than Theorem 1.5, and which is valid for arbi-
trary norms. It gives conditions which are necessary and conditions which are
sufficient for (1.16).

THEOREM 1.6. Fix p > 0. Then

(1.17) IZIle L**? and EZ # 0

implies

(1.18) supE(ISy | - r)’ <= and (A)
r>0

implies

(1.19) I1ZIl e WL*P and EZ # 0.

Theorem 3 gives necessary and sufficient conditions for tightness when (C)
holds. The analogous result when (A) holds seems considerably more difficult.
Again it is the problem with preferred directions. We do have the analogue of
Theorem 3 in one dimension, but in higher dimensions the problem remains
open. Before stating the one-dimensional result, observe that since we are in
the situation where (A) holds, we may assume that (1.9) holds. In one
dimension it is easy to check that this forces either M(r)/h(r) - 1 or
M(r)/h(r) - —1. Clearly there is no harm in assuming it is the former.
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THEOREM 1.7. Assume d = 1 and M(r)/h(r) — 1. Then the following are
equivalent:

(1.20) (ISy | — 1) is tight;

(1.21) (Sp, —r)" is tight;
= dF

(1.22) [ - ((uu))

Given the results on LP”-boundedness of the overshoot when |M(r)|/
h(r) — 1, one would perhaps expect the condition for tightness in this setting
to be slightly weaker than Z € L!. However, this is not the case, as we point
out after the proof of Theorem 1.7 in Section 6. If Z € L! and EZ > 0, then it
is easy to check that M(u) ~ A(u) ~ EZ /u and hence

M( r) «dF( u)

() f R(w)
that is, (ISy | —r) is tight. If Z € L' and EZ = 0 it is still possible that
M(r)/h(r) — 1. In this case, however, [*(dF(u)/h(u)) may or may not be
finite; see Example 6.3.

The plan of the paper is as follows: Section 2 contains preliminaries and
some further notation. The proofs of the results on the exit conditions (C) and
(A) are given in Section 3. After some estimates on the occupation measure in
Section 4, we prove the main results on L?-boundedness of the overshoot in
Section 5. Finally in Section 6 we discuss tightness of the overshoot.

2. Preliminaries. The interplay between the functions G(r), K(r) and
M(r) plays an important role in our analysis. Each of these functions is right
continuous with left limits and approaches 0 as r — . Their behavior near
r =0 will not be of much importance, but we point out that G(r) —
P(|X]|| > 0)> 0 as r - 0; hence, h(r) is bounded away from 0 as r — 0.
Furthermore, & is strictly positive for all r > 0 since the same is true of
G + K; see below.

The importance of the function 2 can be seen from the following estimate
of Pruitt [11]:

1
2.1 ET. = ——
- TR
where = means that the ratio of the two quantities is bounded above and

below by constants independent of r > 0. The following estimates on the
distribution of T, can also be found in [11]:

(2.2) P(T.>n) < P(T. < n) < cnh(r),

c
nh(r)’
where ¢ denotes a universal constant which may change from one usage to
the next. The function 4 also satisfies a useful doubling property:

(2.3) h(r) = h(2r).
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It is convenient to introduce @ = G + K. Observe that
2 2 "
r*Q(r) = E(IXI A r)* = [2uG(u) du.
0

Since @(r)| and r?Q(r)1, it is easy to check that @ satisfies a doubling
property analogous to (2.3).
The following lemma will be needed in the proof of Theorem 1.5:

LEMMA 2.1. Assume Z € L*** for some &€ > 0. Then

. o M)l
EZ +0 ifandonlyif lim _’T(T =
r—x

Proor. The implication from left to right is easy and in fact it does not
require the side condition that Z € L'**. To see this, observe that ||M(r)|| ~
l wll/r, while

1 r2 G d 1
Qr) - 7 [[2u6(u) du = of 1 |
since Z € L.
For the other direction assume || M(r)||/A(r) - 1 and EZ = 0. Then

Zl; 121 > r) N |E(Z; 11ZIl > r)|

rG(r) - rG(r)
B E(Z;11Zll < r)|

- rG(r)

Hence
J7G(u) du
B ——— )
rG(r)

Thus by the theory of regular variation (see [3)),

o(r) = j;wG(u)du

is slowly varying. However, G(u) < cu~*** since Z € L'*°. Hence o¢(r) <
cr”°. However, ¢ being slowly varying entails that r%(r) — « for all & > 0,
which is a contradiction. O

We will let B(w;r) ={z: llz —wl| < r} and use dB(w;r) to denote its
boundary. For ¢ € dB(0;1) and B8 [0, 1], let

I'(¢,B) ={z:{z, &> = Bll=ll},

where ( , ) denotes the usual inner product on R¢. Thus in the case of the
Euclidean norm, T'(¢, B) is the cone with vertex at the origin and having 8
as the cosine of the angle between ¢ and any generator of the cone.
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Let U, be the occupation measure defined by
T,-1
U.(dx) = E( Y I(S; dx))
j=0
The next lemma follows from essentially the same proof as Proposition 3.1 in
[4].

LEMMA 2.2. For any nonnegative Borel function ¢: R*? - R,

Eo(Sp, Xr) = [B(O r)E((p(Z +2,2);1Z + 2l > r)U,(dz).

Of particular interest to us will be the case where
e(wy,wy) = (lwyll = )" I(w, — w, € A),

where A is a Borel subset of B(0; r), in which case we may rewrite the inner
expectation to obtain

E((IS7,ll - r)"; Sz, € A)

(2.4) w

= [ [ pAP7P(llz + ZI| > r + X) dAU,(dz).
A70

Since all norms on R? are equivalent, we will often use that if Z;, have
finite variance, then

(2.5) E|S, — ES,|* < cnE|Z|?
for some constant ¢ depending only on the norm.
3. Exit distributions. In this section we will characterize the two dis-

tinct kinds of exit behavior that can occur under (1.7). We begin by recalling
that, by Theorem 3.5 of [4],

ISy, G(r)
—_l
r

(3.1) » 1 ifand only if m -

The following result can then be understood as the analytic counterpart of
the dichotomy in Theorem 1.1.

PROPOSITION 3.1.  If G(r)/h(r) — 0 and limsup, _, ,|M(r)ll/h(r) > 0, then
M)l h(r) - 1.
ProoF. For any r <s,
sM(s) =rM(r—) + O(sG(r—)),
s’K(s) = r’K(r —) + O(s*G(r -)).
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Thus
K(s) _ (r/s) K(r—) + O(G(r -))
h(s) — (r/9)|M(r =)l + (r/s)° K(r =) + O(G(r -))

Now there exists an ¢ > 0 and a sequence ¢, — « such that

(3.2)

I 22(2,) |
— >,
h(t)
for all k. We first show
M(r P
(3.3) liminfu > —.

row  h(r) 2
If not, then for each £,
M(r £
By right continuity,
[ M(sp) < €
h(s,) ~— 2°
Let
I 24(r)] }

r, =sup{r < 8! W =&

Then ¢, <r, <s, and

13(r, )|
Eaa——
h(r, —)
Also clearly
(3.4) M<a on[r,,s;]
’ h(ry ~ LA
Along a further subsequence if necessary, we may assume
s M(r, —
% i) e PMEOL

