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A PROBABILISTIC FORMULA FOR THE
CONCAVE HULL OF A FUNCTION!

BY ROBERT J. VANDERBEI

Princeton University

Let D be a compact, convex domain in d-dimensional Euclidean space
and let f be a nonnegative real-valued function defined on D. The classical
optimal stopping problem is to find a stopping time 7* that attains the
supremum v(x) = sup, E,f(B(7)). Here, B is a d-dimensional Brownian
motion with absorption on the boundary of D and the supremum is over
all stopping times. It is well known that v is characterized as the smallest
superharmonic majorant of f.

In this paper, we modify this problem by allowing B to be essentially
any drift-free diffusion (with absorption, as before, on the boundary of D).
For example, it could be a Brownian motion diffusing on some lower di-
mensional affine set. In addition, one is allowed to switch among these dif-
fusions at any time. The problem is to find a stopping time and a switching
strategy that together attain the supremum over all stopping times and all
switching strategies. For this problem, we show that v is characterized as
the smallest concave majorant of /. The domain D can be decomposed into
a disjoint union of relatively open convex sets on each of which the function
v is affine. Furthermore, the union of the zero-dimensional convex sets is
contained in the set on which v = f. An optimal switching strategy is any
strategy that at all times diffuses in the affine hull of the current convex
set. When the diffusion reaches the boundary of she current convex set, it
will lie on a lower dimensional convex set and must then diffuse on the
affine hull of this new set. This process continues until the set on which
v = f is reached, which is the optimal stopping time.

1. Introduction. Let D be a compact, convex d-dimensional domain in
d-dimensional Euclidean space, and let f be a nonnegative, bounded, upper
semicontinuous, real-valued function defined on D. The classical optimal stop-
ping problem is to find a stopping time 7* that attains the supremum

v(x) = sup E.f(B(7)).

Here, B is a d-dimensional Brownian motion with absorption on the boundary
of D and the supremum is over all stopping times. Dynkin [2] was the first to
study this problem. He showed that (for almost-Borel, finely continuous-from-
below functions f) v is the smallest superharmonic majorant of f and that 7*
is the first hitting time of the support set {x: v(x) = f(x)}.

More recently, Mandelbaum, Shepp and Vanderbei [7] studied a related
problem in which D is a rectangle in R?, B is replaced with a one-dimensional
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Brownian motion diffusing in either the horizontal or vertical direction and
the supremum is over all strategies for switching between these two diffusion
directions. In cases where the payoff function f is continuous on the boundary
and the values on the boundary dominate the values in the interior, they
obtained explicit and surprisingly nontrivial solutions. This problem is related
to a certain nonlinear Dirichlet problem. Such problems and their probabilistic
interpretation were first studied by Walsh [12].

Vanderbei [11] extended the results in [7] to higher dimensional domains
but only when the payoff function f has a certain special form. For these
problems, he showed that the optimal strategy is of so-called Gittins type
(i.e., there is a merit function associated with each coordinate direction and
the optimal strategy is to diffuse in the direction associated with the highest
merit function).

Recently, Cairoli and Dalang [1] studied the same problem as in [7] but on
discrete state spaces using simple random walk instead of Brownian motion.
They have distilled the essential ideas (which are mostly geometric) from the
problem, and in so doing they provide a simple and general analysis of the
problem and characterization of the optimal solution.

In this paper, we modify the classical optimal stopping problem by allowing
B to be essentially any drift-free diffusion. For example, it could be a Brownian
motion diffusing on some lower dimensional affine set. As in [7], one is allowed
to switch among these diffusions at any time. The problem is to find a stopping
time and a switching strategy that together attain the supremum over all
stopping times and all switching strategies. For this problem, we show that
v is characterized as the smallest concave majorant of f, that is, the concave
hull of f.

2. Problem formulation. We begin by defining the class of controlled
drift-free processes over which we shall optimize. Let ({2, % ) denote a sample
space and, for each x € R?, let P, be a probability measure on this space.
We assume that (Q, %) is complete with respect to each of the measures P,.
For each u in the unit sphere S¢! in R%, we assume that there is a one-
dimensional Brownian motion

By, = {By(t): t > 0}
defined on this probability space. Associated with each B, is a filtration
Fu ={Fu(t): t = 0}

with respect to which B, is adapted. Furthermore, we assume that the Brown-
ian motions are mutually independent and that they each start at zero.