——— &' >¢
T h(r, =)
Case 1 (A < ). Letting r = r,, s = s;, dividing through by A(r, —) and
letting £ — « in (3.2) we obtain
LK) A=)
k- h(s,)  (1/A)& + (1/A*)(1—-¢")’

where we have used that G(r)/h(r) — 0 implies G(r —)/h(r —) — 0. (This
follows immediately from monotonicity of G and the doubling property of h.)
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Thus

i K (5) 1-¢

1-¢'
k

= S =1— 4
e h(sy) e+ (l-e) e +(l-s) s

since A > 1. Hence

liminfll&k)|| > g’
k-e  h(s,)
which is a contradiction.
Case 2 (A = »). Then by (3.2), for any n > 1,
K(nry) _ (1/m)K(ry, =) /h(ry, =) + nO(G(r}, =) /h(r, —))
h(nry) ”M("k _)"/h(’k -)+ 1/(77K(’k —)h(r, _)) + ﬂO(G("k =) /h(r, _))

Thus

o K (/m(- e
k> h(nry) & +(1/n)(1—-¢')"
By letting n — «, we obtain

M(qr

lim lim ing L1 _
n—o® koo h(”?"k)

However, for fixed 7,

M)
kow R(17y)

by (3.4) and the fact that A = «. This is again a contradiction. Thus we have
shown (3.3) and consequently that

lim infw > hd
roo h(l’ —) - 2 '
If we now repeat this last argument, we obtain, for each > 1,

lim su = limsu K(nr) < l_/_n_
wnt R(u) | n T () T e2

by simply bounding K(r —)/h(r —) above by 1 and below by 0. Now let
n — ® to get

. K(u)
lim sup () =0,

which completes the proof. O
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COROLLARY 3.2. ISz ll/r —,1 if and only if one of the following conditions
holds:
()l K(r)
—_—— 1 or —— - 1.
h(r) h(r)
We now consider the behavior of the exit position Y, = Sy /IISy || under
each of the two conditions above. To do this we will need the following two
propositions.

PrOPOSITION 3.3. Assume ||[M(r)l|l/h(r) > 1 and fix a subsequence ry.
Then
M(r,)

Ec s

Y, -, & Uf

PrROOF. By the usual subsequence argument it suffices to prove the if
statement. For this we observe that for any N, by Doob’s inequality and (2.5),

N
P(IISn — nEZI(I1ZI| < r,)ll > &r,, for some n < )
h(ry)

N
< P{IZ]l > r, fi | <
< (II Al > r, for some i < h(rk))

N
> ¢r,, for some n <

+P( = %)

Y ZI(1Zl < r,) — nEZI(1ZIl < ry)
i=1

6(r) cN rZK(r)
< —F r,) + —_—
h(ry) * h(ry) &'rf
Also by (2.2),

- 0.

P(Tr,, > h(rk)) < —]\—f

Now, for any ¢ > 0 and w € R, let
C(w;t) =4{z: infllz — Aawl|l < ¢
(w;¢) {z ;r;ollz wll }
be the semiinfinite cylinder of radius ¢ with axis given by the line {Aw:A
> 0}. Then we have shown that
c

liminfP(S; € C(M ; >1—- —.

rmin ( T,, ( (rk)ysrk)) N
Hence letting N — «, we have, for every € > 0,

P(Y, € C(M(r});¢)) — 1. o

Before stating the next proposition, we recall that in one dimension
K(r)/h(r) — 1 is equivalent to Z being in the domain of attraction of the
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standard normal law without centering. In higher dimensions, it is equiva-
lent to the existence of a scalar sequence a, such that

S,/a, is tight and all subsequential limits are nondegener-
ate mean-zero Gaussian laws,

(3.5)

It may happen that some subsequential limits are not genuinely d-dimen-
sional. That is, they could be supported on various subspaces, but they do not
degenerate to 0. If the sequence a, is chosen so that nK(a,) — 1, then (3.5) is
satisfied.

PrROPOSITION 3.4. Assume K(r)/h(r) - 1 and along some subsequence
Y, = Y. Then Y is complete.

Proor. Let n, = [1/K(r,)]. Then along possibly a further subsequence,

23

- W,
T

where W is a nondegenerate mean-zero Gaussian random variable. Let B(¢)
be a Brownian motion based on W and

S[nkt] + (nkt - [nkt])(s[n,,t]n - S[nkt])

B,(t) = ™

be the standard linear interpolation of the partial sums. Then by an invari-
ance principle (see [4] Theorem 1), B,(¢) — B(¢) in C[0, ). It then follows
that the law of Y, converges to that of the exit distribution of B(¢) from
B(0; 1). Thus Y is the harmonic measure of B on B(0;1). This distribution is
easily seen to be complete by arguing as in Lemma 4.2 of [4]. O

Proor oF THEOREM 1.2. Assume (1.8). By Corollary 3.2, either K(r)/
h(r) » 1 or ||[M(r)ll/h(r) — 1. In the former case, by Proposition 3.4 it is
impossible for (A) to hold; thus (1.9) holds.

Now assume (1.9). Then by Corollary 3.2, ”ST,” /r —,1, and by Proposition
3.3, (A) holds. O

PROOF OF THEOREM 1.3. Assume (1.10). Then, by Corollary 3.2 and Theo-
rem 1.2, (1.11) holds.

Now assume (1.11). Then by Corollary 3.2, IISTrII/r -,1, and by Proposi-
tion 3.4, (C) holds. O

Proor oF THEOREM 1.1. This now follows immediately from Corollary 3.2
and Theorems 1.2 and 1.3. O

4. Some renewal theory. The classical renewal theorems concern the
asymptotic behavior of N, = X7_,I(lIS;|| < r) for transient random walk. We
are interested in the smaller r.v. T,, which has some properties very similar
to those of N,. (See, e.g., [6] for background.)
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Recall that if E||Z|| < © and u = EZ # 0, then 4 = u/|l ull.
ProOPOSITION 4.1.  If u # O, then ||Sy,|l/r —,1 and Sy, /ISy || =, .

PrOOF. As pointed out in the proof of Lemma 2.1, when u # 0,

Il el
Br) ~ M)~ ==, o

Thus the first statement follows from (3.1) and the second from Proposition
33. 0O

The following result may be viewed as an analogue of the elementary
renewal theorem.

COROLLARY 4.2. If u # 0, then

(4.1) li BT, !
. im — = —.
A ]
Proor. By Wald’s identity,
ET, 1 ES,
Il el - = == .
Il wll r

By [4], Theorem 3.3, {Sy, /r},., is uniformly integrable. Thus, the desired
result follows from Proposition 4.1. O

Recalling the occupation measure U, defined by

TrilI(Sj € dx)) ,

Jj=0

U(dx) =E

we set

v U, ().
r—u<l|zll<r
The latter quantity, which represents the expected occupation time of an
annulus, will be important in the study of the distribution of the overshoot.
Let U, u,r be the analogous quantity with T, replaced by +. In dimension
d = 1 and for nonlattice random walk the asymptotic behavior of U as
r — o ig described by a variant of Blackwell’s renewal theorem:

(4.2) limU,_, , d=1.

row Il well
See, for example, [6], Theorem 6.6. Bickel and Yahav [1] extend this to d = 2,
but only if the unit sphere of || || is a polygon which does not have any side
parallel to u. Without assuming more than first moments there is, appar-
ently, no known analogous result for the general norms we consider (or even
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for the Euclidean norm). More information is available (see, e.g., [2]) under
more restrictive hypotheses. We shall only need the following approximate
result, which we state under a more general assumption than EZ # 0.

THEOREM 4.3. Fix 6 € dB(0;1) and assume Y, —,8,. Then there exist
constants B, < 1 and ¢, < ® such that

(4.3) [{

3!
U.(dz) < —— O<v<r
z:r—v<l|zll<r, zeT(8, Bel} r( ) h(v) ’ ’
once r is sufficiently large. If, in addition, the overshoot distribution is tight,
then there are constants c, > 0 and c3 > 0 such that, for every 0 < B < 1,

Co
c3<v<r,

(4.4) Ui(de) > <

‘/;z: r—v<lzllsr, zeI'(8, B)}
provided r is sufficiently large (depending on B).

The proof of this result is similar enough to that of the corresponding
results in [4] that we provide only a brief sketch.

For (4.4) one may argue as in [4], Lemma 5.2. Fix 0 < 8 < 1. By tightness
of the overshoot if v/3 is sufficiently large, and by Y, —,8, if r — 20/3 is
sufficiently large, we have

1+8 v 1
(45) P(STr—Zu/3 (S5 F(@, —2—-), ”STr—Zv/S” <r-— g > 5
Thus there exist constants c; and r, = ro( ) such that if r > r; and c; <
v <r, then (4.5) holds. (It is important to note here that how large c; needs
to be is independent of B since r — 2v/3 > r/3.) A little geometry shows
that, for any z € I'(9, (1 + B)/2) with ||lz|l € [r — 2v/8, r — v /3], it is possi-
ble to choose a ball centered at z which is entirely contained in I'(9, 8) and
which has radius comparable to v. Since the expected exit time from such a
ball is comparable to 1/A(v) by (2.1) and (2.3), one may obtain the desired
result by a2pplying the strong Markov property at time 7,._,, ,3- (The hypothe-
ses E||Z,|I” < © and EZ = 0 in [4], Lemma 5.2, are not needed here.)

Turning to (4.3), note that by the proof of [4], Lemma 2.5, there are 8, > 0
and « > 0 such that |z + wll > ||lz|| + elwll for z,w € (8, By). Thus, with
¥y =1/a, the conditions ||z|| > r — v, lw|l > yv and z,w € I'(8, B,) imply
lz + wll > r. One may then argue as in [4], Proposition 5.1, with u = v,
r=infln > 0: r —v <|IS, Il <r, S, €T(6, By}, and using lim, _,,, Py(Sy, €
I'(6, By)) = 1 in place of [4], Lemma 4.1. !

A typical application of this result will be when EZ # 0, in which case
Y, -, i by Proposition 4.1 and h(v) ~ || ull/v.

5. Proof of Theorems 1.5 and 1.6. We will prove Theorems 1.5 and 1.6
simultaneously. First we require some preliminary geometric results. In
particular, we will need estimates on the increments of the norm given in
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Lemma 5.3 and Corollary 5.4 below.
Let || || denote a fixed norm on R<. Recall that the modulus of smoothness
of || || is the function p defined by

p(h) = sup{3(llz + wll + llz — wl — 2): llzll = 1, [lwll = A}.
Also define the modulus of convexity, §, by

lz + wll

5(&) =inf{1 -

:Mn=wm=1mz—wu=%.
The modulus of convexity of the dual norm will be denoted §,. For an
introduction to the properties of these functions, see [10], Section l.e. In
particular, p is a nondecreasing convex function such that p(0) = 0. If the
dimension is at least 2, then p is strictly increasing. Also, p satisfies
p(2h) < cp(h), h = 0, for some constant c. In order not to have to separate
out the case when d = 1 (which is much easier), we will assume that d > 2.
If the walk is one dimensional, we can embed it in R?, extend the norm to (a
multiple of) the Euclidean norm on R? and then use the result in this case to
recover the one-dimensional result.

It is easy to check that by convexity (1.14) forces p(w)/u — 0 as u | 0. Thus
I Il is uniformly smooth, and hence by Proposition 1.2 of [10] the dual norm is
uniformly convex. This means that §,(e) > 0 for all £ > 0. Hence by [10],
Lemma 1.8, §,(¢) is strictly increasing on [0,2]. Thus 8! exists for suffi-
ciently small ¢ and §,(¢) [0 as ¢ | 0.

For each || £]| = 1 let I} be a linear functional that satisfies IIZE< || = 1F(¢) =
1. Then the level set {z: [(2) = 1} defines a support hyperplane of the unit
ball at ¢. We will call such a functional a support functional at ¢. As we have
just observed, when (1.14) holds, the norm is uniformly smooth. Hence there
is a unique support functional at each ¢. Of particular interest to us will be
the support functional at @&, which for simplicity we denote by I*. It then
follows that [*(z) = (2, »)/I( it, v)|, where v is the unique outward normal at
i with ||v|| = 1; see Theorem 7F and the discussion following in [7].

LEMMA 5.1. For any £ and ¢ with || €]l =]l =1,
S.(lliy —uxl) < 3llg— ¢l

Proor. We have

5. (10 — I¥l) < 1= HLg + 12 = 1 — 3 + 13)(£)
=3 =2l (&) =3 (L—§) <3l - &l 0
COROLLARY 5.2. Assume || || is uniformly smooth. Fix | £|| =1 and as-

sume w satisfies [*(w) < 0. Then

(5.1) I (w) <llwls3! (31l — &),
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provided || fu — £|| is sufficiently small that 83" exists. If I*(w) = 0, then
(5.2) |1} (w)| < llwll&3! (31l & — £11),
provided || i — &|| is sufficiently small.

Proor. If I}(w) <0, then (5.1) clearly holds. If [}(w) > 0, then since
I*(w) <0,
IF(w) <|if(w) — *(w)| < llwlllzg = 1*.

Statement (5.1) now follows from Lemma 5.1. If /*(w) = 0, then we can apply
(5.1) to obtain

—If(w) = (—w) < lwlsz* (31 A - &1).
Together with (5.1) this proves (5.2). O

In the next lemma it is reasonable to think of the two terms on the
right-hand sides of the two inequalities as measuring the increment of the
norm in the tangential and normal directions, respectively.

LEMMA 5.3. For vectors v and z we have

| 2loll|
(53) ”U +Z”_”2”S2”Z”p W +|lz/"2”(v)|‘
If |Ivll < 3llzll, we have

alolly
(54) lo +zll = llzll < 2|zl p W + [lZ/IIZII(v)]+'

PROOF. Set &= z/llzl. If I} (w) = 0, then
lw + zll = llzll = I} (z £+ w) — I}(z) = 0.
Thus
(55) llw+zll=llzll <llw + zll + llw — zll = 2llzll < 2]zl p(llwll /1 2][).

To obtain (5.3), first write v = v — £1f(v) + ¢1}(v), apply the triangle in-
equality and then (5.5) with w = v — &1} (v).

For (5.4), if I}(v) <0 and vl < glizll, then [zl/2 <llz + £} (VI < llzll.
Thus by (5.5),

v + 2l = llzll <o — &L (v) + 2 + ELE (V) || — |2 + €L (V) ||

o - fl;(v)ll)

<2|z + §l§(v)||/’(]|—z_f§l—g'(5)_||

4|jvll
< 2|lzllp .