In addition to the Brownian motions, we assume that there is an R%-valued
random variable £. This random variable will be the starting point for the
controlled diffusion. Hence, we assume that

é=x as. P, forall x e R?

and that ¢ is measurable with respect to %, (0) for every u € Sa-1,
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A switching strategy T is a collection of random time allocations
T={T.(t) eR;: ue 8%, t>0}

with the following properties:

1. For each u € 841, T,(0) = 0 and T,(-) is nondecreasing.
2. The set of “used” directions {z € S%1: lim,_, o T, (t) > 0} is finite.
3. For each ¢ > 0,

> Tu@)=t.
ue894-1
s.t. T,(2)>0

4. For each t > 0 and each function s: S¢-1 — R,

ﬂ {Tu(t) <su}e \/ Fu(su).

ueSd-1 ueSd-1

Switching strategies, essentially as defined here, have proved to be a useful
tool in the study of optimal control problems (see [4—7, 11, 9]). They first ap-
peared in [8] (in a discrete-time setting) and independently in [13], where they
were called optional increasing paths. It is important to note the uncountable
sum in property 3 is actually finite because of property 2. The entire model
could be constructed on a much smaller sample space (having only one Brown-
ian motion), but it seems that introducing a Brownian motion for each possible
diffusion direction makes the subsequent construction more transparent.

Let U(t) = {u € S¢1: T,(t) > 0}. Associated with each switching strategy
T, there is a controlled drift-free process in R¢ given by

Y'(t)=¢+ Y Bu(Tu(t)u, ¢>0.
uel(t)

We now proceed to give a precise formulation of our optimal control problem.
It involves the restriction of Y7 to the compact, convex domain D, given by

XTt)=YT(tn o),
where o = inf{t > 0: YT(¢) ¢ D} is the first exit time from the domain D.
Given a nonnegative, bounded, upper semicontinuous function f defined on
D, the problem is to find a switching strategy T* and a stopping time 7* that

together attain the supremum

2.1) v(x) =supE,f(XT(r)), «xeD.
T,

As usual, the function v is called the value function.
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3. The supermartingale connection. The basic tool in our analy-
sis is the identification of which functions when composed with X7 form
supermartingales for every choice of switching strategy 7. To make this
identification, we need to specify the filtration with respect to which these
compositions should be supermartingales. Indeed, associated with any switch-
ing strategy T, there is a one-parameter filtration #7 = {FT®: t > 0},
where #T® is defined as the o-algebra consisting of all sets C for which
CN{T,(t) <su: ue8%1} eV, cqi1 Fulsy,) for every function s: S4~1 — R,.
It is easy to check that the process X7 is adapted to & 7.

THEOREM 1. Let w be a function defined on D.

() If w is affine, then for any switching strategy T, w(XT(t)), t >0, is an
FT-martingale.

(ii) If w is concave, then for any switching strategy T, w(XT(t)), ¢t > 0, is
an FT-supermartingale.

PROOF. The notation is different and the situation is slightly modified,
but the idea behind the proof of this theorem is the same as in the proof of
Theorems 2.4 and 3.1 in [13], to which we refer the reader. O

A function w defined on D is called a concave majorant of f if it is concave
and w(x) > f(x), for all x € D.

THEOREM 2. Let w be a concave majorant of f. Suppose that there exists
a switching strategy T for which w(XT(¢t A 7)), t = 0, is an F T-martingale,
where T denotes the first hitting time of the set {x: w(x) = f(x)} by the process
XT. IfE,7 < oo for all x, then w is the value function defined by (2.1), T is an
optimal switching strategy and 7 is an optimal stopping time.

PROOF. Appealing to (ii) of Theorem 1 and the optional sampling theorem,
we conclude that

GRY w(x) = E;w(XT(r)) = E<f(X"(r)),

for any switching strategy T and any stopping time 7. For the specific strategy
T and stopping time 7 described in the theorem, we can apply the martingale
optional sampling theorem to get that

(3.2) w(x) =Ew(XT (1)) = E.f(XT(7)).

From (3.1) and (3.2), we conclude that w is the value function and that 7" and
7 form an optimal strategy and stopping time, respectively. O

4. The concave hull. In this section, we shall show that the value func-
tion is precisely the concave hull of f. To this end, we shall need several def-
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initions and theorems from convex analysis. We will give all definitions and,
unless specified otherwise, parenthetical references to theorems shall refer to
theorems in Rockafellar’s classic text [10].

The truncated lower epigraph (or just epigraph) of f is the set F defined as

4.1) F={(x,y)eR¥: xeD, 0<y<f(x)}

The upper semicontinuity of f implies that F is closed (Theorem 7.1). The
boundedness of f implies that F is bounded and hence compact. Let W denote
the convex hull of F defined as the intersection of all convex sets containing
F. The closedness of F together with the commutativity of closure and con-
vexification of bounded sets (Theorem 17.2) implies then that W is closed. Let
w denote the real-valued function defined on D by

(4.2) w(x) =max{y eR: (x,y) e W}, x € D.

The function w is called the concave hull of f. It is well known (see, e.g., [3],
Section 2.5) that w is the smallest concave majorant of f. The closedness of
W implies that w is upper semicontinuous (Theorem 7.1). The concavity of w
implies that it is continuous in the relative interior of D (Theorem 10.1).