Il 2]l
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COROLLARY 5.4. Assume || || is uniformly smooth. If I*(w) = 0, then for
any z,

provided || i — £l is sufficiently small that 83" exists. If I*(w) < 0 and |lwl|
< 3lzll,

2[lwll

1
lw + zll - llzll < 2||2||p(————) + IIwIIb‘;l(—
Il z]| 2

n ¥4

Izl

lw + 2l - Izl < 2llz] (4”w”)+n ||3-1(1
w ZIl — 2l < V4 —_— w -
ATzl * |2

R V4
-
Izl

provided || o — &l is sufficiently small.

PrOOF OF THEOREMS 1.5 AND 1.6. We begin with the proof of the implica-
tions (1.16) = (1.15) and (1.18) = (1.19). We start with the latter implication.
To see that Z belongs to WL?*!, we use a bootstrapping argument similar to
the proof of [4], Theorem 1.1, page 850. By [4], Lemma 6.1,

2r
E(IS, Il - 7Y’ = ET AP=1IP(1Z]l > 3A) dA
(5.6) (187l = 7) f p 1zl > 3)

> (27 — 1)ET.r*P(|Z| > 6r).

Since ET, is nondecreasing in r, we may conclude that Z € WL?.

Next, we claim that, in fact, Z € L!. Suppose 0 < p < 1. By [4], Lemma 2.4,
we have liminf,  (ET,/r?) > 0. Using this in (5.6), we conclude Z € WL2P,
Iteration of this argument as in the proof of [4], Theorem 1.1, establishes the
claim in this case. If p = 1 the claim follows, since we may use any smaller
value of p in the same argument.

For Z € L! we have liminf, |, (ET,/r) > 0. This follows from Corollary 4.2
if EZ # 0, and from [4], Lemma 2.4, if EZ = 0. Using this in (5.6) completes
the proof that Z € WL'*».

To see that, in fact, EZ # 0, first note that (1.18) = (1.8) = (1.9). Since we
have already shown that Z € WL'*?, it then follows from Lemma 2.1 that
EZ # 0.

This completes the proof that (1.18) = (1.19). To complete the proof of
(1.16) = (1.15), we must show that under (1.14) we also have [*(Z), & L'*?.
Actually for this we do not need the full strength of (1.14), only that || | is
uniformly smooth. To do this we require the following claim:

CraiM. For any compact set K there exists a cone I' containing [ in its
interior and a constant R > 0 such that the conditions A > 1, r > R, z €T,
r/2 <llzll<r,Z € K and I*(Z) > 4(r + A — ||z]) imply that |Z + 2|/ > r + A.
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To see how the claim is used observe that if I, ={z € I: r/2 < ||z|| < 7},
then by (2.4) for large r,

E(ISz - )" = frflrp/\p‘lP(IIz +ZI>r+ A, Z€K)dAU(dz)
> [ [pAPTIP(1%(Z), > A(r + A — l2l), Z € K) dAU,(dz)
71

2 [ [ pAPIP(I%(Z), > 8A, Z € K) dAU,(dz)
I7(r-lzlDv1

- /1( f U.(dz)

{z:r=a<lzllzr, z€T,)

X pAP=IP(1*(Z), > 8A, Z € K) dA

> ["epA’P(1*(Z), > 8, Z € K) d),
C3
by (4.4). (Note that the overshoot is tight since we are assuming it is bounded
in L?.) The result now follows by letting r — © and then K 1 R<.
To prove the claim, first note that [}(w) is jointly continuous in (&, w).
This is because, by Lemma 5.1,

|3 (w) — 1 (w")| < 12 = Ll lwll + 1251w — wl
< 831 (M€ — £Nllwll + llw — w'l.

Now by [5], Lemma 6.4, we have |lw + t£ll — ¢ | [f(w) as ¢t - «, for any
|€ll = 1. Thus by Dini’s theorem this convergence is uniform in ¢ and w
belonging to any compact set. Hence writing Z =X+ Y, where X =
(X ZDv)/(U*(v)) [thus I*(Y) = 0], it follows that if ||z|| is sufficiently large,

(5.7)

1
NZ + 2l = 11X + 2ll| <|8,.,(Z) = 1, (X)] + 3

1

(5.8) =% + 5
||Y||6-1(1 I )+ !
< S =l + 5>
V2l ™7l T2

if || & — z/llzll|l is sufficiently small as in Corollary 5.2.

Next observe that [*(v) = (v,v)/[(i,v)| > 0. Thus by Lemma 5.1, if
a=1*v)/2, then l;“(v) > a provided ||¢ — il is sufficiently small. Hence
there is a cone I'' containing i such that, for all L > 0 and all z e T/,

llz + Lv|| 2|lj/”z"(z + LV)|
(5.9) =[lzll + Li% 1 (») ]
> |lzll + aL.
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z

Now choose I' c T’ so that i €T, and so that if Z € K and z €I, then
IIYIIS‘I( oy
2" Tz

1
< —=.
2 2
This is possible since [|Y is bounded and 6;'(¢)|0 as ¢ | 0. Hence if A > 1,
lzl<r,zeT, ZeK and I*(Z) > 4(r + X — ||z|), we then have, by (5.9),

*(Z)

lz + Xl = llzll = >2(r+A—lzl)>r+r—lzll+1.

Thus, if in addition [|z||>r/2 and r is sufficiently large, then by (5.8),
IZ + z|| = llz]l > r + A — ||z|| and the claim is proved.

We now turn to the proof of (1.15) = (1.16) and (1.17) = (1.18). We proceed
as far as possible assuming only that [|Z|| € WL!*? and EZ # 0. That (A)
holds follows immediately from Proposition 4.1. Let 8 =1 — (p2/(p + 1)?).
For simplicity we will assume that coordinates in R¢ have been chosen so
that z = (%, y), x € R, y € R~ ! with 4 = (1,0). We will often write |x| for
(x, O)ll and [yl for [0, I Set

A, =B(0;r/2) U {(x,y) € B(0;r): x>0, llyll <rPf}.

Observe that if || | were the Euclidean norm, then for every integer n we
would have ||z — null > ||yll. However, since all norms on R? are comparable,
it follows that, for some C depending only on the norm, ||y|| < C(||z — nul) for
every n. We claim that, for r sufficiently large and any n > 0,
rB

(5.10) lzll<r, llz=null< T = € A,.
From the discussion above we only need consider the case x < 0. By the
triangle inequality,

lx —nl<llz —nul+lyl<(1+C1)rk.

Combined with x < 0, this forces |x| < (1 + C~1)r”. Hence
lell <12l + Iyl < (2 + Crf < &
for large r. Thus z € A, and the claim is proved.
LEMMA 5.5. There is a constant ¢, depending only on the distribution,

such that
P,(S, & A, for somen < T,) < cr ?/(®*h,

PrOOF. First observe that for all n < 2r/| ull we have
InE(Z; 121l < r#) = nu| =|nE(Z; 121 > r#) |

1+B

27 b1zl > +8) + —— [“P(IZ1 > ) dt
< — > —_—
T PUZI> ) + o [ P(IZI> )



L?-BOUNDEDNESS OF THE OVERSHOOT 2041

rit# © dt
<c—g753 T crf
r(1+p)ﬁ r" t1+p

=o(rf) asr -

Thus, using (6.10) with z = S,, we have for large r,
{S, & A,somen <T,}

2C =l

However, with S, = £7_,Z,1(|Z]| < r?), by Doob’s inequality and (2.5) we
have

rf 2r
c {”S,, - nE(Z;|1ZIl < rP)| > == for some n < —}

P18, - nB(Z:121 < r#) | > 2= & 2r
- ; < > — forsome n < —
n = B 1> 36 " T
2r
<P(||Z | > r8 for some n < H_ﬁ
+P||S, - nE(Z; 112l < r®)| > r—B for some n < 2r
n 2C Il
2r G , & 8C*%r 5 cr Q s
< < —Q(r
T O+ KD < g eeH
orl-
= f 2uG(u) du < cr~P/(P*D), m]
Il ll

LEmMMA 5.6. There are constants A > 0 and r, > 0 such that
E,(23)" <Arp/@®*D . pspg,
for all z € B(0; r), where Z} = max, _; . Il Z;ll

PrROOF. By replacing r with 2r we may assume z =0. Let ¢(r) =
PV +D, Now

E(z3)" = [*7pN1P(2Z4 > ) dr+ [ pAPTIP(ZE > A)dA
" 0 " o(r) r

=1+ 1II.
Clearly, I < [§"pAP~1d ) = ¢(r)?. Now, by Wald’s identity and Corollary
4.2, there is r, so that, for r > ry,

P(Z} >)\) <E % I(1Z;Il > A))

=ET.P(I1ZI > \) < P(||Z|| > 2).
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Thus, using Z € WL!*?, there is a constant ¢ so that

2r =
II<— p)\”_lP(HZII >A)dA

| wll ory
cr o A2 da cr

B ”I-L“ o(r) “/J'H‘P(r)
crP/(p+h

= —), r>r.

Il aell

Combining the two estimates, we obtain the desired result. O
Now, by the strong Markov property at time o = min{n: S, & A,}, we have
E(ISp )l - r)’ < Eo(Eg(24); 0 < T,) + Eo((IS7, = 7)"5 0 2 T;).

Lemmas 5.5 and 5.6 show that the first term is bounded in r. For the second
term, let A, ={z € A,: r/2 <|lzll <r — 1}. Then by (2.4), since {0 > T,} C
{Sr_, € A},

E((IISTrII ~-r)o= T,)

< [ [pAP'P(IZ + 2] > r + X) dAT,(dz)
a0

+ "PAPTIP(IZ + 2|l > r + A) dAUL(dz)

{z: I|z||sr/2)‘/;)

+ [N P(IZ + 21l > 7 + A) dAU,(d2)

{z:r=1<lzllsr}nA,”0

+[ [P P(IZ + 2l > £+ A) dAU(d2).
Ar

The last three terms on the right-hand side may each be bounded by
relatively simple arguments. Using the triangle inequality and Corollary 4.2,
the second term is bounded by

r r r
cr/(’)p/\PflP(IIZII > 3 + )\) dA < cr"”P(IIZII > 5),

which is O(1) since ||Z|| € WL?*!. The third term is bounded by AlZ||5,
where A denotes the expected occupation time of the region {z: ||z| €
[r—1,7]} N A,. Since for any 0 < 8 < 1 this region is contained in I'( i, B)
once r is large enough, it follows immediately from (4.3) that A is bounded
independent of r. Finally, by the triangle inequality, Z € WL?*! and Corol-
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lary 4.2 the fourth term is bounded by
crfoP‘lP(IIZII > A)dA < crfc)chA =c.
r r

So far we have not used the full strength of the hypotheses. To complete the
proof of Theorem 1.6 we now assume Z € L'*P. Then the first term is
bounded by

[ [ A 'PIZI > 7 + A ~ llzl) AU, (d2)
a,70
= [ [prrt P(IZIl € du) dAU,(dz)
AN,70 u>r+A—|zll

= / f [u—(r—llzll)]/\rp)\p—ldAP(“Z” = du)Ur(dz)
u>r—|zl170

(5.11) <[] uPP(||IZ|l € du)U.(dz)
AN u>r—|zl
- fupf U.(dz)P(lIZ|| € du)
0 N {lzle(r—u, rl}

+

u>r

u? [ U,(d2) P(IZ] € du)
N,
<clzlii
by Corollary 4.2 and (4.3), where we have used the fact that forany0 < g <1
we have X, c I'(fi, B) once r is large enough. (Note also A, N {z: |z] €
[r —u,rl) = @if u < 1.) The proof of Theorem 1.6 is now complete.
To estimate the first term under the hypotheses of Theorem 1.5, we write

{(IZ+z2ll>r+ A ={lZ+2zll>r+A,1*(Z) = 0}
U{llIZ + zll > r + A, I1*(Z) < 0}
=Q,UQ,.

Putting Z = X + Y with X = [*(Z)v/I*(v) as before, we have
1Z +zll = lzll=11X+Y +zll = llzll < IX]| + (IY + 2ll — [[2]]).

Thus

*(Z + A -
1C{ (z2) _r llzIl .

1Y+ 2l — ol > A 1A
> — > —_—,
" (v) 2 9{ sl }
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This leads to

[ [pArP(IZ + 21l > r + 1) dAT,(dz)
8.0

r 1*(2) r+a—|zll
p—1
< A,rfop)\ P(l*(v) > — dAU,(dz)
r r+ -zl
+ [ [ AP PIIY + 2l - ll2ll > ———— | dAU,(dz)
A,70 2

(5.12)
r

+f [or (12 + ol =zl > 7+ A=zl
(70

1
1%(2) < 0,12l < §||z||) dA,(dz)

r 1
+fA,rf0P“"P(IIZII > §||z||) dAU,(dz).

The last term is easily seen to be O(1) as r — % by using Corollary 4.2 and
Z € WL'*P, To estimate the first term, proceed exactly as (5.11) with ||Z||
replaced by 21*(Z)/1*(v) to obtain a bound of clll*(Z), |51 1.

It remains to handle the second and third terms in (5 12). For this we need
the following two lemmas.

LEMMA 5.7. If (1.14) holds, there is a constant c¢ such that, for all t

sufficiently small,
1 -1/(p+1)
8.1 () < c[log(—t—)] .

Proor. By [10], Proposition 1.e.6,

re
d.(e) = sup{—é——p(r)}, 0<e<2.

It follows from this that 831(¢) < 2inf, . ([(¢ + r)/(p~!(r))]. However,

ely 1 t+r P
bt Og( )p'l(")
1du o t+u MP
u>0 'l(u)
1+p 1+
f i:““ T )
t (u) u P (u) u
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By (1.14) the last expression is bounded as ¢ — 0, and the proof is complete.

O

In the next result, only the upper bound (with A = A,) will be used in the

remainder of the proof of Theorem 1.5. The lower bound will be needed in
Examples 5.10 and 5.11.

LEMMA 5.8. Fixr > 0 and 0 < uy < u, < r/2. Let A c B(0;r)\ B(0;r/2)
and H(u), 0 < u <r/2, be a nonnegative, continuous, nonincreasing func-
tion. If

(5.13) U,(A N{llzlle [r —u,r]}) < cou,

forall uy < u < u,, then

J;

]}H(r —lzl)U,(dz)

n{llzllelr—uq, r—u,

(5.14) .