A face of W is any convex subset V of W for which every closed line segment
in W with relative interior contained in V has both endpoints in V as well.
Since W is convex, it can be partitioned into the collection of relative interiors
of its nonempty faces (Theorem 18.2). Let # denote this collection. For each
x € D, let B(x) denote that element of % that contains (x,w(x)). Clearly, for
each x and % in D, either B(x) = B(%) or B(x) N B(%) = &. Let A(x) denote
the projection of B(x) onto D:

A(x) ={x: (%,w(x)) € B(x)}.

It is easy to see that the collection &7 of distinct elements of {A(x): x € D}
forms a partition of D into convex sets. We call it the facial decomposition of
D associated with f.

We now have the tools necessary to construct a specific switching strategy
that we shall prove is optimal. For each A in & with dim A > 1, let u*(A)
denote a direction vector from S9! “lying” in A. That is, if x is any point in
A, x +u*(A) must belong to the affine hull of A. For each x € D, let A(x)
denote the convex set in &7 that contains x and let

C={xe D: dim A(x) > 1}.

Let T denote the switching strategy for which, until the first exit time from
C, only T,.(4) increases when XT(¢) € A. After the first exit time from C,
any fixed direction, call it «, is chosen and is used from that time onward.
Regarding the four defining properties of a switching strategy, it appears that
only the second might be in doubt, so we focus on it.

Fix x € C. Since dim A(x) > 1, the direction u*(A(x)) is chosen initially. Let
71 denote the first exit time from A(x) obtained using this diffusion direction.
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At this time, the process lies on one of two relative boundary points of A(x).
Let {; denote this point. The set A({;) must have dimension strictly smaller
than the dimension of A(x). If it has dimension 0, then we switch to & and use
this direction for all future time. If, however, it has dimension greater than 0,
then the direction u*(A({1)) is selected. Clearly, this process continues and
after a finite number of steps, say N, the diffusion must arrive at a point {5
for which the dimension of A({y) is 0, after which only direction i is used. It
is clear that the (random) number N is bounded by d and hence that no more
than 2¢ 4 1 directions are ever used.

In Theorem 4, we show that the strategy just constructed is an optimal
strategy. For this theorem, the most crucial property of upper semi-continuous
concave functions is the following result about their boundary behavior.

THEOREM 3. Let w be an upper semicontinuous concave function on D. For
every x in the interior of D and every y on the boundary of D, the following
limit holds:

w(y) = }13(1) w(Ax + (1 —A)y).

This theorem is exactly Theorem 7.5 in [10] and so we do not prove it here.
While an upper semicontinuous concave function need not be continuous on
all of D, it is continuous in the interior (as mentioned before) and this theorem
says that the continuity property also holds at boundary points as long as one
approaches along a line segment from the interior. Stronger results are known
(see, e.g., [10], Theorem 10.2), but shall not be needed here.

We are now ready for our main result:

THEOREM 4. The value function v is the concave hull of f. Let T denote the
switching strategy defined above, and let T denote the first hitting time of the
support set of v. Then T and T together form an optimal strategy and stopping
time.

PROOF. Let w denote the concave hull of f, let T denote the switching
strategy defined above and let 7 be the first hitting time of {x: w(x) = f(x)}.
It follows from part (i) of Theorem 1 and Theorem 3 that w(X7T(¢ A 7)) is an
Z T-martingale. All that remains then is to apply Theorem 2, which requires
that E,7 < oo for every starting point x € D. To show this, we first note that
the stop set {x € D: w(x) = f(x)} is not too small. Indeed, we shall show that
its complement is contained in C. Hence, the first hitting time of the support
set is bounded above by the first hitting time of a zero-dimensional set A in
the facial decomposition 7. However, this latter hitting time is simply the
sum of a finite number of exit times from finite intervals each of which clearly
has finite expectation.

It only remains to show that {x € D: w(x) > f(x)} c C. Fix an x for which
w(x) > f(x). Caratheodory’s theorem tells us that the concave hull w has the
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following representation:

d+1 d+1 d+1
w(x) = sup{ A f(ax;): Z Ax;=2x;, A, =>0,i=12,...,d+1; Z A= 1}
i=1 i=1 i=1

(see, e.g., [10], Corollary 17.1.5). The compactness of the set over which this
optimization takes place implies that the supremum is attained. That is, there
exist points x; € D, i = 1,2,...,d + 1, such that w(x) is a convex combination
of the f(x;):

d+1

w(x) =Y Af(x).
=1

Let & denote the number of A;’s that are strictly positive. Without loss of
generality, we may assume that A; > 0, for i = 1,2,...,k, and A; = 0, for
i=k+1,k+2,...,d+1. Since w(x) > f(x), it follows that & > 1. Since w is
concave and majorizes f, it follows that f(x;) = w(x;), fori =1,2,...,k, and
S0

k
w(x) = Z /\iw(xi).
i=1

The fact that 2 > 1 now implies that dim(B(x)) > 0, which in turn implies
that dim(A(x)) > 0. Hence x € C. O
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