<cof 'H(u)du+ ET,H(E) + cougH(uo).
If
(5.15) U(An{lzlle[r-u,r]}) =cu,

forall uy < u < u,, then

(5.16) fAHr(r —lzl)Uy(de) = ¢; [ "H(u) du — cu H(uy).

Proor. We have, for any A c B(0; r) \ B(0;r/2),

fAH(’ — 2I)U.(dz)

(5.17) [A([r’/z _ dH(u) + H(%))Ur(dz)

=zl

IA

r/2 r
-/ ([ U,(dz)) dH(u) +ET,H(—).
0 Anflzllelr—u, r]} 2

Ifwenowlet A=A N {lzll € [r — uy, r — uyl}, then by (5.13) the first term is
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bounded by

—co [ *(u A uy) dH(u)

= COE:H(u) du + co(uoH(ug) — u H(uy)) + coul(H(ul) - H(%))

after integrating by parts. This proves (5.14).
For the lower bound we let A = A in the equality in (5.17) and use (5.15) to
obtain

v

fAH(r ~ =T (de) = fuul(janmzue[r—u,r]}U’(dz)) aH(x)

—clfulu dH(u)

Uo

v

= clfulH(u) du + cy(uoH(uy) — uH(uy)),

which proves (5.16). O

Observe that if r is sufficiently large, (5.13) holds with A = A, u, = 1 and
v, = r/2. This follows from (4.3) since A, Cc I'( &, B) for any 0 < B < 1if r is
sufficiently large.

By the triangle inequality, for any z = (x, y) having x > 0,

.z [(llzll = =,0) — (0, )|
M— —— =
Izl |zl
2zl —x 0,
B Nzl — x| N (0, )
2]l =l
iyl
<2—,
Izl
since ||zl — x| =|llzll — |l < [lyll. Thus if z € A,, then 3lli —z/lzllll <

ll¥ll/llzll < 2r#~1. Hence, by Corollary 5.4, if z € A, and r is sufficiently large
that 6,1(2r#-1) exists, then
r—llzll + A
—
llzll _1( r—lzll+ A

<P|lIYI> — + P Y8‘1(—

ro-afrz =it A Iyl 7 —llzll + A
SP(”YH > —p‘l(—————)) +P(||Y||6;1(i) S rZlzly Ay

P(IIY+zII — Izl >

IIyII) r—llzll + ,\)
> N ——

4 8r llzIl 4
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Note that | X|| = [I*(Z)v/1*W)I < |1 Z||/1*(v). Thus X € WL'*P, Since Y = Z
— X and WL'*? is a linear space, we may also conclude that Y € WL?*1,
Using this fact, substitution of the above inequality into the second term in
(5.12) yields two terms. The first may be written as

(5.18) cfAlHr(r ~lzI)U,(dz),
where
rvu p(v —u)”™ ' du
Hr(u) _/'; p_l(v/8r)p+1 rP+1c

To estimate (5.18) we use Lemma 5.8 with A= A,,u,=1and u, =r/2. As
mentioned after Lemma 5.8, (5.13) holds in this case. Next it is easy to check
that H, is nonincreasing and rH,(r/2) = O(1) as r - «. Furthermore,

pvP1 dv
p'((v + 1)/8r)Pt et

H(1) = [

pvP1! dv fr pvP1 dv
+
p_l(l/sr)p+1 rp+1 1 p_l(v/Sr)p+1 rp+1

! +°f1/8( u )"” du
(ro~*(1/8r))"" 1 iyer\ 07 (w)

(5.19) < jol

u?r’

Now as r — o, the first term is 0(1) since p(x)/u — 0, and the second term is
bounded by (1.14). Thus by (5.14),

fu+r p(v - u)p_ N 0(1)

u p‘l(v/8r)p+1 re+l
-1

rr2 . v p(v—u)” du

Scle dvfl p~t(v/8r)P*t rett

[ H(r = 12U, (de) <[ du
A, 1

+ 3r/2d r/2 p(v— u)p—l du + o1
cfr/z vj; p Y(v/8r)Ptt rPT! 1)

3r/2 v? dv
< + 0(1
cfl p_l(v/sr)p+1 rp+1 ( )

=0(1),

by (1.14). Hence (5.18) is bounded. To handle the other term, first recall that
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for z € X, we have |lyll/llzll < 2r#~!. Thus for large r,
Iyl r—Ilzll+ A

P ||Y||a;1(—y—) > =77
[l 2]l 4

< [ [parp(IY] > rolzl+ A vd
=y d? 45,1(2rP 1) +(dz)

r sy1(2rA 1)\ P!
P Ib Y Il S
SCfA,rfOp (r—l|z||+/\) dAU,(dz)

r—lzll PAPTLdA r pAPTldA
< el 5-1(2,B-1]7*1 lal_PAP" A pArdA)
[ * ( )] ‘/‘A". '/(‘) (r_llzll)p+1 ‘/;‘—"2” /\p+1 7‘( )

1
-1 B-1\]P+1
<c[831(2r? )] fAlrr_”z”U,(dz)
<c(logr)[831(2rP 1],

by Lemma 5.8. This last expression is O(1) as r — © by Lemma 5.7. Finally,
the treatment of the third term in (5.12) is essentially the same as the second.
We have, by Corollary 5.4,

1
P(uz £zl =llzl > r =zl + A, 1%(Z) < 0, 2]l < §||z||)b

<P(“Z” Ll _1(r— Il + A)
= e 4]z

—llzll + A
+P IIZIIS;I(M) s rolelr Ay
]| 2

The rest of the argument is the same with Y replaced by Z. O

REMARK 5.9. Assume EZ = p # 0. If two norms || || and | | agree in some
open neighborhood V of i (i.e., the two unit balls coincide in some neighbor-
hood of fi), then (1.16) holds for the norm || || if and only if it holds for | |. This
does not require that (1.14) hold. To see this, first observe that (A) holds for
both norms by Proposition 4.1. Next recall that A, = B(0;r/2) U {(x,y) €
B(0;r): x > 0, Hyll < rP}. Thus for some & > 0 and large enough r we have
z€ A, lzll>@Q — &)r and || Z|| < er imply ||1Z + z|| = |Z + z|.

Now assume (1.16) holds for | |. Then, by Theorem 1.6, |Z| € WL'*?. Since
all norms on R? are equivalent this means |Z| € WL'*P. Let o =
min{n: S, & A,}. Then

E(ISg,l - )" = B((IS7, Il - r)’; 0 < T,)
+ E((IS5,I = r)’s 0= T,, 1 Xy || 2 &7)
+ E((ISp,1 = r)"s 02 T, 1%y |l < o).
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It follows from the strong Markov property and Lemmas 5.5 and 5.6 that the
first term is bounded independently of r. Since {0 > T,} c{Sr_; €4,}, it
follows from Lemma 2.2 and Corollary 4.2 that the second term is bounded by

[ [PAP"'PIZ + 2l > r + A, IZ]l > er) dAU,(d2)
a,%0

<er? 'P(IZIl = er) + crfxp/\"‘IP(Hle > M) dA,
r
which is bounded since Z € WLP*!, Similarly the third term is bounded by

[ fxpv-lp(uz +zll > r+ M ZI < er) dAUL(dz)
A,70

< [ [[pAIP(Z + 2l > r + A) dAU(d2)
4,70

<E(IS|-r)".

This shows that (1.16) holds for || |l Since the roles of the norms can be
reversed, the implication in the other direction follows immediately.

As an example of the usefulness of this remark, observe that if two norms
agree in a neighborhood of f, it is clear that (1.15) holds for one norm if and
only if it holds for the other. Thus if one of the norms satisfies (1.14), then
(1.15) and (1.16) are equivalent for both norms. For example, Theorem 1.5
does not apply to the [™- or the /!-norm even when £ is a smooth point.
However, if we smooth the unit ball away from [ so that (1.14) holds, and
this can be done for these norms, then we see that (1.15) and (1.16) are
equivalent in this case. If (i is not a smooth point, it is easy to construct
examples where (1.15) and (1.16) are not equivalent for the natural choice
of v.

ExampLE 5.10. We consider two-dimensional space with the /!-norm. That
is, if z = (x, y) € R?, then ||z|l = |x| + |y|. The random walk is based upon
random variables having the same distribution as Z = (1,Y), where Y is
real-valued and symmetric with P(|Y|> r) = r~?*D r > 1, Thus (1.15) is
satisfied with v = (1,0). Let A, ={z: r/2 <|lzll < r — 1, x > 0}. Note that,
by symmetry, if z € A,,

P(IZ+zll>r+A) =P(IY+yl+x+1>r+2)
>P(lY+yl+x>r+A,Yy>0)
=P(Y|+|yl+x>r+A,Yy 20)
> 1P(IYI>r+ A —|zl).

Since EZ = (1,0) and Z € L'*9 for any 0 < q < p, it follows from Theorem
1.6 that the overshoot is tight. Hence (4.4) holds with h(v) ~ 1/v. Then by
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Lemma 2.2, for large r,

E(IS Il -r)" = [

llzll<r

[ PAPP(IZ + 2l > r + A) dAU(dz)
0

P oorrlall, oy ~
= 2fA,fo AMPTIP(Y| > r + A = lzll) dAU,L(dz)

>cf ["”Z”———)‘—pil———dw(dz)
T4 b (r =2l g

f Ur(dz)
>c

a,r =zl
>clogr

by Theorem 4.3 and Lemma 5.8. Hence the overshoot is not bounded in L?.

The following example is considerably more delicate and shows that the
localized version of the integrability condition (1.14) on the norm, as de-
scribed above in Remark 5.9, is very nearly sharp. In particular, we show that
for many norms where the integral in (1.14) barely diverges, there do exist
random variables satisfying (1.15), but the overshoot is not bounded in L?.

ExaMpPLE 5.11. Let d =2 and fix 0 <p <1 and 0 < £ < 1/2. Assume
that, for 1 — & < x < 1, dB(0; 1) is symmetric about the x-axis and dB(0;1) N
{y = 0} is given by a function y = f(x), where f(1) = 0 and

(5.20) f(1—¢§) = ¢gllog ¢[VAPL(¢),

for 0 < ¢ < &, where L(£)]0 as ¢ |0 and L is sufficiently regular. For
definiteness we will take L(¢) = [log, £|77, where log, is the nth iterate of
the [log| function, with y > 0 and n > 2. It is clear that fis C! on (1 — &, 1),
|f'l is bounded away from 0 and f'(x)| —® as x T1. Let g(¢) =1f'(1 — &)I.
Note that g is decreasing on (0, &) by convexity of f. Further

(5.21) ég(&) =lfaa-¢), ¢€(0,¢),
and
(5.22) E'g(€) - 0 forallnp> 0.

Note that the form of the unit ball near (1,0) implies that if z = (x, y)
with [z]l<1 and x> 1 — g, then [z|| > x. We will further assume that
dB(0;1) is smooth enough away from (1,0) that p is determined by its
behavior in a sufficiently small neighborhood of (1,0). Some geometry then
shows that the supremum defining p(u) is comparable to the value obtained
by setting z = (1,0) and taking w tangent to 4B(0;1) at (1,0). It is then
almost immediate that p~!(u) = f(1 — u). In particular, by choice of f, the
integral in (1.14) just diverges. Here is a brief sketch of how to see that p(u)
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can be computed as claimed. By assumption,
p(h) = sup{%(llz +wl+llz —wll—2):llzll =1, z € By, lwll = h},

for some &> 0 sufficiently small, where dB; = dB(0;1) N B((0, 1); 8). For
each z € dB;, let e, be a tangent vector to the unit ball at z with Euclidean
length 1. If w = az + Be,, set |wl, =|al + | Bl It is then easy to check, by
first comparing with the Euclidean norm, that there are constants ¢; and c,
independent of z € dB; such that

(5.23) cillwll; < llwll < cpllwll,.
Define

pr(t) =sup{3(llz + te,ll + 1z —te,ll —2): z € dB;}.
We claim that, for some ¢ > 0,
(5.24) ¢ pr(t) <p(t) <cpp(t), O0<t<l.

The first inequality follows easily from (5.23) and the doubling property of p.
To prove the second, fix z € dB; and any vector w. We can write w/ lwll, =
az + Be,, where |a| + | B| = 1. Then

t—| + t— |~ 2 lall|[z + : : 2
2T ol ’z_ ol ~ %= "‘( ST I GNP I )
B B
+|B|(z+|—B|tez + z—wtez —2)
B B
_|ﬁ|(z+mtez +z—mtez —2)
e e ol = e -
<z + —te,| +|z — —te.| — 2|,
| Bl | BI

where we interpret these equations in the obvious way if either a =0 or
B = 0. The desired result now follows easily from (5.23) and the doubling
property of p. With (5.24) at hand, it is now a fairly straightforward calculus
exercise to see that p(u) can be computed as claimed.

Let Z = (X,Y), where X = 1 and Y has a symmetric stable distribution of
index p + 1. Thus EZ = (1,0). Recall that the tail of Y satisfies P(IY|> y)
~ ¢y~ @*P); thus (1.15) is satisfied. We now proceed to show that the over-
shoot is not bounded in L?.

Observe that dB(0;r) is given by y = rf(x/r) if 1 — &)r <x < r. Thus if
A<erzl<r,y>0and (1 — &*)r <x <r, then

Y>(r+ A)f(;%x) - ||z||f(“—z-ﬁ) = [Z+zll>r+A
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Now by (5.21), the mean-value theorem and monotonicity of g, we have

)
r+ A

w155 -l

<(r+A- ||z||)(cg(r%;—£) +g( ||z||||z|—| x))

(r+ A)f( i ) - IIzIIf(—x—) =(r+a- Ilzll)f(

r+ A |zl

<c(r+A- IIzII)g(U—z”;x).

21|
Thus with A2 = {z € B(0;r): x > (1 — £®)r, ||z|| < r — 1} we have
E(IS7, = 7)" = [ ["pAP'P(IZ + 2l > r + X) dAU,(dz)
as’o

lzll — =

S /-E/(;erp/\P"IP(Y> C(I' + A= ”Z”)g(—m—)) d)\Ur(dz)

pAP~1dA

r—|lzll
= cfmfo (r+A—llzl)?" g((llzll - %) /M) ?** Ur(d2)
U.(dz)
= c[A‘i (r = lzlhg((lzll — =) Azl >
U,(dz)

=c ,
/At(r —llzl)g((r — Izl /r)?*"
where A} = {z € A%: r — ||z < ||z]| — x}. Now, for z € A2,

2|zl - r)

z€AN o xx2lzl-r e IyIZIIZIIf(—ml—-

Since

21zl = r r—|lzll
||Z||f(—_—) = ||Z||f(1 - ———)
Izl Izl

r

r—llzll
<c(r-llzlhg ,
by (5.21), it follows that A% > {z € A%: |yl > c(r — lIzIDg((r — llzID/r)}.
CLamM. Fix 0 < @ < 1/(p + 1). There exist constants ¢, and c, such that

U n{r-—u<lzll<r) >cuforall ¢, < u < r* provided r is sufficiently
large.
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Since Z € L'*9 for any q < p, it follows from Theorem 1.6 that the
overshoot is tight. Hence by Theorem 4.3, for some c; and c,,

UAsn{r-u<lzll<r})=cu
if ¢, < u < r?® provided r is sufficiently large. Thus it suffices to show
U ((As\A) n{r—u<llzll<r}) =o(u)

uniformly in ¢, <u <r® Let V, = X ,Y,. Observe that if z € (A%\ A*%),
then x > 2|zl — r and y <c(r — ||zIDg((r — llzI)/7). Since vg(v/r) is com-
parable to an increasing function by (5.21), it follows by the nature of the
distribution of Z, that, in order for S, € (AS\ A N{r—u <llzll<r}, it
must be that » — 2u < k < r and |V,| < cug(u/r). Thus by the scaling prop-
erty of stable random walks, if ¢, < u < r® and r is sufficiently large,

U (45N &%) N {r—u<llzll <r}) < kzézu”("’k' = ““g(%))

cug (u/r)
P(|Yl| < W)
2u

2cug(u/r) )

rl/a+p)

- 3

k=

Now Y has a bounded continuous density. Thus

2cug(u/r) ) cu’g(u/r)

2uP\ IV < — a5 IS VEET)

< cur*” A/ Dg(re=1y = o(u)

uniformly in ¢, < u < r® by (5.22).
We now use (5.16) with A = A}, uy = ¢y, u; =7 and_

H(u) = ————.
r(u) ug(u/r)p+1
Note that r*H,(r*) — 0 as r — ». Thus by (5.16),
U,(dz) re dv
>c —— —0(1)
fA»:(r—||z||)g((r—||z||)/r)”“ lfcz vg(v/r)""
a-1 dv
=c¢,|7 ———— —0(1l) >
cl-/cz/r vg(v)p+1 (1)

as r — © by choice of f. Thus the overshoot is not bounded in L?”.

A similar example works if p > 1. Just choose Y to have tail P([Y|>r) =
r~(P*1 and use the central limit theorem instead of the scaling property of
stable random walks.
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6. Tightness. When (C) holds, a necessary and sufficient condition for
tightness of the overshoot follows from Theorem 3, namely, E||Z||* < © and
EZ = 0. The analogous problem when (A) holds seems to be considerably
more complicated because there are preferred directions, namely, the direc-
tions given by the subsequential limits of M(r)/||M(r)|. (For example, when
EZ +# 0 there is only one preferred direction which is given by the mean.)
This is an important issue even in one dimension.

LEMMA 6.1.  Assume P(Sy > 0) — 1. Then there is a constant c, > 0 such
that

Co
U < , 0<v<2r,
A COES ~or sv=r

provided r is sufficiently large. If, in addition, (ST —r)" is tight, then there
exist constants ¢, > 0 and v, > 0 such that

vy <v < 2r,

[ U(de)=

r-v<zs<r ( v ) ’
provided r is sufficiently large.

For v <r this is just a restatement of Theorem 4.3. The extension to
r < v < 2r is obtained by combining this with (2.1) and (2.3).

PRrROOF OF THEOREM 1.7. Since M(r)/h(r) — 1 implies P(Syp > 0) - 1by
Theorem 1.1 of [5], the equivalence (1.20) and (1.21) is clear. Now by Lemma
2.2,

P((Sy,—r)">2) = [ P(Z+2z>r+N)U(dz)

lzl<r

N fjr/;4>r+A—zdF(u)(Jr(dZ)

_'/:\<u<A+2r~[ U(dz)dF(u)

r+iA—-u<zs<r

+ U.(dz) dF
'/;L>A+2rf—rser r( Z) (u)
=1+1II.

For the second term we have

II

G*(A+ 2r)ET.
cG*(r)
- 0,
h(r)
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as r — », For the first term, by Lemma 6.1, if r is sufficiently large,

__Cl_ < f U (dZ) < —02___

h(u_/\) T rra—u<zsr " N h(u_)\)’
where the second inequality holds assuming only P(Sy > 0) — 1, while the
first also requires tightness and u > A + v,. Hence letting r — « and then
A — o, we gee that (S; — r)" is tight if and only if

= dF(u)
e fouta—n 7

as A — «. It thus remains to show (6.1) is equivalent to (1.22). First by (2.3),
if A >v,
© dF(u) ~ dF(u)
[ di)
r+voh(u — A) 2x h(u)

Hence (6.1) implies (1.22). Conversely, assume (1.22). Let ¢, € [0, A] satisfy
h(§) < 2inf;_, _, K(v). Then

© dF(u) ox dF(u) »dF(u)
Joowhtan =L wa—n * b ww
G*()) = dF(u)
<25 b A
L8 (8) fwdF(u>
e h(u)

since § > ®as A > . O

Given the results in Section 5 on LP-boundedness of the overshoot when
IM(r)ll/h(r) = 1, one would perhaps expect the condition for tightness in
this setting to be slightly weaker than Z € L'. However, this is not the case.
As mentioned in the Introduction it is easy to check that if d = 1, then
|M(r)ll/h(r) - 1 implies either M(r)/h(r) - 1 or M(r)/h(r) - —1. Clearly
we may assume it is the former. Then by the previous result, tightness of the
overshoot forces [“(dF(u)/M(u)) < ». Since M(u) < M*(u), where M*(u) =
u'E(Z"; Z* < u), we then have [*(dF(u)/M*(u)) < «. By Lemma 2.2 of [4]
applied to (Z*)/? (see below), this forces Z*€ L'. If Z~¢ L, then S, » —
a.s. and hence P(Sy > 0) — 0, which contradicts M(r)/h(r) — 1. Thus Z €
L'.[We would like to correct the statement of Lemma 2.2 in [4]; 1t should read
E(K(IXID™Y; [IX]l > ¢) < » for some c if and only if E|X|? < «; this is
essentially what is proved there.]
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If Z € I! and EZ > 0, then it is easy to check as in the proof of Lemma 2.1
that M(u) ~ h(u) ~ EZ/u and hence M(r)/h(r) — 1 and

wdF( u)
/ M) 7

that is, (ISy | — r) is tight. If Z € L! and EZ =0 it is still possible that
M(r)/h(r) — 1; however, in this case [*(dF(u)/M(u)) need not be finite.

ExAMPLE 6.2. Let Z have distribution given by

1 1
P(Z>u)=———— and P(Z< -u)= 5 +
u(log u) u(log u) u(log u)
for large u, where —1 < p < 1, with the remaining mass an atom positioned
so that EZ = 0. Then it is easy to check that

2+p

G(r) ~ K(r) ~ r(log r)

2A(2+p)?

M(r) ~ (p + 1)r(log r)*™?

Thus M(r)/h(r) - 1. However, [*(dF(u)/h(w)) < © only for -1 <
p <O0.
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